AGHTEGK

www.achtecktool.com/ru

ЭКСПЕРТ В РЕЗАНИИ ТРУДНООБРАБАТЫВАЕМЫХ МАТЕРИАЛОВ

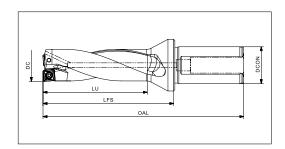
Свёрла со сменными режущими пластинами

Свёр<mark>ла со сменн</mark>ыми режу<u>щими пластин</u>ами

Система обозначения свёрл со сменными режущими пластинами

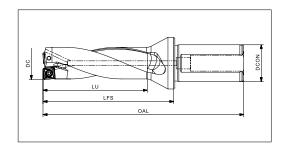
255

S324


S07 5

1	HP	Серия свёрл	HP - серия высокопроизводительных корпусных свёрл					
2	2D	Длина режущей части, указанное в диаметрах сверла	2D, 3D, 4D,					
3	255	Диаметр сверла	255 - 25.5 мм, 500 - 50 мм					
4	S32	Диаметр хвостовика	S20 - диаметр 20 мм	S40 - диаметр 40 мм				
5	S07	Форморазмер режущих пластин	Форма S (квадратная), размер 7 (длина режущей кромки 7 мм)					

Длина режущей части - 2xD

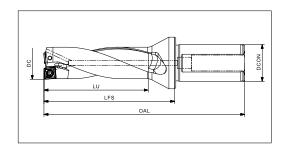


Номер по каталогу	DC	LU	OAL	DCON	LFS	Пластины
HP-2D130-S20-S05	13.0	29	99	20	49	
HP-2D135-S20-S05	13.5	30	100	20	50	
HP-2D140-S20-S05	14.0	31	101	20	51	SPMT 050204E-DP
HP-2D145-S20-S05	14.5	32	102	20	52	
HP-2D150-S20-S05	15.0	33	103	20	53	
HP-2D155-S25-S06	15.5	34	115	25	59	
HP-2D160-S25-S06	16.0	35	116	25	60	
HP-2D165-S25-S06	16.5	36	117	25	61	
HP-2D170-S25-S06	17.0	37	118	25	62	
HP-2D175-S25-S06	17.5	38	119	25	63	
HP-2D180-S25-S06	18.0	39	120	25	64	
HP-2D185-S25-S06	18.5	40	121	25	65	SPMT 060204E-DP
HP-2D190-S25-S06	19.0	41	122	25	66	
HP-2D195-S25-S06	19.5	42	123	25	67	
HP-2D200-S25-S06	20.0	43	124	25	68	
HP-2D205-S25-S06	20.5	44	125	25	69	
HP-2D210-S25-S06	21.0	45	126	25	70	
HP-2D215-S25-S06	21.5	46	127	25	71	
HP-2D220-S32-S07	22.0	47	137	32	77	
HP-2D225-S32-S07	22.5	48	138	32	78	
HP-2D230-S32-S07	23.0	49	139	32	79	
HP-2D235-S32-S07	23.5	50	140	32	80	
HP-2D240-S32-S07	24.0	51	141	32	81	
HP-2D245-S32-S07	24.5	52	142	32	82	SPMT 07T308E-DP
HP-2D250-S32-S07	25.0	53	143	32	83	3PWH 071308E-DP
HP-2D255-S32-S07	25.5	54	144	32	84	
HP-2D260-S32-S07	26.0	55	145	32	85	
HP-2D265-S32-S07	26.5	56	146	32	86	
HP-2D270-S32-S07	27.0	57	147	32	87	
HP-2D275-S32-S07	27.5	58	148	32	88	

Основные размеры (мм)	Запасные части					
Диаметр сверла (мм)	Винт	Ключ				
8						
13-15	ST020043	FT-T06				
15.5-21.5	ST022055	FT-T06				
22-27.5	\$T025065	FT-T08				

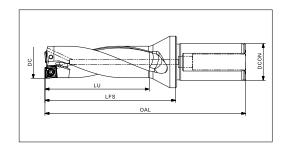
Длина режущей части - 2xD

Номер по каталогу	DC	LU	OAL	DCON	LFS	Пластины
HP-2D280-S32-S09	28.0	59	149	32	89	
HP-2D285-S32-S09	28.5	60	150	32	90	
HP-2D290-S32-S09	29.0	61	151	32	91	
HP-2D295-S32-S09	29.5	63	153	32	93	SPMT 090408E-DP
HP-2D300-S32-S09	30.0	65	155	32	95	3PWH 090408E-DP
HP-2D310-S32-S09	31.0	67	157	32	97	
HP-2D320-S32-S09	32.0	69	159	32	99	
HP-2D330-S32-S09	33.0	71	161	32	101	
HP-2D340-S40-S11	34.0	73	178	40	108	
HP-2D350-S40-S11	35.0	75	180	40	110	SPMT 110408E-DP
HP-2D360-S40-S11	36.0	77	182	40	112	
HP-2D370-S40-S11	37.0	79	184	40	114	
HP-2D380-S40-S11	38.0	81	186	40	116	3PWH 110400E-DP
HP-2D390-S40-S11	39.0	83	188	40	118	
HP-2D400-S40-S11	40.0	85	190	40	120	
HP-2D410-S40-S11	41.0	87	192	40	122	
HP-2D420-S40-S14	42.0	89	194	40	124	
HP-2D430-S40-S14	43.0	91	196	40	126	
HP-2D440-S40-S14	44.0	93	198	40	128	
HP-2D450-S40-S14	45.0	95	200	40	130	
HP-2D460-S40-S14	46.0	97	202	40	132	SPMT 140512E-DP
HP-2D470-S40-S14	47.0	99	204	40	134	
HP-2D480-S40-S14	48.0	101	206	40	136	
HP-2D490-S40-S14	49.0	103	208	40	138	
HP-2D500-S40-S14	50.0	105	210	40	140	


Основные размеры (мм)	Запасные части					
Диаметр сверла (мм)	Винт	Ключ				
Da O						
28-33	ST035084X	FT-T15				
34-41	ST040100H	FT-T15				
42-50	ST050126	FT-T20				

Длина режущей части - 3хD

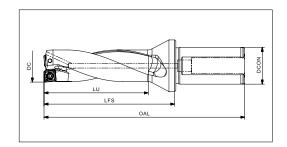
Номер по каталогу	DC	LU	OAL	DCON	LFS	Пластины
HP-3D130-S20-S05	13.0	42	112	20	62	
HP-3D135-S20-S05	13.5	44	114	20	64	
HP-3D140-S20-S05	14.0	45	115	20	65	SPMT 050204E-DP
HP-3D145-S20-S05	14.5	47	117	20	67	
HP-3D150-S20-S05	15.0	48	118	20	68	
HP-3D155-S25-S06	15.5	50	131	25	75	
HP-3D160-S25-S06	16.0	51	132	25	76	
HP-3D165-S25-S06	16.5	53	134	25	78	
HP-3D170-S25-S06	17.0	54	135	25	79	
HP-3D175-S25-S06	17.5	56	137	25	81	
HP-3D180-S25-S06	18.0	57	138	25	82	
HP-3D185-S25-S06	18.5	59	140	25	84	SPMT 060204E-DP
HP-3D190-S25-S06	19.0	60	141	25	85	
HP-3D195-S25-S06	19.5	62	143	25	87	
HP-3D200-S25-S06	20.0	63	144	25	88	
HP-3D205-S25-S06	20.5	65	146	25	90	
HP-3D210-S25-S06	21.0	66	147	25	91	
HP-3D215-S25-S06	21.5	68	149	25	93	
HP-3D220-S32-S07	22.0	69	159	32	99	
HP-3D225-S32-S07	22.5	71	161	32	101	
HP-3D230-S32-S07	23.0	72	162	32	102	
HP-3D235-S32-S07	23.5	74	164	32	104	
HP-3D240-S32-S07	24.0	75	165	32	105	
HP-3D245-S32-S07	24.5	77	167	32	107	CDMT OZTOGOE DD
HP-3D250-S32-S07	25.0	78	168	32	108	SPMT 07T308E-DP
HP-3D255-S32-S07	25.5	80	170	32	110	
HP-3D260-S32-S07	26.0	81	171	32	111	
HP-3D265-S32-S07	26.5	83	173	32	113	
HP-3D270-S32-S07	27.0	84	174	32	114	
HP-3D275-S32-S07	27.5	86	176	32	116	


Основные размеры (мм)	Запасные части					
Диаметр сверла (мм)	Винт	Ключ				
13-15	ST020043	FT-T06				
15.5-21.5	ST022055	FT-T06				
22-27.5	ST025065	FT-T08				

Свёрла со сменными

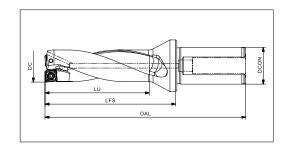
Свёрла серии НР

Длина режущей части - 3хD


	Основные размеры (мм)					
Номер по каталогу	DC	LU	OAL	DCON	LFS	Пластины
HP-3D280-S32-S09	28.0	87	177	32	117	
HP-3D285-S32-S09	28.5	89	179	32	119	
HP-3D290-S32-S09	29.0	90	180	32	120	
HP-3D295-S32-S09	29.5	93	183	32	123	SPMT 090408E-DP
HP-3D300-S32-S09	30.0	95	185	32	125	3PWH 090400E-DP
HP-3D310-S32-S09	31.0	98	188	32	128	
HP-3D320-S32-S09	32.0	101	191	32	131	
HP-3D330-S32-S09	33.0	104	194	32	134	
HP-3D340-S40-S11	34.0	107	212	40	142	
HP-3D350-S40-S11	35.0	110	215	40	145	SPMT 110408E-DP
HP-3D360-S40-S11	36.0	113	218	40	148	
HP-3D370-S40-S11	37.0	116	221	40	151	
HP-3D380-S40-S11	38.0	119	224	40	154	3PWH 110408E-DP
HP-3D390-S40-S11	39.0	122	227	40	157	
HP-3D400-S40-S11	40.0	125	230	40	160	
HP-3D410-S40-S11	41.0	128	233	40	163	
HP-3D420-S40-S14	42.0	131	236	40	166	
HP-3D430-S40-S14	43.0	134	239	40	169	
HP-3D440-S40-S14	44.0	137	242	40	172	
HP-3D450-S40-S14	45.0	140	245	40	175	
HP-3D460-S40-S14	46.0	143	248	40	178	SPMT 140512E-DP
HP-3D470-S40-S14	47.0	146	251	40	181	
HP-3D480-S40-S14	48.0	149	254	40	184	
HP-3D490-S40-S14	49.0	152	257	40	187	
HP-3D500-S40-S14	50.0	155	260	40	190	

Основные размеры (мм)	Запасные части					
Диаметр сверла (мм)	Винт	Ключ				
28-33	ST035084X	FT-T15				
34-41	ST040100H	FT-T15				
42-50	ST050126	FT-T20				

Длина режущей части - 4xD


Номер по каталогу	DC	LU	OAL	DCON	LFS	Пластины
HP-4D130-S20-S05	13.0	55	125	20	75	
HP-4D135-S20-S05	13.5	57	127	20	77	
HP-4D140-S20-S05	14.0	59	129	20	79	SPMT 050204E-DP
HP-4D145-S20-S05	14.5	61	131	20	81	
HP-4D150-S20-S05	15.0	63	133	20	83	
HP-4D155-S25-S06	15.5	65	146	25	90	
HP-4D160-S25-S06	16.0	67	148	25	92	
HP-4D165-S25-S06	16.5	69	150	25	94	
HP-4D170-S25-S06	17.0	71	152	25	96	
HP-4D175-S25-S06	17.5	73	154	25	98	
HP-4D180-S25-S06	18.0	75	156	25	100	
HP-4D185-S25-S06	18.5	77	158	25	102	SPMT 060204E-DP
HP-4D190-S25-S06	19.0	79	160	25	104	
HP-4D195-S25-S06	19.5	81	162	25	106	
HP-4D200-S25-S06	20.0	83	164	25	108	
HP-4D205-S25-S06	20.5	85	166	25	110	
HP-4D210-S25-S06	21.0	87	168	25	112	
HP-4D215-S25-S06	21.5	89	170	25	114	
HP-4D220-S32-S07	22.0	91	181	32	121	
HP-4D225-S32-S07	22.5	93	183	32	123	
HP-4D230-S32-S07	23.0	95	185	32	125	
HP-4D235-S32-S07	23.5	97	187	32	127	
HP-4D240-S32-S07	24.0	99	189	32	129	
HP-4D245-S32-S07	24.5	101	191	32	131	SPMT 07T308E-DP
HP-4D250-S32-S07	25.0	103	193	32	133	3PMT 0/1308E-DP
HP-4D255-S32-S07	25.5	105	195	32	135	
HP-4D260-S32-S07	26.0	107	197	32	137	
HP-4D265-S32-S07	26.5	109	199	32	139	
HP-4D270-S32-S07	27.0	111	201	32	141	
HP-4D275-S32-S07	27.5	113	203	32	143	

Основные размеры (мм)	Запасные части					
Диаметр сверла (мм)	Винт	Ключ				
200						
13-15	ST020043	FT-T06				
15.5-21.5	ST022055	FT-T06				
22-27.5	ST025065	FT-T08				

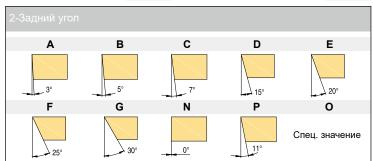
Свёрла серии НР

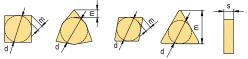
Длина режущей части - 4xD

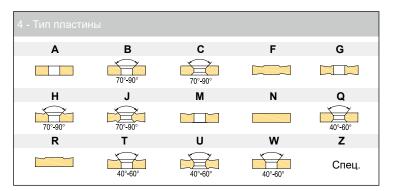
Номер по каталогу	DC	LU	OAL	DCON	LFS	Пластины
HP-4D280-S32-S09	28.0	115	205	32	145	
HP-4D285-S32-S09	28.5	117	207	32	147	
HP-4D290-S32-S09	29.0	120	210	32	150	
HP-4D295-S32-S09	29.5	123	213	32	153	SPMT 090408E-DP
HP-4D300-S32-S09	30.0	125	215	32	155	3PMT 090408E-DP
HP-4D310-S32-S09	31.0	129	219	32	159	
HP-4D320-S32-S09	32.0	133	223	32	163	
HP-4D330-S32-S09	33.0	137	227	32	167	
HP-4D340-S40-S11	34.0	141	246	40	176	
HP-4D350-S40-S11	35.0	145	250	40	180	ODMT 110 4005 DD
HP-4D360-S40-S11	36.0	149	254	40	184	
HP-4D370-S40-S11	37.0	153	258	40	188	
HP-4D380-S40-S11	38.0	157	262	40	192	SPMT 110408E-DP
HP-4D390-S40-S11	39.0	161	266	40	196	
HP-4D400-S40-S11	40.0	165	270	40	200	
HP-4D410-S40-S11	41.0	169	274	40	204	
HP-4D420-S40-S14	42.0	173	278	40	208	
HP-4D430-S40-S14	43.0	177	282	40	212	
HP-4D440-S40-S14	44.0	181	286	40	216	
HP-4D450-S40-S14	45.0	185	290	40	220	
HP-4D460-S40-S14	46.0	189	294	40	224	SPMT 140512E-DP
HP-4D470-S40-S14	47.0	193	298	40	228	
HP-4D480-S40-S14	48.0	197	302	40	232	
HP-4D490-S40-S14	49.0	201	306	40	236	
HP-4D500-S40-S14	50.0	205	310	40	240	

Основные размеры (мм)	Запаснь	ые части
Диаметр сверла (мм)	Винт	Ключ
DO O		
28-33	ST035084X	FT-T15
34-41	ST040100H	FT-T15
42-50	ST050126	FT-T20

Система обозначения режущих пластин для корпусных свёрл







Класс точности	Ед.	Диаметр впис. окружности d	Размер до вершины m	Толщина s
А	ММ	± 0,025	± 0,005	± 0,025
С	мм	± 0,025	± 0,013	± 0,025
Е	ММ	± 0,025	± 0,025	± 0,025
F	ММ	± 0,013	± 0,005	± 0,025
G	ММ	± 0,025	± 0,025	± 0,13
н	ММ	± 0,013	± 0,013	± 0,025
J	ММ	*	± 0,005	± 0,025
к	ММ	*	± 0,013	± 0,025
L	ММ	*	± 0,025	± 0,025
М	ММ	*	*	± 0,127
U	ММ	*	*	± 0,127
N	ММ	*	*	± 0,025

* больше	информации	в таблицах сі	права и снизу

Для классов М и N	Форі	ма D	Форі	ма V
IC	d	m	d	m
5.56	± 0,05	± 0,11		
6.35	± 0,05	± 0,11	± 0,05	± 0,16
7.94	± 0,05	± 0,11	± 0,05	± 0,16
9.525	± 0,05	± 0,11	± 0,05	± 0,16
12.7	± 0,08	± 0,15	± 0,08	± 0,2
15.875	± 0,10	± 0,18	± 0,10	± 0,27
19.05	± 0,10	± 0,18	± 0,10	± 0,27

	Форма:	C, E, H, M, (D, P, S, T, R,	W
IC	(t		m
IC	J,K,L,M,N	U	M, N	U
4.76	± 0,05	± 0,08	± 0,08	± 0,13
5.56	± 0,05	± 0,08	± 0,08	± 0,13
6	± 0,05	± 0,08	± 0,08	± 0,13
6.35	± 0,05	± 0,08	± 0,08	± 0,13
7.94	± 0,05	± 0,08	± 0,08	± 0,13
8	± 0,05	± 0,08	± 0,08	± 0,13
9.525	± 0,05	± 0,08	± 0,08	± 0,13
10	± 0,05	± 0,08	± 0,08	± 0,13
12	± 0,08	± 0,13	± 0,13	± 0,2
12.7	± 0,08	± 0,13	± 0,13	± 0,2
15.875	± 0,1	± 0,18	± 0,15	± 0,27
16	± 0,1	± 0,18	± 0,15	± 0,27
19.05	± 0,1	± 0,18	± 0,15	± 0,27
20	± 0,1	± 0,18	± 0,15	± 0,27
25	± 0,13	± 0,25	± 0,18	± 0,38
25.4	± 0,13	± 0,25	± 0,18	± 0,38
31.75	± 0,15	± 0,25	± 0,2	± 0,38
32	± 0,15	± 0,25	± 0,2	± 0,38

04

5-Длина р	режущей н	кромки		
Диаметр впис. окружности	S	s	w	w
(мм)	Код	Длина	Код	Длина
5.56			03	3.8
6.35	06	6.35	04	4.3
7.94			05	5.4
8.0	08	8.0		
9.525	09	9.525	06	6.5
12.7	12	12.7	08	8.7

_		
		KVIII PÄ KDOMKIA
	Пример	Описание
	E	Округление режущей кромки
	F	Острая режущая кромка
	Т	Кромка с защитной фаской

6 - Толщина					
Описание толщины пластины	•	ние толщины пастины		Примеј	0
			00	=	0.79
		S	T0	=	0.99
			01	=	1.59
			T1	=	1.98
			02	=	2.38
			T2	=	2.58
		S	03	=	3.18
Толщина S обозн осевое расстояни			Т3	=	3.97
режущей кромкої			04	=	4.76
опорной поверхн	остью		T4	=	4.96
пластины			05	=	5.56
		S	T5	=	5.95
		S	06	=	6.35
			07	=	7.94
			09	=	9.53
			11	=	11.11
			12	=	12.70
			14	=	14.29
			15	=	15.88

9- Стружколомающая геометрия

DP

- 1. Геометрия DP первый выбор для высокопроизводительного сверления различных материалов.
- 2. Пластины квадратной формы обладают повышенной прочностью и в комбинации с усиленной геометрией режущей кромки обеспечивают отличную прямолинейность обработанного отверстия
- 3. Корпус сверла серии HP с винтовыми стружечными канавками позволяет надёжно отводить стружку из зоны резания и получать готовые отверстия повышенной точности.

DU/DG

- 1. Геометрия и форма пластин обеспечивают отличный баланс прочности и усилий резания
- 2. Универсальная геометрия в комбинации с 2-мя марками сплавов позволяет достигать высоких результатов при сверлении материалов групп ISO P, M, K и S, отлично отводя стружку даже при обработке вязких типов сталей
- 3. Обеспечивает хорошее качество поверхности обработанного отверстия
- 4. Может применяться как на обрабатывающих фрезерных центрах, так и на токарных станках (без вращения сверла)

Рекомендации по выбору марок сплавов для сверления

		06	бласть п	римене	ния спл	іавов д	пя свер	ления					
Группа обрабатываемого	Материалы	ISO					С покр	ытием		,			Без
материала	деталей	100	PVD	PVD	PVD	PVD	PVD	PVD	PVD	PVD	CVD	CVD	покрытия
		P01											
		P05											
		P10											
		P15											
	Углеродистые и	P20	\supseteq										
P	легированные	P25	30										
	стали	P30	AP301U	211									
		P35		AP351M	AP351U								
		P40			P3.								
		P45											
		P50											
		M01											
		M05											
		M10											
		M15											
M	Нержавеющие	M20											
•	стали	M25	5										
		M30	511										
		M35	AP351M	AP351U									
		M40		P3.									
		M45		A									
		K01											
		K05											
		K10											
		K15											
K		K20											
T.	Чугуны	K25											
		K30											
		K35											
		K40											
		K45											
		K50											
		N01											
		N05											
	Алюминий и	N10											
N	алюминиевые сплавы	N15											
	Сплавы	N20											
		N25											
		N30											
		S01											
		S05											
		S10											
		S15											
S	Жаропрочные сплавы	S20											
	Сплавы	S25											
		S30	AP351M	11									
		S35	AP.	AP351U									
		S40		AP									
		S45	<u> </u>										

Описание марок сплавов для сверления

Низкоуглеродистые, углеродистые, легированные и инструментальные стали.

Основные сплавы

AP301U(P15-P35)

Первый выбор для сверления стали.

Ультрамелкозернистая основа средней твёрдости в комбинации с наноструктурным многослойным покрытием PVD наделяют сплав высокой износостойкостью и прочностью.

AP351M(P25-P40)

Первый выбор для сверления нержавеющей стали и жаропрочных сплавов. Ультрамелкозернистая основа высокой прочности и наноструктурное покрытие PVD позволяют сплаву работать даже в нестабильных условиях сверления, сопротивляться возникновению термотрещин и износу по задней поверхности. Может применяться для сверления стали при нестабильных условиях обработки.

AP351U(P30-P45)

Сплав рекомендуется для сверления различных материалов в сложных нестабильных условиях обработки. Отличная сопротивляемость высоким нагрузкам, благодаря очень прочной основе. Современное наноструктурное покрытие PVD придаёт режущим кромками высокую стойкость к износу.

Аустенитные, супераустенитные и дуплексные нержавеющие стали.

Основные сплавы

AP351M(M25-M40)

Первый выбор для сверления нержавеющей стали и жаропрочных сплавов. Ультрамелкозернистая основа высокой прочности и наноструктурное покрытие PVD позволяют сплаву работать даже в нестабильных условиях сверления, сопротивляться возникновению термотрещин и износу по задней поверхности. Может применяться для сверления стали при нестабильных условиях обработки.

Жаропрочные сплавы

Основные сплавы

AP351M(S25-S40)

Первый выбор для сверления нержавеющей стали и жаропрочных сплавов. Ультрамелкозернистая основа высокой прочности и наноструктурное покрытие PVD позволяют сплаву работать даже в нестабильных условиях сверления, сопротивляться возникновению термотрещин и износу по задней поверхности. Может применяться для сверления стали при нестабильных условиях обработки.

AP351U(S30-S45)

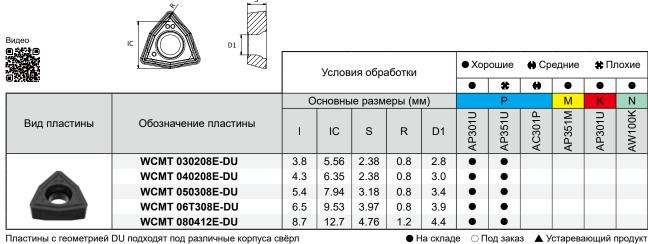
Сплав рекомендуется для сверления различных материалов в сложных нестабильных условиях обработки. Отличная сопротивляемость высоким нагрузкам, благодаря очень прочной основе. Современное наноструктурное покрытие PVD придаёт режущим кромками высокую стойкость к износу.

Вид пластины

Режущие пластины SPMT с геометрией DP для свёрл серии HP

SPMT 110408E-DP

SPMT 140512E-DP


		Услов	ия обра	аботки		● Xop	ошие	(†) Ср	едние	# П	похие
						•	#	#	•	•	•
	0	сновнь	е разм	еры (мі	и)		Р		М	K	N
Обозначение пластины	1	IC	S	R	D1	AP301U	AP351U	AC301P	AP351M	AP301U	AW100K
SPMT 050204E-DP	5	5	2.38	0.4	2.25	•	•	•	•	•	
SPMT 060204E-DP	6	6	2.38	0.4	2.61	•	•	•	•	•	
SPMT 07T308E-DP	7.94	7.94	3.97	0.8	2.85	•	•	•	•	•	
SPMT 090408E-DP	9.8	9.8	4.3	0.8	4.05	•	•	•	•	•	

4.45

5.75

● На складе О Под заказ 🛕 Устаревающий продукт

Режущие пластины WCMT с геометрией DU

11.5

14.3

11.5

14.3

4.8

5.2

8.0

1.2

Пластины с геометрией DU подходят под различные корпуса свёрл

Режущие пластины WCMT с геометрией DG

			Услов	ия обра	аботки		● Xob	ошие	Ср	едние	4€ i n	юхие
							•	#	+	•	•	•
		0	сновнь	е разм	еры (мі	м)		Р		М	K	N
Вид пластины	Обозначение пластины	1	IC	S	R	D1	AP301U	AP351U	AC301P	AP351M	AP301U	AW100K
	WCMT 030204E-DG	3.8	5.56	2.38	0.4	2.5	A	A				
	WCMT 040204E-DG	4.3	6.35	2.38	0.4	2.8	A	A				
	WCMT 050308E-DG	5.4	7.94	3.18	0.8	3.4	A	A				
	WCMT 06T308E-DG	6.5	9.53	3.97	0.8	4.45	A	A				
	WCMT 080408E-DG	8.7	12.7	4.76	0.8	5.5	A	A				

Рекомендуемые режимы резания для свёрл со сменными режущими пластинами

ğ	Материалы обрабатываемых деталей	ываемых д	еталей									۵	ежим	ы реза	ния для свёрл	серии НР с пла	Режимы резания для свёрл серии НР с пластинами SPMT			
								Σ	Марка сп	сплава										
				<	AP301U		<	AP351U		AP3	AP351M		AC301P	1						
				т.	P15-35		-	P30-45		P2(P20-35		P25-40	0†						
				_	M15-35		_	M30-45		MZC	M20-35						I	,		
	Описание												'				Подача на оборот (мм/об)	а оборот об)		
180	обрабатываемых	прочности	Твёрдость (НВ)				(V)	S 30-45		SZC	S20-35							ĺ		
,	материалов	(H/MM ²)											•							
/																				
				Макс.	Сред.	Мин	Макс.	Макс. Сред. Мин. Макс. Сред. Мин.		акс. Ср	ед. Мг	тн. Мак	c. Cpe	Макс. Сред. Мин. Макс. Сред. Мин.	Ø13MM∼Ø15 MM	Ø15.5MM~Ø21.5 MM	Ø22 MM ~ Ø27.5 MM	Ø28 MM ~Ø33 MM	Ø34 MM ∼Ø41 MM	Ø42mm~Ø50mm
								Экорос	Скорость резания (м/мин)	м/м) ки	іин)				SPMT 050204E-DP	SPMT 060204E-DP	SPMT 07T308E-DP	SPMT 090408E-DP SPMT 110408E-DP	SPMT 110408E-DP	SPMT 140512E-DP
		009>	<180	260	240	224	220	185	150 2	240 2	220 200	00 200	0 175	150	0.05-0.08	0.06-0.10	0.06-0.12	0.07-0.13	0.08-0.15	0.08-0.16
Ų	уперодистые стали	<950	<280	250	210	170	200	170	140 2	230 18	190 160	30 190	0 162.5	.5 135	0.06-0.12	0.08-0.15	0.10-0.18	0.12-0.22	0.12-0.24	0.13-0.25
_	и отписасии	700-950	200-280	240	200	160	190	160	130	220 18	180 150	180	0 150	120	0.06-0.10	0.08-0.14	0.10-0.18	0.12-0.22	0.12-0.23	0.13-0.24
	инструментальные	950-1200	280-355	210	170	130	170	130	90 1	190 1	150 11	110 160	0 130	100	0.06-0.12	0.08-0.15	0.10-0.18	0.12-0.22	0.12-0.24	0.13-0.25
	CIANIN	1200-1400	355-415	170	140	110	160	120	80 1	150 13	120 90	0 140	0 110	08 (0.06-0.10	0.08-0.14	0.10-0.18	0.12-0.22	0.12-0.23	0.13-0.24
	Дуплексные нержавеющие стали	778	230	260	200	140	180	135	90	240 18	180 12	120 -	'	•	0.05-0.10	0.06-0.12	0.08-0.15	0.09-0.16	0.10-0.17	0.11-0.18
Σ	Аустенитные нержавеющие стали	675	200	220	170	120	120	99	09	200 11	150 10	100	'	•	0.05-0.10	0.06-0.12	0.08-0.15	0.09-0.16	0.10-0.17	0.11-0.18
-	Аустенитные, закалённые (РН нержавеющие стали)	1013	300	180	140	100	06	99	40	160 13	120 80	- 80		'		·	,	·		
	Серый чугун	200	220							1			1	•						
7	Чугун с шаровидным графитом	880	260			,		,		,				,	-		•	-	•	
	Ковкий чугун	800	250						•	,			1	•	-	-		-		-
2	Чистый алюминий	260	75	,	1	,		•		1	'	1	'	'		•			•	
Z	Алюминиевые сплавы	447	130	-	-	-	1	-	-	-			1	-	-	-	-	-	-	-
_	Сплавы на основе Fe	943	280				40	30	20	45 3	35 29	25 -	•	-		-			-	-
U	Сплавы на основе Со	1076	320		-		35	25	15	40 3	30 20	20 -	•	•	-	-	-	-		-
,	Сплавы на основе Ni	1177	350				35	25	15	40 3	30 20	- 0	1	•	•	•				
	Сплавы на основе Ті	1262	370		,		40	30	702	45 3	35 29	25 -	'	1	0.05-0.10	0.06-0.14	0.08-0.18	0.10-0.22	0.14-0.23	0.15-0.24
3	Закалённые стали		50-60HRC	•		•		•		-	1	1	'	•	-		1	-	•	•
	Отбеленные чугуны		55HRC	•	•				•	1	<u>'</u>	'	'	•	•	•	-			
*2011 02	THORSE THEFT	TOTA COOL	импие обыч	IHPIM VC	VBN aou	is ofna	POTKN	Режим	- Desah	ри нео	MNEOXC	o koppe	GOUNTA	OTL MCV.	OV VIIIIBOTOEL SU BUC	NATOROGO ŠINIGOR	I BUILDED BOUND IN TOOM TO SA	заны начальные режимы появите соответствиющие объектии режимы появим и копректии режимы появим и копректии режимы появим и копректии режимы появим и копректии режимы появим и жесткости станка констрикии и жесткости станка констрикии и жесткости станка констрикии и жесткости станка констрикии и жесткости станка констрики и жесткости станка констрикии и жесткости станка констрикии и жесткости станка констрикии и жесткости станка констрикии и жесткости станка констрикции и жесткости и	STO MITOCATORY MAIN	10000

*аны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости и эаготовки, жёсткости станка, конструкции дегали и иппа применяемой СОЖ.

Рекомендуемые режимы резания для свёрл со сменными режущими пластинами

Предел Предел Прочности (Н/мм²) (Н/мм²) (100-960 950-1200 1200-1400 1200-1400 100-960 980 880 880 880 890 943 943 943 177 1177 1177 1 11262 1 1262 1	2	Материалы обрабатываемых деталей	ываемых д	еталей								Режим	Режимы резания для свёрл с пластинами WCMT	рл с пластинами М	/CMT		
Описание материалов Предели нестрание провожние и страние и достовение и страние и достовение								Марк	н сплава								
Описание материалов Предели на сонове Гев 943 Спокрытием РVО Спокрытием РА P25-40 P25-40 <th< th=""><th></th><th></th><th></th><th></th><th>·</th><th>AP301U</th><th></th><th>AP</th><th>351U</th><th></th><th>AC30</th><th>ĪР</th><th></th><th></th><th></th><th></th><th></th></th<>					·	AP301U		AP	351U		AC30	ĪР					
Описание материалов материалов (H/мм*) Пределить не прочности (H/мм*) Пределить не пределить не прочности (H/мм*) Пределить не прочности (H/мм*) <th></th> <th></th> <th></th> <th></th> <th>C To</th> <th>крытием</th> <th>PVD</th> <th>С покрь</th> <th>тием РУ[</th> <th></th> <th>покрыти</th> <th>ем СУД</th> <th>ı</th> <th></th> <th></th> <th></th> <th></th>					C To	крытием	PVD	С покрь	тием РУ[покрыти	ем СУД	ı				
Productive Chart						P15-35		<u>2</u>	10-45		P25-	40					
Officeative Propertion (Army) (Arms) (H/Mn/N) (H/Mn/N)<						M15-35		M	30-45						Подача на оборот		
Матис работновительного ставо сородности в расоности протиссти в расоности протиссти протиссти в расоности в расон	0		Предел	Твёрдость											(MM/06)		
Vinepolanchae cranin Ce00 <180	<u> </u>		(H/MM²)	(HB)				S	30-45		'						
Макс. Сред. Ими. Макс. Сред. Мин. Макс.													T				
Marc Cpeq. Mun. Mur. Mun. Mun																	
Уплеродистые стали интеродистые стали -690 -180 280 240 224 220 185 150 200 175 160 Уплеродистые стали интермиеттальные стали интермиеттальные стали интермиеттальные стали -280 280 240 170 130 160 130 180 150 170 140 190 1825 135 180																	
Уплеродистые стали инструментальные инструментальные инструментальные инструментальные инструментальные (в 550 200-280 240 224 220 185 185 150 200 175 140 190 160 130 160 130 140 140 140 140 140 140 140 140 140 14					Макс.	Сред.	\vdash	-	_	\vdash	\vdash	-	Ø16 MM ∼Ø20 MM	Ø20.5 MM ∼Ø25 MM	$\varnothing 25.5~\mathrm{MM} \sim \varnothing 30~\mathrm{MM}$	Ø31 NM ~Ø41 NM	\varnothing 41 nm \sim \varnothing 58 nm
Principality Prin			-				Š	орость р€	зания (м/	мин)			WCMT 030204E-DU/DG	WCMT 040204E-DU/DG	WCMT 050308E-DU/DG	WCMT 06T308E-DU/DG	WCMT 080408E-DU/DC
Purpose transmission Purpose transmission			009>	<180	260	240							0.04-0.065	0.07-0.09	0.07-0.10	0.08-0.11	0.09-0.13
Purposeements of the consistent of the consist	V	углеродистые стали	<950	<280	250	210							0.05-0.07	0.09-0.09	0.07-0.10	0.08-0.11	0.09-0.13
Handling H	•	Петированите и	700-950	200-280	240	200							0.05-0.09	0.065-0.14	0.08-0.16	0.10-0.18	0.10-0.20
Дупленсивые приводини и разватейные стали (тоты и восторые стали) и восторые стали (тоты и восторые стали (тоты и восторые и и восторые и и восторые и восторы и восторые и восторы и восторы и вост	_	инструментальные	950-1200	280-355	210	170							0.04-0.07	0.065-0.11	0.07-0.14	0.09-0.15	0.10-0.18
Heyazeeloutile crank 675 200 200 140 180 135 90 - - - 0.04-0,07 0.065-0.11 0.065-0.11 Aycreturniee errank 675 200 220 170 120 65 60 - - - 0.04-0.05 0.065-0.10 0.065-0.10 Aycreturniee (PH) 1013 300 180 140 100 90 65 40 - <t< th=""><th>_</th><th>стали</th><td>1200-1400</td><td>355-415</td><td>170</td><td>140</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.04-0.065</td><td>0.05-0.9</td><td>0.07-0.10</td><td>0.08-0.12</td><td>0.09-0.13</td></t<>	_	стали	1200-1400	355-415	170	140							0.04-0.065	0.05-0.9	0.07-0.10	0.08-0.12	0.09-0.13
Аустенитые нержавеющие стали 675 200 220 170 120 65 60 - - - 0.044-0.065 0.065-0.10 Аустенитые заматеные (тали утун высовый чутун вышеный чутун высовый чутун высовый чутун высовый чутун высовый чутун		Дуплексные нержавеющие стали	778	230	260	200							0.04-0.07	0.065-0.11	0.08-0.14	0.08-0.11	0.09-0.13
Аустенитывые (PH нержавейощие стали) 1013 300 180 140 100 65 40 - <t< th=""><th>Σ</th><th>Аустенитные нержавеющие стали</th><td>675</td><td>200</td><td>220</td><td>170</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.04-0.065</td><td>0.065-0.10</td><td>0.08-0.12</td><td>0.08-0.10</td><td>0.08-0.11</td></t<>	Σ	Аустенитные нержавеющие стали	675	200	220	170							0.04-0.065	0.065-0.10	0.08-0.12	0.08-0.10	0.08-0.11
Оевый чутн трафилом чутн воо 250 1 1 1 1 2 1 2		Аустенитные, закалённые (РН нержавеющие стали)	1013	300	180	140	100										
Чутун с шаровидным графитом гористичем гостивавы на основе Гол 1 1262 260 2.6		Серый чугун	700	220			1		,		•	,	,	,	,		
Ковкий чутун 800 250 -	¥	Чугун с шаровидным графитом	880	260					,			•	,	,		,	
Чистый алюминий 260 75 -		Ковкий чугун	800	250			1					1		,			٠
Алюминиевые сплавы на основе Fe 943 280 -	2	Чистый алюминий	260	75			•	•	•					•		-	-
Сплавы на основе Fe 943 280 - - 40 30 20 -<	Z	Алюминиевые сплавы		130	•		-					-	-	-	-	-	-
Сплавы на основе Со 1076 320 - - - 35 25 15 -		Сплавы на основе Fe		280	٠		-			- 0		1		•	-	•	-
Сплавы на основе Ni 1177 350 - - - 40 30 20 -	U.	Сплавы на основе Со		320			-					-		-	-	-	
Сплавы на основе Ті 1262 370 - - 40 30 20 -		Сплавы на основе Ni	1177	350		•	-						-	-	-	-	-
Закалённые стали 50-60HRC - <th></th> <th>Сплавы на основе Ті</th> <td>1262</td> <td>370</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.05-0.10</td> <td>0.06-0.11</td> <td>0.07-0.12</td> <td>0.08-0.13</td> <td>0.08-0.14</td>		Сплавы на основе Ті	1262	370			-						0.05-0.10	0.06-0.11	0.07-0.12	0.08-0.13	0.08-0.14
Отбеленные чугуны	-	Закалённые стали		50-60HRC	-	•	-	-				-	-	•	-	-	-
		Отбеленные чугуны		55HRC		-	-	-	-		-	•	•	-	-	-	•

*аны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции дегали и системы подачи и типа применяемой СОЖ.

Свёрла системы ВТА для обработки глубоких отверстий

АСНТЕСК изготавливает режущие пластины для высокопроизводительного глубокого сверления заготовок деталей для изделий различных отраслей промышленности: энергетической, общего машиностроения, экструзионной, авиационной, корабельной, военной и др. Головки для глубокого сверления системы ВТА изготавливаются по запросу. Современные режущие геометрии пластин позволяют достигать высокой прямолинейности отверстий, а также низкой шероховатости поверхности. Сплавы в сочетании с представленными геометриями пластин позволяют высокоэффективно вести обработку отверстий в стали, нержавеющей стали и жаропрочных сплавах.

Особенности и рекомендации по применению

- Режущие пластины устанавливаются на головку для глубокого сверления.
- Сплав AP301U(N) является первым выбором для сверления углеродистых, легированных и нержавеющих сталей
- •Все геометрии пластин обеспечивают оптимальные результаты по генерации и эвакуации стружки
- Высокие подачи позволяют достигать высокой производительности и эффективности обработки глубоких отверстий
- Решение позволяет снизить затраты, себестоимость обработки отверстия

Марка сплава	Покрытио			Обрабатывае	мый материал		
імарка сплава	Покрытие	Р	M	K	N	S	Н
AP301U(N)	PVD	•	•			0	

● Первый выбор О Альтернативный выбор

Сплав AP301U(N) (P15-P35, M15-M35) с основой средней твёрдости и современным покрытием PVD обладает высокой прочностью и износостойкостью. Сплав позволяет достигать высоких результатов при обработке различных материалов заготовок. Отличная сопротивляемость возникновению нароста обеспечивает высокую стойкость при обработке нержавеющих сталей и жаропрочных сплавов.

Описание стружколомающих геометрий для глубокого сверления

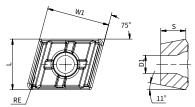
Геометрия	Профиль режущей кромки	Описание
DH		 Универсальная геометрия. Позволяет работать на высоких скоростях резания и подачах. Отличное формирование стружки при обработке большинства материалов заготовок.
DL		 Первый выбор для обработки материалов, генерирующих длинную сливную стружку, таких как низкоуглеродистые стали и дуплексные нержавеющие стали. Обеспечивает надёжный процесс обработки и решает проблемы с пакетированием стружки.
LH		 Открытый тип геометрии. Подходит для сверления на высоких скоростях резания и подачах.

Рекомендации по выбору пластин для глубокого сверления (эжекторная система)

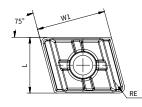
С = Центральная пластина

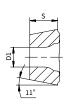
I = Промежуточная пластина

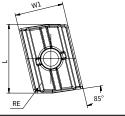
Направляющая опорная пластина 4

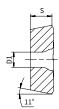

Периферийная пластина

Диапазон диаметров отверстия (мм)	Центральная пластина	Диапазон диаметров отверстия (мм)	Промежуточная пластина	Диапазон диаметров отверстия (мм)	Периферийная пластина	Диапазон диаметров отверстия (мм)	Направляющая опорная пластина
26.00-28.70	EPMT 050308C	26.00-31.00	EPMT 050308I	26.00-31.00	APHT 060308P	26.00-31.00	GPAD-06A
28.71-33.99	ЕРМТ 06Т308С	31.01-34.99	EPMT 06T308I	31.01-38.99	APHT 08T308P	31.01-39.60	GPAD-07A
34.00-43.00	EPMT 08T308C	35.00-54.99	EPMT 08T308I	39.00-49.99	APHT 09T308P	39.61-47.00	GPAD-08A
43.01-47.00	EPMT 10T308C	55.00-65.00	EPMT 12T308I	50.00-65.00	APHT 11T308P	47.01-54.99	GPAD-10A
47.01-49.99	EPMT 12T308C	-	-	-	-	55.00-65.00	GPAD-12A
50.00-57.99	EPMT 10T308C	-	-	-	-	-	-
58.00-65.00	EPMT 12T308C	-	-	-	-	-	-

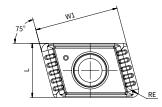

Режущие пластины для глубокого сверления

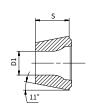

Пластины с геометрией DH


Центральная пластина	Обозначение пластины	L	W1	S	RE	D1	Заменяемые пластины конкурента	Наличие
	EPMT 050308C-DH AP301U(N)	5.56	8	3.18	0.8	2.5	800-050308M-C-G 1025	•
	EPMT 06T308C-DH AP301U(N)	6.35	9.87	3.97	0.8	2.8	800-06T308M-C-G 1025	•
	EPMT 08T308C-DH AP301U(N)	7.94	9.87	3.97	0.8	2.8	800-08T308M-C-G 1025	•
	EPMT 10T308C-DH AP301U(N)	9.53	9.87	3.97	0.8	2.8	800-10T308M-C-G 1025	•
	EPMT 12T308C-DH AP301U(N)	12.7	9.87	3.97	0.8	2.8	800-12T308M-C-G 1025	•

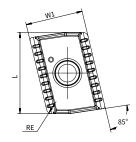

● На складе

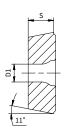
Промежуточная пластина	Обозначение пластины	L	W1	S	RE	D1	Заменяемые пластины конкурента	Наличие
	EPMT 050308I-DH AP301U(N)	5.56	8	3.18	0.8	2.5	800-050308M-I-G 1025	•
	EPMT 06T308I-DH AP301U(N)	6.35	9.87	3.97	0.8	2.8	800-06T308M-I-G 1025	•
	EPMT 08T308I-DH AP301U(N)	7.94	9.87	3.97	0.8	2.8	800-08T308M-I-G 1025	•
	EPMT 12T308I-DH AP301U(N)	12.7	9.87	3.97	0.8	2.8	800-12T308M-I-G 1025	•


Периферийная пластина	Обозначение пластины	L	W1	S	RE	D1	Заменяемые пластины конкурента	Наличие
	APHT 060308P-DH AP301U(N)	6.5	8	3.18	0.8	2.5	800-060308H-P-G 1025	•
	APHT 08T308P-DH AP301U(N)	8.5	9	3.97	0.8	2.8	800-08T308H-P-G 1025	•
	APHT 09T308P-DH AP301U(N)	9.66	9	3.97	0.8	2.8	800-09T308H-P-G 1025	•
	APHT 11T308P-DH AP301U(N)	12.75	9	3.97	0.8	2.8	800-11T308H-P-G 1025	•



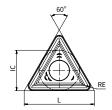
Режущие пластины для глубокого сверления

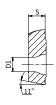

Пластины с геометрией DL



Промежуточная пластина	Обозначение пластины	L	W1	S	RE	D1	Заменяемые пластины конкурента	Наличие
	EPMT 050308I-DL AP301U(N)	5.56	8	3.18	0.8	2.5	800-050308M-I-L 1025	•
0/3	EPMT 06T308I-DL AP301U(N)	6.35	9.87	3.97	0.8	2.8	800-06T308M-I-L 1025	•
	EPMT 08T308I-DL AP301U(N)	7.94	9.87	3.97	0.8	2.8	800-08T308M-I-L 1025	•
	EPMT 12T308I-DL AP301U(N)	12.7	9.87	3.97	0.8	2.8	800-12T308M-I-L 1025	•

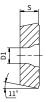
● На складе




Периферийная пластина	Обозначение пластины	L	W1	S	RE	D1	Заменяемые пластины конкурента	Наличие
All and a second	APHT 060308P-DL AP301U(N)	6.5	8	3.18	0.8	2.5	800-060308H-P-L 1025	•
	APHT 08T308P-DL AP301U(N)	8.5	9	3.97	0.8	2.8	800-08T308H-P-L 1025	•
	APHT 09T308P-DL AP301U(N)	9.66	9	3.97	0.8	2.8	800-09T308H-P-L 1025	•
	APHT 11T308P-DL AP301U(N)	12.75	9	3.97	0.8	2.8	800-11T308H-P-L 1025	•

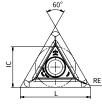
Режущие пластины для глубокого сверления

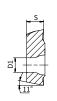
Пластины с геометрией DH



Центр. и промежут. пластина	Обозначение пластины	L	IC	S	RE	D1	Заменяемые пластины конкурента	Наличие
6	TPMT 16T312R-DH AP301U(N)	16.5	9.53	3.97	1.2	3.4	TPMT 16T312R-23 1025	•
	TPMT 220612R-DH AP301U(N)	22	12.7	6.35	1.2	4.4	TPMT 220612R-23 1025	•

● На складе

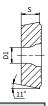



Периферийная пластина	Обозначение пластины	L	W1	S	RE	D1	Заменяемые пластины конкурента	Наличие
07	APMT 13T308-DH AP301U(N)	14.6	10	3.97	0.8	3.4	R424.9-13T308-23 1025	•
	APMT 180608-DH AP301U(N)	20.6	11.5	6.35	0.8	4.4	R424.9-180608-23 1025	•

• На складе

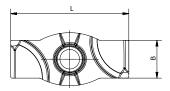
Режущие пластины для глубокого сверления

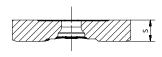

Пластины с геометрией LH



Центр. и промежут. пластина	Обозначение пластины	L	IC	S	RE	D1	Заменяемые пластины конкурента	Наличие
	TPMT 16T312R-LH AP301U(N)	16.5	9.525	3.97	1.2	3.4	TPMT 16T312R-22 1025	•
	TPMT 220612R-LH AP301U(N)	22	12.7	6.35	1.2	4.4	TPMT 220612R-22 1025	•

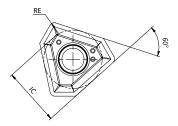
• На складе

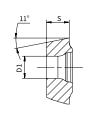



Периферийная пластина	Обозначение пластины	L	W1	S	RE	D1	Заменяемые пластины конкурента	Наличие
0	APMT 13T308-LH AP301U(N)	14.6	10	3.97	0.8	3.4	R424.9-13T308-22 1025	•
	APMT 180608-LH AP301U(N)	20.6	11.5	6.35	0.8	4.4	R424.9-180608-22 1025	•

Режущие пластины для глубокого сверления

Направляющая опорная пластина





Направляющая опорная пластина	Обозначение пластины	В	L	S	Заменяемые пластины конкурента	Наличие
	GPAD-06A AC301K	6.00	18.00	3.00	800-06A PM1	•
	GPAD-07A AC301K	7.00	20.00	3.50	800-07A PM1	•
	GPAD-08A AC301K	8.00	25.00	4.50	800-08A PM1	•
	GPAD-10A AC301K	10.00	30.00	4.50	800-10A PM1	•
	GPAD-12A AC301K	12.00	35.00	5.50	800-12A PM1	•

● На складе

Пластины ТРМХ с геометрией DH

Вид пластины	Обозначение пластины	остины S IC RE D1 Заме		Заменяемые пластины конкурента	Наличие		
	TPMX 1403R-DH AP301U(N)	3.50	8.45	0.80	2.87	TPMX 1403RG TT9030	•
	TPMX 1704R-DH AP301U(N)	4.00	10.30	0.80	3.90	TPMX 1704RG TT9030	•
	TPMX 2405R-DH AP301U(N)	5.50	14.20	1.20	4.40	TPMX 2405RG TT9030	•
	TPMX 2405L-DH AP301U(N)	5.50	14.20	1.20	4.40	TPMX 2405LG TT9030	•
	TPMX 2807R-DH AP301U(N)	7.50	17.00	1.60	5.50	TPMX 2807RG TT9030	•

Рекомендуемые режимы резания для сверления отверстий диаметром от 25 до 65 мм

Обрабатываемые материалы			Твёрдость по	Марка сплава Тип пластины			Скорость	Подача на оборот fn (мм/об)	
			Бринеллю				резания Vc	Диаметр сверла (мм)	
		(HB)	Периф.	Промеж.	Центр.	(м/мин)	25.00-43.00	43.01-65.00	
	Углеродистые стали	C=0.05-0.10%	125	AP301U(N)		70-130	0.11-0.41	0.14-0.45	
		C=0.10-0.25%	125			70-130	0.11-0.41	0.14-0.45	
		C=0.25-0.55%	150		AF3010(N)		70-130	0.11-0.41	0.14-0.45
		C=0.55-0.80%	170			70-130	0.11-0.41	0.14-0.45	
	Высокоуглеродистые стали	Углеродистые инструментальные стали	210	AP301U(N)			70-120	0.11-0.41	0.20-0.45
P	Низколегированные стали	Без термообработки	180			55-110	0.11-0.41	0.20-0.45	
		Термообработанные	275	AP301U(N)	70-120	0.11-0.41	0.20-0.45		
		Термообработанные	350		70-120	0.11-0.41	0.20-0.45		
	Высоколегированные	Отожжённые	200		AP301U(N)		55-110	0.11-0.38	0.20-0.40
	стали	Закалённые инструментальные стали	325		AF3010(N)		55-110	0.20-0.38	0.20-0.40
	Литые стали	Углеродистые нелегированные	180		VD3U11(VI)		55-110	0.11-0.41	0.20-0.45
	липыс стали	Низколегированные (легир. < 5%)	200	- AP301U(N) -	55-110	0.11-0.41	0.20-0.45		
		Ферритные, мартенситные без термообработки	200				40-110	0.11-0.41	0.20-0.45
M	Нержавеющие стали	Аустенитные	200		AP301U(N)		40-110	0.11-0.41	0.20-0.45
IVI	нержавеющие стали	Аустенитные, закалённые (РН нержавеющие стали)	300		A 30 10(14)		40-110	0.11-0.33	0.20-0.35
		Аустенитно-ферритные, дуплексные	230				40-80	0.11-0.33	0.20-0.35
	Ковкие чугуны	Ферритные	200		AP301U(N)		80-120	0.11-0.38	0.24-0.41
	Robible Tyryribi	Перлитные	260	AF 30 TO (N)	80-120	0.11-0.38	0.24-0.41		
	Серые чугуны	С низким пределом прочности	180	AP301U(N)	60-110	0.11-0.38	0.24-0.41		
K	Осрыс чугуны	С повышенным пределом прочности	245	AP3010(N)		60-110	0.11-0.38	0.24-0.41	
_	Чугуны с шаровидным	Ферритные	160	AP301U(N)	50-110	0.11-0.38	0.24-0.41		
	графитом	Перлитные	250			50-110	0.11-0.38	0.24-0.41	
	С верми	кулярным графитом	230						
	Деформируемые алюминиевые сплавы	Не подвергнутые старению	30	AP301U(N)	65-150	0.09-0.33	0.20-0.33		
		Подвергнутые старению	100		65-150	0.09-0.33	0.20-0.33		
	Литые алюминиевые	≤ 12% Si, не подвергнутые старению	75	AP301U(N)	65-150	0.09-0.33	0.20-0.33		
	литые алюминиевые сплавы	≤ 12% Si, подвергнутые старению	90		65-150	0.09-0.33	0.20-0.33		
N		> 12% Si, не подвергнутые старению	130			65-150	0.09-0.33	0.20-0.33	
	Магниевые сплавы		70						
		Нелегированная, электролитическая бронза	100		AP301U(N)		65-150	0.09-0.33	0.20-0.33
	Медь и сплавы на основе меди (бронза, латунь)	Латунь, бронза, красная латунь	90				65-150	0.09-0.33	0.20-0.33
	тоди (ороноа, латунь)	Медные сплавы, короткая стружка	110	AP301U(N)	65-150	0.09-0.33	0.20-0.33		
		Высокопрочные сплавы Атрсо	300		65-150	0.09-0.33	0.20-0.33		
		На основе железа (Fe), отожжённые	200				10-55	0.09-0.30	0.20-0.33
		На основе железа (Fe), состаренные	280				10-55	0.09-0.30	0.20-0.33
	Жаропрочные сплавы	На основе никеля (Ni) или кобальта (Co), отожжённые	250	. AP301U(N)	10-55	0.09-0.30	0.20-0.33		
s		На основе никеля (Ni) или кобальта (Co), состаренные	350		10-55	0.09-0.30	0.20-0.33		
	Титановые сплавы	На основе никеля (Ni) или кобальта (Co), литые	320			10-55	0.09-0.30	0.20-0.33	
		Чистый титан	200			30-60	0.09-0.30	0.20-0.33	
		α сплавы	375	AP301U(N)		30-60	0.09-0.30	0.20-0.33	
		α + β сплавы	375			30-60	0.09-0.30	0.20-0.33	
		β сплавы	410			30-60	0.09-0.30	0.20-0.33	
Н	Закалённые стали	Закалённые и отпущенные	43-47 HRC						
	Отбеленные чугуны		47-60 HRC						

Рекомендуемые режимы резания для сверления отверстий диаметром более 63,5 мм

			T	Марка сплава			0	Подача на оборот fn (мм/об)	
	Обрабатывае	Твёрдость по- Бринеллю (НВ)	Тип пластины			Скорость резания Vc	Диаметр сверла (мм)		
			Периф.	Промеж.	Центр.	(м/мин)	≥63.50		
		C=0.05-0.10%	125				80-100	0.18-0.35	
	V	C=0.10-0.25%	125		AD204LI/NI)		80-100	0.18-0.35	
	Углеродистые стали	C=0.25-0.55%	150		AP301U(N)		80-100	0.18-0.35	
		C=0.55-0.80%	170				80-100	0.18-0.35	
	Высокоуглеродистые стали	Углеродистые инструментальные стали	210		AP301U(N)		70-100	0.18-0.35	
P	Низколегированные стали	Без термообработки	180				60-100	0.16-0.35	
		Термообработанные	275		AP301U(N)		70-100	0.18-0.30	
	o a m	Термообработанные	350				70-100	0.18-0.30	
	Высоколегированные	Отожжённые	200		AD20411/NI)		60-100	0.16-0.30	
	стали	Закалённые инструментальные стали	325		AP301U(N)		60-100	0.16-0.30	
	_	Углеродистые нелегированные	180		4 D00 411 (41)		50-100	0.15-0.30	
	Литые стали	Низколегированные (легир. < 5%)	200		AP301U(N)		50-100	0.15-0.30	
		Ферритные, мартенситные без термообработки	200				50-90	0.16-0.35	
NA		Аустенитные	200		4 D00411/NI)		50-90	0.16-0.35	
M	Нержавеющие стали	Аустенитные, закалённые (РН нержавеющие стали)	300		AP301U(N)				
		Аустенитно-ферритные, дуплексные	230						
	Vanua in musi	Ферритные	200		AP301U(N) AP301U(N)				
	Ковкие чугуны	Перлитные	260						
		С низким пределом прочности	180						
K	Серые чугуны	С повышенным пределом прочности	245						
	Чугуны с шаровидным графитом	Ферритные	160						
		Перлитные	250	AP301U(N)					
	С верми	кулярным графитом	230						
	Деформируемые алюминиевые сплавы	Не подвергнутые старению	30	- AP301U(N)		65-130	0.10-0.30		
		Подвергнутые старению	100			65-130	0.10-0.30		
	Литые алюминиевые сплавы	≤ 12% Si, не подвергнутые старению	75			65-130	0.10-0.30		
		≤ 12% Si, подвергнутые старению	90	AP301U(N)			65-130	0.10-0.30	
		> 12% Si, не подвергнутые старению	130				65-130	0.10-0.30	
N	Магниевые сплавы		70						
		Нелегированная, электролитическая бронза	100		AP301U(N)		65-130	0.10-0.30	
	Медь и сплавы на основе	Латунь, бронза, красная латунь	90				65-130	0.10-0.30	
	меди (бронза, латунь)	Медные сплавы, короткая стружка	110		AP301U(N)		65-130	0.10-0.30	
		Высокопрочные сплавы Атрсо	300	-		65-130	0.10-0.30		
		На основе железа (Fe), отожжённые	200				20-65	0.15-0.30	
		На основе железа (Fe), состаренные	280				20-65	0.15-0.30	
	Жаропрочные сплавы	На основе никеля (Ni) или кобальта (Co), отожжённые	250		AP301U(N)		20-65	0.15-0.30	
S		На основе никеля (Ni) или кобальта (Co), состаренные	350	- AP301U(N)		20-65	0.15-0.30		
3		На основе никеля (Ni) или кобальта (Co), литые	320						
		Чистый титан	200			30-100	0.15-0.30		
		α сплавы	375				30-100	0.15-0.30	
		α + β сплавы	375				30-100	0.15-0.30	
		β сплавы	410			30-100	0.15-0.30		
Н	Закалённые стали	Закалённые и отпущенные	43-47 HRC						
П	Отбеленные чугуны		47-60 HRC						

