

ОСНОВНОЙ КАТАЛОГ

2[]24

ЭКСПЕРТ В РЕЗАНИИ ТРУДНООБРАБАТЫВАЕМЫХ-МАТЕРИАЛОВ.

"北冥有鱼,其名为鲲。

鲲之大,不知其几千里也;

化而为鸟,其名为鹏。

鹏之背,不知其几千里也;

怒而飞,其翼若垂天之云。"

"В Северном океане обитает рыба, зовут ее Кун. Рыба эта так велика, что в длину достигает неведомо сколько ли. Она может обернуться птицей, и ту птицу зовут Пэн. А в длину птица Пэн достигает неведомо сколько тысяч ли. Поднатужившись, взмывает она ввысь, и ее огромные крылья застилают небосклон, словно грозовая туча."

Чжуан-Цзы, 300 г. до н. э.

О компании

Ganzhou Achteck Tool Technology Co., Ltd. (Ганьчжоу Актек Тул Технолоджи Ко. Лтд.) является дочерней компанией фирмы Chongyi Zhangyuan Tungsten Co., Ltd. (биржевой код: 002378). С момента своего основания в 2007 году мы продолжаем придерживаться принципов независимых инноваций и совершенствовать наши возможности в области исследований и разработок. На сегодняшний день компания имеет в совокупности 135 действующих авторизованных патентов, в том числе 26 патентов на изобретения, 51 патент на полезную модель и 58 патентов на промышленные образцы (включая 25 патентов на промышленные образцы в Германии). Инструментальные технологии и продукция компании имеют независимые права интеллектуальной собственности. В настоящее время компания построила производственную линию с годовой производительностью 30 миллионов твёрдосплавных режущих пластин с покрытием и производственную линию с годовой производительностью 1500 тонн высококачественных твёрдосплавных стержней. Предложение компании охватывает инструментальные решения для токарной, фрезерной обработки, обработки канавок и обработки отверстий в заготовках из стали, чугуна, нержавеющих сталей, алюминиевых и жаропрочных сплавов, закалённых сталей, а также других материалов. Продукция компании применяется в механообработке в важнейших отраслях промышленности, таких как аэрокосмическая, железнодорожная, энергетическая, автомобильная, медицинская, нефтегазовая, а также в обработке деталей общего машиностроения и др., благодаря высокой точности и надежности, а также наличии как универсальных, так и специализированных решений. В настоящее время наша компания является одной из немногих, обладающей полной цепочкой производства твёрдосплавных инструментов - от добычи руды, получения чистого вольфрама, карбидизации, размола, получения порошка из карбида вольфрама до производства готового режущего инструмента и его покрытия, внося значительных вклад в здоровое и устойчивое увеличение производительности механообработки в цехах предприятий наших заказчиков.

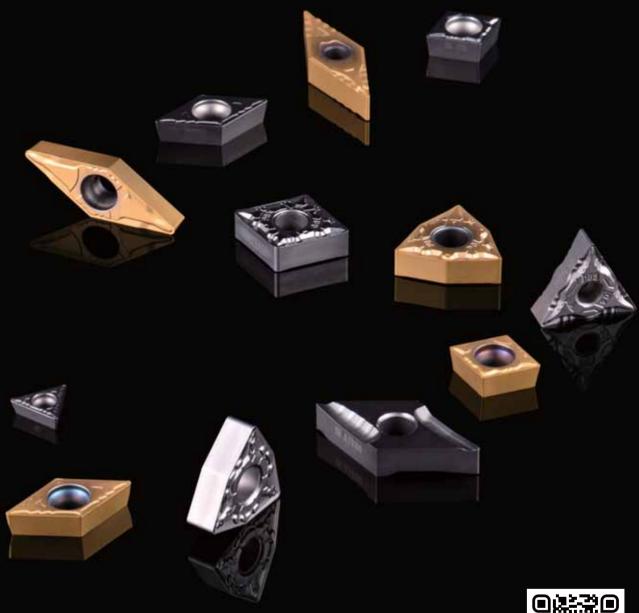
Видео о компании

Инструмент для мелкоразмерной обработки 2023 Новая разработка Видео ASG в работе Особенности и рекомендации по применению

- Инструмент для мелкоразмерной обработки обладает широким ассортиментом геометрий и изготавливается из разных марок сплавов для обработки различных материалов заготовок.
- Высокоточные шлифованные по периферии пластины с геометриями UF и LF отлично подходят для суперфинишной токарной обработки и обеспечивают превосходное ломание стружки
- Многофункциональные инструменты серии ASW могут быть применены как для отрезки, обратного точения, так и для нарезания резьбы, что позволяет снизить стоимость инструментальной наладки
- Вставки для мелкоразмерной обработки применяются для внутреннего точения, обработки канавок и нарезания резьбы в отверстиях малых диаметров

Осевой инструмент

- Achteck обладает широким ассортиментом цельных твёрдосплавных осевых инструментов, таких как фрезы и свёрла, которые обеспечивают высокую производительность обработки и экономическую эффективность для всех предприятий
- Свёрла серий D106 и D108 представлены вариантам с диаметрами от 3 мм до 20 мм и длиной режущей части от 3хD до 8хD
- Семейства фрез Есо, Pro и XP представлены как универсальными вариантами с 2,3,4 и 6 зубьями, так и специализированными для фрезерования труднообрабатываемых материалов. Доступны для выбора варианты с зубьями с упрочняющей фаской, радиусом или наостро, со стандартной режущей частью и со сферическим концом.



Свёрла D106 в работе

Свёрла D108 в работе

Особенности и рекомендации по применению

- Кермет обладает более высокой теплопроводностью, чем режущая керамика, а также хорошей термической стабильностью
- Марка кермета АТ202 является первым выбором для общей обработки, чистовой и получистовой обработки стали, обладает повышенной производительностью при обработке на повышенных скоростях в хороших и плохих условиях обработки

АТ202 в работе

2023 Новая разработка

Режущие пластины из Кермета

Обработка канавок и отрезка

- а также позволяют вести обычную токарную обработку и профильное точение
- Режущие пластины шириной от 2 до 8 мм.
- Геометрии для отрезки и обработки канавок: CS, CM и CH от самой острой до самой прочной
- Геометрии для обработки канавок и точения: GS, TS, TM и RM, RA с радиусной режущей кромкой
- Высокоточные пластины, шлифованные по периферии, представлены вариантами шириной от 1 до 8 мм и применяются как для отрезки, обработки канавок, так и для профильного точения
- Уникальная конструкция передней поверхности в комбинации с двойным наклоном задней поверхности позволяет более надёжно вести обработку торцевых и внутренних канавок, позволяя обрабатывать их на меньших диаметрах

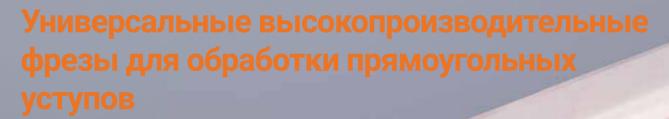
Новая разработка! Решения с трёхкромочными пластинами треугольной формы

- Три типа пластин: ATG32, ATG43 и ASG32
- Державки как для обработки наружных канавок, внутренних канавок и профильной обработки.
- Пластины шириной 0,33 4,8 мм. Широкий выбор и большие возможности к расширению ассортимента.
- Высокоточные, шлифованные по периферии, режущие пластины позволяют получить самое высокое качество обработанной поверхности

- Трёхкромочные пластины с задним углом, низкие усилия резания при обработке уступов и плоскостей
- Большой передний угол и винтовой профиль режущих кромок обеспечивают лёгкое и мягкое резание
- Режущие пластины с радиусом при вершине от R0,8 до R4,0
- Режущие пластины обладают небольшой зачистной фаской, обеспечивающей повышенное качество обработанной плоскости
- Варианты пластин как с шлифованием по периферии повышенной точности так и без неё. Для различных требований к точности и в зависимости от обрабатываемых материалов
- Широкая область применения: фрезы успешно применяются для обработки прямоугольных уступов, плоскостей, пазов, карманов, с врезанием под углом и по винтовой интерполяции.
- Вершина режущей кромки защищена благодаря уникальной конструкции кармана и режущей пластины

Серия ASM90-TD15

Фрезы для обработки прямоугольных уступов


- Исполнения корпусов с мелким и крупным шагом, с креплением на торцевой оправке
- Режущие пластины без заднего угла, с тангенциальным креплением. 4 режущие кромки для правосторонних фрез, 4 - для левосторонних.
- Режущие пластины повышенного класса точности (Е) обладают небольшой зачистной фаской
- Для обработки прямоугольных уступов и плоскостей с получением высокого качества обработанных поверхностей
- Для черновой и чистовой обработки стали, нержавеющей стали и чугуна. Универсальное применение

Серия ASM90-LN12

Фрезы для обработки прямоугольных уступов

Серии ASM90-AO12 и APE90-AO12

Особенности и рекомендации по применению:

- · Универсальные фрезы для обработки прямоугольных уступов, пазов, отверстий и карманов, плунжерной обработки, а также плоскостей.
- · Исполнения как на цилиндрическом хвостовике, на хвостовике Weldon, с креплением на торцевой оправке, в виде фрезерных головок, так и длиннокромочное.
- · Современная криволинейная форма режущей кромки пластин позволяет вести плавный и мягкий процесс резания.
- Различные варианты радиусов при вершине режущей пластины от 0,4 до 4,0 мм.
- · Широкий выбор геометрий и сплавов режущих пластин для высокоэффективной обработки сталей, нержавеющих сталей, цветных и жаропрочных сплавов, а также чугуна
- Высокая надёжность закрепления пластин.

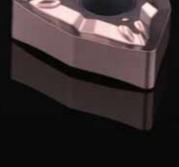
Новые геометрии: BS - для контурного точения, SC1, SL3 - для точения жаропрочных сплавов и нержавеющих сталей

Режущие пластины ISO для токарной обработки

Особенности и рекомендации по применению

Стружколомающая геометрия BS

- Специально разработана для профильного и контурного точения
- Отличное формирование и отвод стружки даже при малых глубинах резания
- Постоянное формирование сегментной стружки при различной траектории обработки на разных глубинах резания


Стружколомающая геометрия SC1

- Разработана для чистового точения нержавеющих сталей и жаропрочных сплавов
- Хорошее формирование стружки даже при малых значениях подач и глубин резания
- Волнообразная криволинейная режущая кромка способствует снижению усилий резания, уменьшению вероятности возникновения нароста, что приводит к достижению более высокой стойкости и получению великолепного качества обработанной поверхности.

Стружколомающая геометрия SL3

- Разработана для обработки длинных валов, тонкостенных и нежёстко закреплённых деталей.
- Специальный паз для более точного направления СОЖ в зону резания
- Подходит для обработки жаропрочных сплавов и нержавеющих сталей

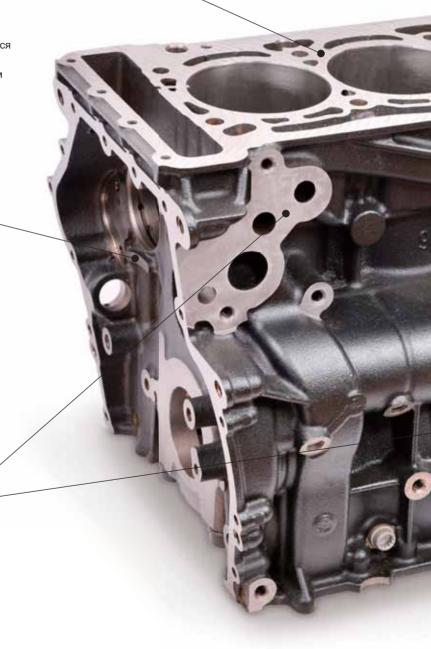
Геометрия SL3 в работе

Сплав АС052Р в работе

- Lad
- Сплав с покрытием CVD нового поколения
 Отличная сопротивляемость кратерному износу, лункообразованию и пластической деформации.
- Применяется для черновой и получистовой токарной обработки стали на высоких скоростях резания и повышенных подачах в стабильных условиях резания, обеспечивая большой удельный съём металла в минуту.
- Великолепно противостоит высоким температурам в зоне резания, сохраняя свойства режущей кромки как при точении с СОЖ, так и без.

АС052Р - новый сплав для высокопроизводительной токарной обработки Режущие пластины ISO для токарной обработки

Фреза серии AFM45-XN09-W с двусторонними пластинами с 14-ю режущими кромками обладает ультрамелким шагом зубьев, благодаря креплению пластин клином. Режущие пластины изготавливаются из высокопроизводительных сплавов с CVD покрытием. Решение является идеальным выбором


для чернового фрезерования чугуна.

Длиннокромочные фрезы серий APE90-LN09/LN13 с тангенциальными пластинами обладают высокой надёжностью и обеспечивают высокую производительность обработки.

Фрезы серий ASM90-LN09/LN13 с тангенциальными режущими пластинами с режущими кромками криволинейной спиральной формы. Надёжная конструкция позволяет работать с повышенными на 30% подачами, обеспечивая большую скорость снятия металла и производительность.

Фреза серии AFF40-LN15 для высокопроизводительной чистовой обработки чугуна обладает восьмикромочными режущими пластинами, а также зачистными пластинами. Обеспечивает высокую экономическую эффективность и удобство в эксплуатации и обслуживании. Режущие пластины повышенной точности из современных сплавов с покрытием гарантируют получение высокого качества обработанной поверхности и высокую стойкость.

Серия свёрл D106 изготавливается из основы с высокой прочностью и твёрдостью с нанесённым на неё современным износостойким покрытием PVD. Применение данных свёрл позволяет получать высокую стойкость, в том числе при обработке чугуна. Уникальная форма профиля главных режущих кромок предотвращает их преждевременное выкрашивание на уголках.

ACHTECK www.achtecktool.com/ru

Решения для обработки Блока Цилиндров

ACHTECK

www.achtecktool.com/ru

Решения для обработки Корпуса Турбокомпрессора

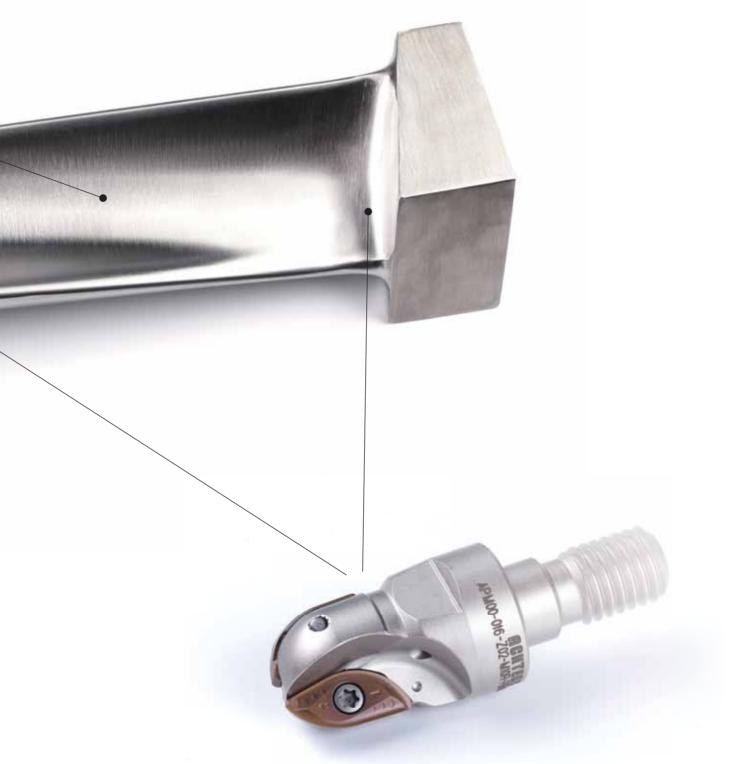
Специальная дисковая фреза применятся для обработки обратной стороны фланца

Фреза AFM40-ON05-C-45 с пластинами с 16-ю режущими кромками с зачистными фасками применяется для чистовой обработки поверхности фланца корпуса турбокомпрессора.

Фреза AFM45-XN07 с 14-кромочными режущими пластинами с PVD покрытием применяется для чернового фрезерования плоскостей фланца.

ACHTECK

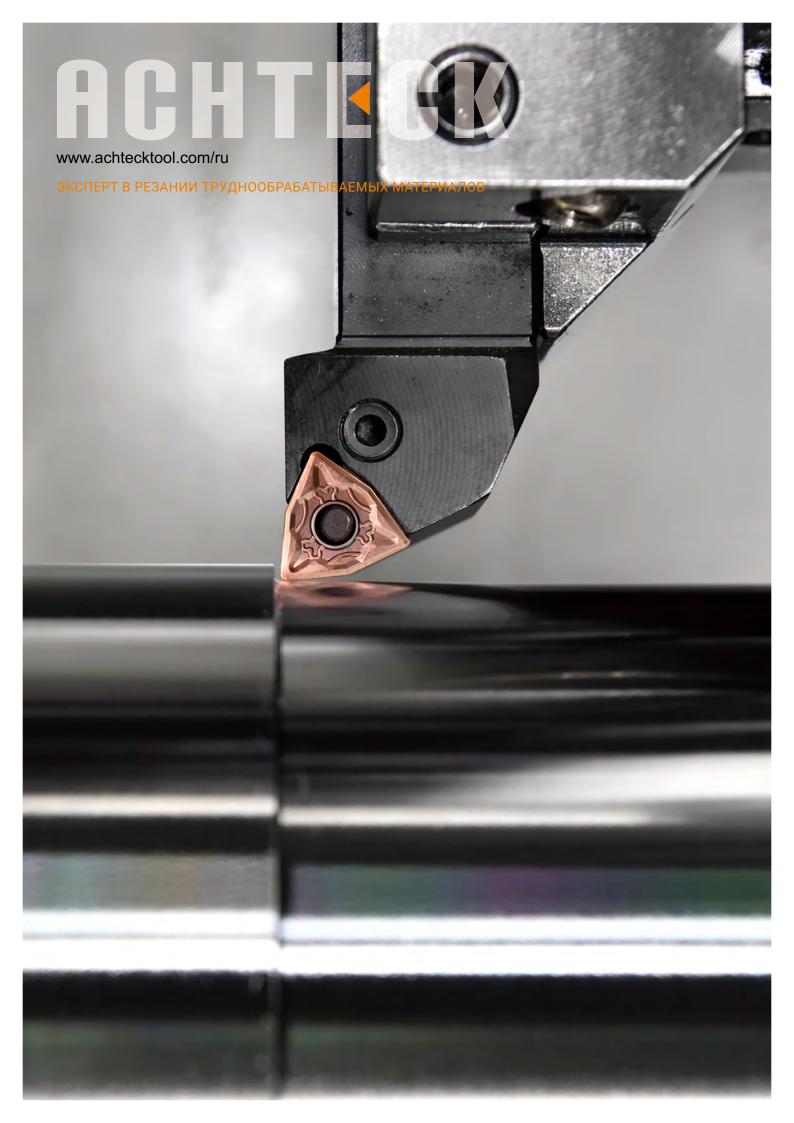
www.achtecktool.com/ru


Решения для обработки опорного кольца камеры мобильного телефона

Решения для обработки лопаток газовых турбин и турбинных лопаток авиационных двигателей

Фреза серии APM00-RP080/100 применяется для черновой обработки зоны перехода между лопаткой и замковой частью

ACHTECK


www.achtecktool.com/ru

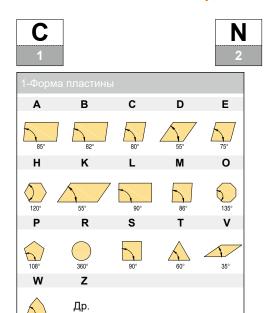
ЭКСПЕРТ В РЕЗАНИИ ТРУДНООБРАБАТЫВАЕМЫХ МАТЕРИАЛОВ

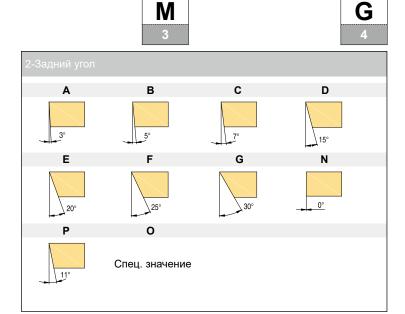
РЕЖУЩИЕ ИНСТРУМЕНТЫ АСНТЕСК

Инструменты для токарной обработки	22
Режущие пластины для общей токарной обработки	26
Пластины из CBN	93
Пластины из PCD	106
Инструменты для мелкоразмерной токарной обработки	115
Инструменты для токарной обработки канавок и отрезки	150
Инструменты для фрезерной обработки	192
Фрезы со сменными режущими пластинами	194
Цельные твёрдосплавные концевые фрезы	304
Инструменты для обработки отверстий	326
Свёрла со сменными режущими пластинами	329
Расточные системы	352
Цельные твёрдосплавные свёрла	381
Инструменты для фрезерной обработки резьбы	406
Резьбофрезы	408
Инструментальная оснастка	418
Адаптеры	420
Комплектующие	432
Техническая часть	446
Апфаритиній указатель	483

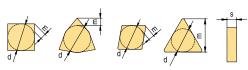
основной каталог

Режущие пластины для общей токарной обработки	22
Система обозначения твёрдосплавных пластин для точения	26
Область применения сплавов для точения, обработки канавок и отрезки	29
Описание стружколомающих геометрий для общей токарной обработки	30
Описание марок сплавов для общего точения	46
Режимы резания для токарной обработки	48
Пластины формы C, угол при вершине 80°	52
Пластины формы D с углом при вершине 55°	56
Пластины формы S с углом при вершине 90°	59
Пластины формы T с углом при вершине 60°	62
Лластины формы V с углом при вершине 35°	65
Лластины формы W с углом при вершине 80°	67
Пластины формы L с углом при вершине 90°	70
Пластины для переточки колёсных пар	71
Пластины с задним углом формы С, угол при вершине 80°	72
Пластины с задним углом формы D с углом при вершине 55°	76
Пластины с задним углом формы S с углом при вершине 90°	80
Пластины с задним углом формы T с углом при вершине 60°	81
Пластины с задним углом формы V с углом при вершине 35°	86
Пластины с задним углом формы W с углом при вершине 80°	91
(руглые пластины с задним углом (форма R)	92
Пластины из кубического нитрида бора (PCBN)	93
Система обозначения сменных режущих пластин из CBN	94
Область применения марок сплавов из CBN	95
Пластины формы C, угол при вершине 80°	96
Пластины формы D с углом при вершине 55°	97
Пластины формы S с углом при вершине 90°	98
Пластины формы T с углом при вершине 60°	99
Пластины формы V с углом при вершине 35°	100
Лластины формы W с углом при вершине 80°	101
Пластины с задним углом формы C, угол при вершине 80°	102
Пластины с задним углом формы D с углом при вершине 55°	103
Пластины с задним углом формы T с углом при вершине 60°	104
Пластины, с залним углом формы V с углом при вершине 35°	105


ОСНОВНОЙ КАТАЛОГ

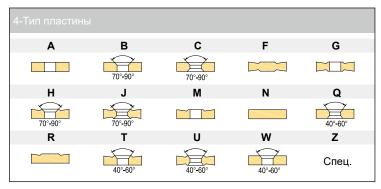

Пластины из поликристаллического алмаза (PCD)	106
Система обозначения сменных режущих пластин из PCD	106
Область применения марок сплавов из PCD	107
Пластины формы C, угол при вершине 80°	108
Пластины формы D с углом при вершине 55°	108
Пластины формы T с углом при вершине 60°	109
Пластины формы V с углом при вершине 35°	109
Пластины с задним углом формы C, угол при вершине 80°	110
Пластины с задним углом формы D с углом при вершине 55°	111
Пластины с задним углом формы S с углом при вершине 90°	111
Пластины с задним углом формы T с углом при вершине 60°	112
Пластины с задним углом формы V с углом при вершине 35°	113
Инструменты для мелкоразмерной обработки	115
Система обозначения державок для наружной мелкоразмерной обработки	116
Державки для наружной мелкоразмерной обработки под пластины СС	118
Державки для наружной мелкоразмерной обработки под пластины DC	119
Державки для наружной мелкоразмерной обработки под пластины ТС	121
Державки для наружной мелкоразмерной обработки под пластины VB	122
Державки для наружной мелкоразмерной обработки под пластины VC	124
Державки для наружной мелкоразмерной обработки под пластины VP	125
Система обозначения державок для внутренней мелкоразмерной обработки	126
Державки для внутренней мелкоразмерной обработки под пластины СС	128
Державки для внутренней мелкоразмерной обработки под пластины DC	129
Державки для внутренней мелкоразмерной обработки под пластины VB и VP	130
Державки серии ABF для обратного точения	131
Державки серии ASW для многофункционального точения	132
Пластины серии ASWP для отрезки	133
Пластины серии ASWB для обратного точения	135
Пластины серии ASWT для нарезания резьбы	135
Державки серии ASI для расточки отверстий малого диаметра	136
Твёрдосплавные вставки серии ASIB для внутреннего точения	137
Твёрдосплавные вставки серии ASIG для обработки внутренних канавок	141
Твёрдосплавные вставки серии ASIF для обработки торцевых канавок	146
Твёрдосплавные вставки серии ASIT для нарезания внутренней резьбы	147

ОСНОВНОЙ КАТАЛОГ


Инструменты для обработки канавок и отрезки	150
Обзор решений для обработки канавок и отрезки	150
Державки ASG для наружной обработки канавок на токарных автоматах	153
Державки ASG для внутренней обработки канавок на токарных автоматах	154
Державки серии ATG для обработки канавок небольшого размера	155
Система обозначения державок для обработки канавок серий ATS, AGU, AGS, AGP, ATP	156
Державки ATSER/L для наружной обработки канавок	157
Усиленные державки ATSER/L-D для наружной обработки канавок	159
Державки ATSER/L-SW для наружной обработки канавок на токарных автоматах	160
Державки AGUER/L для обработки наружных наклонных канавок	161
Державки ATSFR/L для обработки торцевых канавок	162
Державки ATSFR/L-OB для обработки торцевых канавок	163
Державки AGSFR/L для обработки наружных и торцевых канавок	165
Державки AGPFR/L Г-образной формы для обработки торцевых канавок	166
Державки ATPFR/L Г-образной формы для обработки торцевых канавок	167
Державки ATPIR/L для обработки внутренних канавок	168
Оправки серии АТС для обработки внутренних канавок	169
Оправки серии ATS для внутренней обработки торцевых канавок	170
Оправки серии AGS для обработки внутренних торцевых канавок	171
Оправки сери AGU для обработки внутренних наклонных канавок	172
Описание марок сплавов режущих пластин для обработки канавок и отрезки	173
Описание геометрий режущих пластин для обработки канавок и отрезки	175
Рекомендации по выбору марки сплава для обработки канавок и отрезки	176
Система обозначения пластин серий ASG и ATG с 3-мя режущими кромками	177
Режущие пластины ASG для обработки канавок на станках швейц. типа	178
Режущие пластины серии ATG для обработки канавок малого размера	179
Система обозначения пластин ACD и ATD с 2-мя режущими кромками	181
Режущие пластины с геометрией CS для отрезки	181
Режущие пластины с геометрией СМ для отрезки	182
Режущие пластины с геометрией СН для отрезки	183
Режущие пластины с геометрией GS для обработки канавок и точения	184
Режущие пластины с геометрией TS для обработки канавок и точения	185
Режущие пластины с геометрией ТМ для обработки канавок и точения	185
Режущие пластины с геометрией RM для профильного точения	186
Режущие пластины с геометрией RA для профильного точения	186
Система обозначения пластин ATD с дробными размерами ширины	187
Режущие пластины серии ATD с дробными размерами ширины	188
Заготовки ATBD для канавочных и отрезных пластин	190
Режимы резания для токарной обработки канавок и отрезки	191

Система обозначения твёрдосплавных сменных режущих пластин для точения

3-Точност



Класс точности	Ед.	Диаметр впис. Размер до вершины d m		Толщина s	
Α	мм	± 0,025	± 0,005	± 0,025	
С	мм	± 0,025	± 0,013	± 0,025	
E	мм	± 0,025	± 0,025	± 0,025	
F	мм	± 0,013	± 0,005	± 0,025	
G	мм	± 0,025	± 0,025	± 0,130	
н	мм	± 0,013 ± 0,013		± 0,025	
J	мм	*	± 0,005	± 0,025	
к	мм	*	± 0,013	± 0,025	
L	мм	*	± 0,025	± 0,025	
М	мм	*	*	± 0,127	
U	мм	*	*	± 0,127	
N	мм	*	*	± 0,025	

^{*} больше информации в таблицах сплава и снизу

Для классов М и N	Фор	ма D	Фор	ма V
IC	d	m	d	m
5.56	± 0,05	± 0,11		
6.35	± 0,05	± 0,11	± 0,05	± 0,16
7.94	± 0,05	± 0,11	± 0,05	± 0,16
9.525	± 0,05	± 0,11	± 0,05	± 0,16
12.7	± 0,08	± 0,15	± 0,08	± 0,2
15.875	± 0,10	± 0,18	± 0,10	± 0,27
19.05	± 0,10	± 0,18	± 0,10	± 0,27

Форма: C, E, H, M, O, P, S, T, R, W								
IC	C	d	m					
10	J,K,L,M,N	U	M, N	U				
4.76	± 0,05	± 0,08	± 0,08	± 0,13				
5.56	± 0,05	± 0,08	± 0,08	± 0,13				
6	± 0,05	± 0,08	± 0,08	± 0,13				
6.35	± 0,05	± 0,08	± 0,08	± 0,13				
7.94	± 0,05	± 0,08	± 0,08	± 0,13				
8	± 0,05	± 0,08	± 0,08	± 0,13				
9.525	± 0,05	± 0,08	± 0,08	± 0,13				
10	± 0,05	± 0,08	± 0,08	± 0,13				
12	± 0,08	± 0,13	± 0,13	± 0,2				
12.7	± 0,08	± 0,13	± 0,13	± 0,2				
15.875	± 0,1	± 0,18	± 0,15	± 0,27				
16	± 0,1	± 0,18	± 0,15	± 0,27				
19.05	± 0,1	± 0,18	± 0,15	± 0,27				
20	± 0,1	± 0,18	± 0,15	± 0,27				
25	± 0,13	± 0,25	± 0,18	± 0,38				
25.4	± 0,13	± 0,25	± 0,18	± 0,38				
31.75	± 0,15	± 0,25	± 0,2	± 0,38				
32	± 0,15	± 0,25	± 0,2	± 0,38				

12 5

04

						_		_
5-Длина р	ежус	цей к	ромки					
_			Ф	рма	пластин	Ы		
Диаметр впис. окружности (мм)	С	D	R	S	Т	V	W	K
3.97					06		02	
5.0			05					
5.56					09			
6.0		06						
6.35	06	07			11	11	04	
8.0			08					
9.525	09	11	09	09	16	16	06	16
10.0			10					
12.0			12					
12.7	12	15	12	12	22	22	80	
15.875	16		15	15	27			
16.0			16					
19.05	19		19	19	33			
20.0			20					
25.0			25					
25.4	25		25	25				
31.75			31					
32			32					
L	L			› ⊢	\ L			_
			L		L			-

6-Толщина		
A, B, C, N, O, W	S	Пример: 01 = 1.59 T1 = 1.98 02 = 2.38
H, M, R, T	S	03 = 3.18 T3 = 3.97 04 = 4.76 05 = 5.56 06 = 6.35 07 = 7.94
F, G, J, U	S	09 = 9.525 11 = 11.11 12 = 12.70 14 = 14.29 15 = 15.88

7-Радиус при вершине		
Радиус при вершине		
Пример	,	
МО = Круглая пласти	,	
00 = Острая	20 = 2.0	R
003 = 0.03	24 = 2.4	
005 = 0.05	28 = 2.8	
01 = 0.1	32 = 3.2	
02 = 0.2	40 = 4.0	
04 = 0.4	48 = 4.8	
08 = 0.8	56 = 5.6	
12 = 1.2	64 = 6.4	
16 = 1.6	Х = Др.	
Зачистная фаска		
Угол в плане (kr)	Задний угол на з	ачистной кромке (an)
A = 45	A = 3°	1
D = 60	B = 5°	
E = 75	C = 7°	Kr
F = 85	D = 15°	
G = 87	E = 20°	
P = 90	F = 25°	
Z = Др.	G = 30°	
	N = 0°	
	P = 11°	
	Ζ = Др.	

8-Упрочнение режущей кромки								
Обозначение	Форма режущей кромки	Описание						
F		Острая режущая кромка						
E		Кромка с округлением						
Т		Кромка с упрочняющей фаской						
S		Кромка с фаской и округлением						

9-Стружколомающая геометрия
Описание: стр. 28-43

ACHTECK

www.achtecktool.com/ru

ЭКСПЕРТ В РЕЗАНИИ ТРУДНООБРАБАТЫВАЕМЫХ МАТЕРИАЛОВ

Режущие пластины для общей токарной обработки

Режущие-пластины для общей токарной обработки

Область применения марок сплавов для точения, обработки канавок и отрезки

Пруппа обрабатываемого материала РОП РОП РОП РОП РОП РОП РОП РО					Общая тока	арная об	бработк	а		Обработка канавок и отрезка			
Рот	Группа				1ем	мет	фытия	DCDN	DCD	С по	крытием	крытия	ISO
РОВОТОВНЕНИЯ В ВОВОТОВНЕНИЯ В ВОВОТ				CVD	PVD	Kep	Без по	PCBN	PCD	CVD	PVD	Без по	
РОВОТОВНЕНИЯ В ВОВОТОВНЕНИЯ В ВОВОТ			P01	052P									P01
Р лагированные стали			P10	AC(30P			P10
Р30 Р40 Р50 Р50 М01 Нержавеющие стати М20 М30 М40 К01 К10 К20 К30 К40 К50 К30 К40 К50 К30 К40 К50 К30 К40 К50 К50 К30 К40 К50 К50 К50 К50 К50 К50 К50 К50 К50 К5		Углеродистые и	P20	AC 252P	P200U	AT202				AC2	P301U		P20
Р40 Р50 Р50 М01 М10 М10 М20 М30 М40 К01 К10 К20 К30 К40 К50 К40 К50 К40 К50 К50 К50 К50 К50 К50 К50 К50 К50 К5			P30	AC 350P	4						A P330M		P30
М01 Нержавеющие стали М20 М30 М40 М40 К01 К10 К10 К10 К20 К30 К40 К50 К40 К50 М10 М10 М10 М10 М20 М30 К40 К50 М30 К40 К50 М30 М40 К50 М30 К40 К50 М30 М40 К50 М30 К40 К50 М30 М40 К50 М30 К40 К50 М30 М30 К40 К50 М30 М30 М30 М30 М30 М30 М30 М			P40	AC							A		P40
М10 м20 м30 м30 м40 м40 м40 м40 м40 м40 м40 м40 м40 м4			P50										P50
М Нержавеющие стали м20 м30 м30 м30 м30 м40 м40 м40 м40 м40 м50 м50 м50 м50 м50 м50 м50 м50 м50 м5			M01										M01
М Нержавеющие стали м20 м30 м30 м30 м30 м40 м40 м40 м40 м40 м50 м50 м50 м50 м50 м50 м50 м50 м50 м5			M10	100M	P100S								M10
М30	M	Нержавеющие стали	M20	AC C200M	P200U						P301U		M20
N N N N N N N N N N			M30	A	4						P330M		M30
К10			M40								A		M40
K 40 K30 K40 K50			K01	02K									K01
K20 K20 K20 K30 K30 K30 K40 K40 K50			K10	AC10 AC1						5			K10
К30 К40 К40 К40 К40 К40 К40 К40 К40 К50		Uvrvani	K20	AC2		AT202				AC2301	P301U		K20
N Алюминий и алюминиевые сплавы N10 N10 N20 N20 N20 N20 N20 N30 N30 N30 N30 N30 N30 S01 S01 S01 S10 S01 S10 S20 S20 S20 S30 S40 S40 S40 H01 H10 H10 H10 H10 H20		чугуны	K30								A		K30
N01			K40					PB90					K40
N алюминий и алюминиевые сплавы N20 N20 N30 N30 N30 N30 N30 N30 N30 N30 N30 N3			K50										K50
N алюминиевые сплавы N20 N30 N30 N30 N30 N30 N30 N30 N30 N30 N3			N01				00K					00K	N01
В жаропрочные сплавы S20	NI	Алюминий и	N10				AW1					AW1	N10
S Жаропрочные сплавы S20 W0000 S20 S20 S30 S40 S40 Н Закалённые стали, отбеленные чугуны H10 H10 H10 H20 H20	IV	алюминиевые сплавы	N20						PD20				N20
S10 S10 S20 S20 S30 S30 S40 S40 H01 H10 H01 H10 H20 H20			N30										N30
S Жаропрочные сплавы S20 S20 S30 S40 H01 H01 H10 H10 H20 H20			S01										S01
S Жаропрочные сплавы S20 S20 S30 S40 H01 H01 H10 H10 H20 H20			S10	M00.	1)								S10
S30 \$30 S40 \$40 Н01 Н01 Н10 Н10 Н20 Н20	S	Жаропрочные сплавы	S20	AC1	P301M								S20
H01			S30	AC									S30
Н Закалённые стали, отбеленные чугуны Н20			S40										S40
Н Закалённые стали, отбеленные чугуны Н20			H01					330					H01
H20 H20	Н		H10					960					H10
H30 H30			H20										H20
			H30										H30

Описание стружколомающих геометрий для общей токарной обработки

Пластины без заднего угла

Тип обработки	Стружколомающая геометрия	Описание	Диапазон глубин резания и подач	Профиль режущей кромки _А /В	
Профильное точение	BS Budeo Distriction	Геометрия для чистовой и получистовой обработки при изменяющейся глубине и направлении резания. Геометрияоптимизатор, отличное формирование сегментной стружки	BS (ww) 0.1 f (mm/o6) 0.2 0.3	A B	
	РВ1	Первый выбор для чистовой обработки сталей Подходит для лёгкого точения, генерирует низкие усилия резания, также применяется для обработки нежёстких валов, тонкостенных деталей.	PB1 PB1 O.1 O.2 O.3 O.4 (MM/O6)	0.10 A	
Чистовая обработка	SC1	Первый выбор для чистовой обработки жаропрочных сплавов Великолепная работоспособность при низких глубинах резания	SC1 (w) 0.5 0.1 0.2 0.3 f (MM/o6)	A B	
	MB2	Первый выбор для чистовой обработки нержавеющих сталей Большой передний угол позволяет значительно снизить усилия резания и склонность к наростообразованию, а также способствует улучшению качества обработанной поверхности. Отлично ломает стружку при малых значениях подач и глубинах резания	WW) 00 0.1 0.2 0.3 0.4 0.5 f (MM/o6)	A	
Лёгкое точение	SL3	Рекомендуется для лёгкого точения жаропрочных сплавов на никелевой, кобальтовой или титановой основе. Острая криволинейная режущая кромка улучшает стружкопомающие свойства и позволяет достигать хорошего качества обработанной поверхности	SL3 (W) (E) (D) (E) (D) (E) (E) (D) (E) (E) (E) (E) (E) (E) (E) (E) (E) (E	A B	

80° Ромбическая форма	55° 255 Ромбическая форма	90° Квадратная форма	60° Треугольная форма	35° 25° Ромбическая форма	80° ————————————————————————————————————	Круглая борма (ж. к.
	DNMG-BS			VNMG-BS		
	56			65		
CNMG-PB1	DNMG-PB1	SNMG-PB1	TNMG-PB1	VNMG-PB1	WNMG-PB1	
		<u> </u>		< OA		
52	56	59	62	65	67	
CNMG-SC1	DNMG-SC1		TNMG-SC1	VNMG-SC1	WNMG-SC1	
52	56		62	65	67	
CNMG-MB2	DNMG-MB2	SNMG-MB2	TNMG-MB2	VNMG-MB2	WNMG-MB2	
52	56	59	62	65	67	
CNMG-SL3	DNMG-SL3	SNMG-SL3	TNMG-SL3	VNMG-SL3	WNMG-SL3	
	3.0					
52	56	59	62	65	67	

Тип обработки	Стружколомающая геометрия	Описание	Диапазон глубин резания и подач	Профиль режущей кромки _А	
Получистовая обработка	PB3	Первый выбор для получистового точения стали. Комбинация небольшого переднего угла и малой защитной фаски гарантирует сохранение острой режущей кромки при достаточной прочности, обеспечивая сниженные усилия резания. Волнообразный профиль криволинейной режущей кромки способствует хорошему процессу формирования стружки при профильном точении и обратной подрезке торца при различных глубинах резания.	PB3 (W) (2) (2) (3) (4) (4) (7) (8) (8) (9) (9) (1) (1) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	A A B	
Получист	PC3	Альтернативный выбор для получистового точения стали. Уникальная конструкция геометрии расширяет диапазон стружколомания. Двойной передний угол обеспечивает плавное резание. Упрочнённая вершина пластины снижает вероятность кратерного износа	PC3 W 2 2 3 4 4	0.15 A	
ти	PD3	Первый выбор для токарной обработки средней тяжести. Отличные стружколомающие свойства как при пониженных, так и высоких подачах и глубинах резания. Хорошая сопротивляемость кратерному износу. Двойной передний угол способствует снижению усилий резания.	PD3 5 (W) 03 03 01 0.2 0.3 0.4 0.5 0.8	0.20 A	
Обработка средней тяжести	PC4	Альтернативный выбор для обработки средней тяжести углеродистых и легированных сталей. Хороший выбор для получистового точения чугуна. Нейтральная защитная фаска увеличенного размера придаёт дополнительную прочность. Может применяться как универсальный выбор - как для получистовой, так и для получерновой обработки.	PC4 6 PC4 6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 f (MM/o6)	0.25 A	
	PL5	Первый выбор для точения длинных нежёстких валов. Открытый тип стружколома сильно снижает усилия резания, гарантируя отсутствие вибраций на детали в радиальном направлении.	PL5 5 0.1 0.2 0.3 0.4 0.5 0.6 f (MM/06)	A	

80° Ромбическая форма	55° 255 Ромбическая форма	90° Квадратная форма	60° Треугольная форма	35° 25° Ромбическая форма	80° ————————————————————————————————————	Круглая форма
CNMG-PB3	DNMG-PB3 56		TNMG-PB3	VNMG PB3	WNMG-PB3	
CNMG-PC3 52	DNMG-PC3 57	SNMG-PC3	TNMG-PC3	VNMG-PC3	WNMG-PC3 67	
CNMG-PD3 52	DNMG-PD3 57	SNMG-PD3 59	TNMG-PD3	VNMG-PD3	WNMG-PD3	
CNMG-PC4	DNMG-PC4 58	SNMG-PC4 60	TNMG-PC4	VNMG-PC4	WNMG-PC4 68	
	DNMG-PL5 57		TNMG-PL5		WNMG-PL5 68	

Тип обработки	Стружколомающая геометрия	Описание	Диапазон глубин резания и подач	Профиль режущей кромки _А /	
Обработка средней тяжести	SC3	Первый выбор для получистового точения жаропрочных сплавов. Большой передний угол и малая защитная фаска обеспечивают сниженные усилия резания и лёгкий процесс обработки. Подходит также для точения вязкий типов сталей.	SC3 (W) 3 (G) 2 (M) 3 (G) 2 (M) 3 (G) 2 (M) 4 (M) 5 (M) 6 (M) 7 (M) 6 (M) 7 (M)	0.15 A	
	МСЗ	Первый выбор для получистового точения нержавеющих сталей. Широкий диапазон стружколомания. Острая режущая кромка генерирует сниженные усилия резания. Применяется также как универсальный выбор для обработки различных материалов заготовок.	MC3 6 5 (w) 4 0.1 0.2 0.3 0.4 0.5	A B	
	PD5	Первый выбор для черновой токарной обработки стали. Прочная режущая кромка отлично сопротивляется ударам, а двойной передний угол позволяет снизить усилия резания. Хорошие стружколомающие свойства даже при небольших глубинах резания. Возможность работать на высоких подачах позволяет значительно сократить время обработки детали, увеличив скорость снятия металла.	PD5 (wind do 3) 2 1 0 0.1 0.2 0.3 0.4 0.5 0.8 0.7	0.25 A B	
Черновая обработка	МС4	Первый выбор для черновой обработки нержавеющих сталей и жаропрочных сплавов. Положительная защитная фаска позволяет сохранять баланс между прочностью режущей кромки для черновой обработки и её остротой, необходимой для точения вязких нержавеющих сталей. Возможность работы на высоких подачах позволяет значительно сократить время обработки детали.	MC4 8 7 (W) 6 8 8 7 (W) 6 8 9 1 1 1 1 1 1 1 1 1 1 1 1	0.30 8° A 0.32 B	
	KC4	Первый выбор для точения чугуна Режущая кромка обладает повышенной прочностью, обеспечивая надёжную обработку и стабильные результаты при точении как серых так и высокопрочных типов чугунов.	KC4 (W) A CR OI OI OI OI OI OI OI OI OI O	0.30 A	
	KD5	Первый выбор для черновой обработки чугуна. Геометрия с плоской передней поверхностью. Подходит для работы на удар и нестабильных условий резания.	T (MM/OD) KD5 (w) 4 6 3 2 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 ((MM/OD))	A A	

80° Ромбическая форма	55° Ромбическая форма	90° Квадратная форма	60° Треугольная форма	35° ромбическая форма	80° Форма "ломаный треугольник"	Круглая ————————————————————————————————————
CNMG-SC3	DNMG-SC3	SNMG-SC3	TNMG-SC3	VNMG-SC3	WNMG-SC3	
				0		
53	57	59	62	66	68	
CNMG-MC3	DNMG-MC3	SNMG-MC3	TNMG-MC3	VNMG-MC3	WNMG-MC3	
53	57	59	63	66	68	
CNMG-PD5	DNMG-PD5	SNMG-PD5	TNMG-PD5		WNMG-PD5	
CNWG-FD5	DINING-PDS	SINING-PD5	INIVIG-PDS		WNING-PD5	
54	58	60	63		69	
CNMG-MC4	DNMG-MC4	SNMG-MC4	TNMG-MC4		WNMG-MC4	
53	58	60	63		69	
CNMG-KC4	DNMG-KC4	SNMG-KC4	TNMG-KC4	VNMG-KC4	WNMG-KC4	
54	58	60	63	66	69	
_						
CNMA-KD5	DNMA-KD5	SNMA-KD5	TNMA-KD5		WNMA-KD5	
54	58	61	64		69	

Тип	Стружколомающая геометрия	Описание	Диапазон глубин резания и подач	Профиль режущей кромки _А	
	PC8	Геометрия для тяжёлого точения. Обеспечивает сниженные усилия резания, лёгкий процесс обработки, благодаря большому переднему углу и криволинейной режущей кромке.	PC8 10 10 10 10 10 10 10 10 10 10 10 10 10	A B	
учение	PD8	Геометрия для тяжёлого чернового точения вязких типов углеродистых и нержавеющих сталей. Подходит для станков небольшой мощности. Позитивная геометрия генерирует невысокие усилия резания. Может применяться также для тяжёлой обработки чугуна.	PD8 12 10 (88 0.66 4 2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 f (MM/05)	0.30 A	
Тяжёлое точение	PC9	Первый выбор для тяжёлого точения сталей. Волнообразный профиль режущей кромки обеспечивает хороших процесс формирования стружки. Геометрия обладает увеличенным объёмом под стружку, позволяя работать на больших подачах при больших глубинах резания, срезая весь припуск за один проход.	PC9 12 10 10 18 8 8 8 8 8 8 1 10 10 10 10 10 10 10 10 10 10 10 10 1	A B	
	PD9	Альтернативный выбор для тяжёлого точения сталей. Геометрия обладает большой защитной фаской, что позволяет ей ещё лучше сопротивляться высоким нагрузкам в самых плохих условиях обработки. Высочайшая надёжность режущей кромки	PD9 14 12 (W) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 f (MM/o6)	, s, 0.62 A , s, 0.62 B	

80° Ромбическая форма	55° Ромбическая форма	90° Квадратная форма	60° (60° Треугольная форма	35° 35° Ромбическая форма	80° ————————————————————————————————————	Круглая форма
CNMM-PC8						
		SNMM-PD8	TNMM-PD8			
55		61	64			
CNMM-PC9 55		SNMM-PC9				
CNMM-PD9		SNMM-PD9				
55		61				
	Ромбическая форма CNMM-PC8 55 CNMM-PD8 55 CNMM-PC9 55 CNMM-PC9 55 CNMM-PD9	Ромбическая форма CNMM-PC8 55 CNMM-PD8 55 CNMM-PC9 55 CNMM-PC9 55 CNMM-PD9	Ромбическая форма CNMM-PC8 55 CNMM-PD8 55 CNMM-PD8 55 61 CNMM-PC9 55 61 CNMM-PC9 SNMM-PC9 SNMM-PC9	Ромбическая форма Ромбическая форма Квадратная форма Треугольная форма CNMM-PC8 SNMM-PD8 TNMM-PD8 55 61 64 CNMM-PC9 SNMM-PC9 61 55 61 SNMM-PC9 55 SNMM-PD9 SNMM-PD9	Ромбическая форма СNMM-PC8 СNMM-PD8 SNMM-PD8 Б55 СNMM-PC9 SNMM-PC9 SNMM-PC9 SNMM-PC9 SNMM-PD9 SNMM-PD9 SNMM-PD9 SNMM-PD9 SNMM-PD9	Ромбическая форма Ромбическая форма Треугольная форма Томаный треугольник* СNMM-PC8 СNMM-PD8 SNMM-PD8 ТNMM-PD8 61 СNMM-PC9 SNMM-PC9 SNMM-PC9 SNMM-PC9 SNMM-PD9 SNMM-PD9 SNMM-PD9 SNMM-PD9 SNMM-PD9

Пластины повышенной точности для прецизионной токарной обработки

Тип	Стружколомающая геометрия	Описание	Диапазон глубин резания и подач	Профиль режущей кромки _А /В	
обработка	UF	Первый выбор для суперчистовой прецизионной токарной обработки. Геометрия обеспечивает низкие усилия резания, хороший отвод стружки и отличное качество обработанной поверхности.	UF (W) 0.05 f (0.1,05) 0.15 0.2	A B	
Чистовая обработка	F	Геометрия для чистового точения, обеспечивает хорошее качество обработанной поверхности и низкие усилия резания благодаря острой режущей кромке.	0.05 F 0.1 0.15 0.2	A	
Получистовая и черновая обработка	н	Геометрия для лёгкой получистовой и черновой обработки Возможность работать на повышенных подачах, благодаря прочному исполнению режущей кромки с защитной фаской.	3 H 3 D 1 D 1 D 1 D 1 D 1 D 1 D 1 D	16° 0.2 A	

80° Ромбическая форма	55° 55° Ромбическая форма	90° Квадратная форма	60° Греугольная форма	35° (35° Ромбическая форма	80° Форма "ломаный треугольник"	Круглая ^{380°} форма
			TNGG-UF	VNGG-UF		
			64	66		
			TNGG-F			
			64			
			TNGG-H			
			64			

Описание стружколомающих геометрий для общей токарной обработки

Режущие пластины с задним углом

Тип обработки	Стружколомающая геометрия	Описание	Диапазон глубин резания и подач	Профиль режущей кромки _А /В	
Профильное точение	BS	Геометрия для чистовой обработки при изменяющейся глубине и направлении резания. Геометрия-оптимизатор, отличное формирование сегментной стружки	BS (wy) 1 0.1 f (mM/o6) 0.2 0.3	A \$\frac{1}{3}\cdot \frac{1}{3}\cdot \frac{1}\cdot \frac{1}{3}\cdot \frac{1}{3}\cdot \frac{1}{3}\cdot	
Чистовая обработка	PВ1	Первый выбор для чистовой обработки сталей. Большой передний угол способствует снижению усилий резания и вероятности наростообразования, позволяя достигать хорошего качества обработанной поверхности и высокой стойкости. Может применяться и для чистовой обработки нержавеющих сталей.	PB1 3 PB1 0.1 0.2 0.3	A B	
Получистовая обработка	PC2	Первый выбор для получистовой обработки углеродистых, легированных и нержавеющих сталей. Геометрия обладает повышенной остротой режущих кромок, благодаря чему генерируются низкие усилия резания, обеспечивается отличная сопротивляемость формированию нароста.	PC2 (ww) 0 0 1 0.2 0.3 0.4 f (MM/06)	0.13 A B	

80° Ромбическая форма	55° 255 Ромбическая форма	90° Квадратная форма	60° Греугольная форма	35° 25° Ромбическая форма	80° Форма "ломаный треугольник"	Круглая форма
				VBMT-BS		
				87		
CCMT-PB1 CPMT-PB1	DCMT-PB1	SCMT-PB1	TCMT-PB1 TPMT-PB1	VBMT-PB1 VCMT-PB1		
73	77	80	82	88		
CCMT-PC2 CPMT-PC2	DCMT-PC2	SCMT-PC2	TCMT-PC2 TPMT-PC2	VBMT-PC2 VCMT-PC2		
73	77	80	82	88		

Тип	Стружколомающая геометрия	Описание	Диапазон глубин резания и подач	Профиль режущей кромки _А /Б	
Обработка средней тяжести	KC2	Геометрия для общего и чернового точения чугунов, сталей и нержавеющих сталей. Обладает широкой универсальностью и областью применения.	KC2 (W) 2 0.1 0.2 0.3 0.4 f (MM/οδ)	A B	
обработка	KD5	Стружколомающая геометрия для чернового точения чугуна. Подходит для нестабильных условий резания, благодаря высокой прочности режущей кромки и сопротивляемости сколам. Геометрия с плоской передней поверхностью.	0.1 0.2 0.3 0.4 f (MM/o6)	. A	
Черновая обработка	нт	Геометрия предназначена для обработки с большой глубиной резания для режущих пластин большого размера. Открытый тип стружколомающей геометрии позволяет формировать и эвакуировать большой объём срезаемого материала.	HT 18 16 16 16 16 16 16 16 16 16 16 16 16 16	0.61 15.4° A	
Попучистовая обработка	PD8	Геометрия для получистовой и черновой обработки стали. Широкий тип стружколомающего профиля позволяет избежать закусывания стружки при увеличенных глубинах резания. Хорошее формирование и эвакуация стружки даже при малых глубинах резания.	PD8 10 (N8) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 f (MM/06)	0.5 \$\frac{\lambda_{\sigma}}{\lambda_{\sigma}}\$	
Обработка средней тяжести	Без обозначения геометрии	Альтернативный вариант для получистовой токарной обработки стали. Также может применяться для точения чугуна. Отрицательная защитная фаска и большой передний угол позволяют режущей кромке быть прочной при генерировании относительно небольших усилий резания.	0.2 0.4 0.6 0.8 1.0 1.2 1.4 f (MM/o6)	A A	

80° Ромбическая форма	55° 255 Ромбическая форма	90° Квадратная форма	60° Треугольная форма	35° 25° Ромбическая форма	80° ————————————————————————————————————	Круглая ^{380°} форма
CCMT-KC2	DCMT-KC2	SCMT-KC2	TCMT-KC2	VBMT-KC2		
74	77	80	83	88		
CCMW-KD5	DCMW-KD5	SCMW-KD5	TCMW-KD5			
74	78	80	83			
		SCMT-HT				
		80				
						RCMX-PD8
						92
						DOMY
						RCMX
						92

Режущие пластины с задним углом, шлифованные по периферии

Тип обработки	Стружколомающая геометрия	Описание	Диапазон глубин резания и подач	Профиль режущей кромки _А /	
обработка	LF	Геометрия для чистовой обработки различных материалов. Применяется на станках-автоматах швейцарского типа при при обработке в двух направлениях. Обладает острой режущей кромкой, генерируя очень низкие усилия резания. Позволяет работать с увеличенной глубиной резания по сравнению с геометрией UF.	LF (w) 0.05 0.15 0.15 0.2	A B	
Чистовая обработка	UF Budeo 0	Первый выбор для чистовой обработки жаропрочных сплавов. Высокая повторяемость позиционирования режущей кромки. Повышенная острота режущих кромок позволяет получить хорошее качество обработанной поверхности и точность.	0.05 0.1 0.15 0.2 UF	A B	
Получистовая обработка	NC2	Стружколомающая геометрия предназначена для точения алюминиевых сплавов. Большой передний угол позволяет успешно обрабатывать цветные сплавы при низких усилиях резания и хорошей эвакуации стружки. Полированная передняя поверхность снижает трение с обрабатываемым материалом, обеспечивая отличную сопротивляемость возникновению нароста на режущей кромке.	NC2 NC2	25° A 20° B	
Чистовая обработка	F	Первый выбор для тонкого точения. Отличный контроль за формированием стружки при низких подачах на оборот. Генерирует очень низкие усилия резания.	0.05 f (MM/ob)	A	
Обработка на малых подачах	M	Геометрия подходит для получистовой обработки на токарных автоматах. Отличный контроль за формированием стружки при низких и средних подачах на оборот. Повышенная надёжность режущей кромки. Большой передний угол позволяет избегать самоупрочнения поверхностного слоя обрабатываемого материала.	0.02 0.04 0.06 0.08 0.1 f (MM/06)	A	
Получистовая обработка	Y	Геометрия предназначена для получерновой и черновой обработки на токарных автоматах. Прочная режущая кромка позволяет работать на повышенных подачах и в нестабильных условиях резания.	Y (ww) 02 00 1 0,1 0,2 0,3 f (MM/06)	A 1.3	

80° Ромбическая форма	55° Ромбическая форма	90° Квадратная форма	60° Треугольная форма	35° 25° Ромбическая форма	80° — — — — — — — — — — — — — — — — — — —	Круглая ^{380°} форма
CCGT-LF	DCGT-LF		TCGT-LF	VBGT-LF VCGT-LF VPGT-LF		
72	76		81	86		
CCGT-UF	DCGT-UF		TCGT-UF	VBGT-UF VCGT-UF		
				VPGT-UF		
72	76		81	86,87		
CCGT-NC2	DCGT-NC2	SCGT-NC2	TCGT-NC2	VCGT-NC2		RCGT-NC2
73	77	80	81	87		92
CCET-F	DCET-F		TBET-F TCET-F	VBET-F VCET-F	WBET-F	
			TPEH-F	VPET-F		
75	78		83,84,85	88,89	91	
CCET-M	DCET-M		TCET-M	VBET-M		
COET-IVI	DOE 1-IVI		TGET-IVI	VPET-M		
75	79		85	89,90		
10	79		00	09,90		
				VBET-Y		
				90		

Описание марок сплавов для общего точения

Сплавы для токарной обработки

Низкоуглеродистые, углеродистые, легированные и инструментальные стали. Ферритные и мартенситные нержавеющие стали

Основные сплавы

AC052P P05(P01-P15)

Первый выбор для получистового и чернового точения сталей на высоких скоростях резания в стабильных условиях. Обладает толстым покрытием MT-CVD и основой высокой твёрдости. Рекомендуется работать как с СОЖ так и без. Высокая сопротивляемость кратерному износу и пластической деформации. Может применяться также для точения чугуна.

AC152P P15(P10-P25)

Первый выбор для чистового точения сталей. Основа повышенной твёрдости и новое покрытие MT-CVD позволяет достигать высоких показателей стойкости при повышенных скоростях резания. Сплав может применяться как в стабильных условиях резания, так и в лёгких нестабильных в сочетании с соответствующей стружколомающей геометрией. Заменяет сплав АС150Р Может применяться также для точения чугуна.

AC252P P25(P20-P35)

Первый выбор для точения сталей. Применяется для чистовой, получистовой, так и для черновой обработки. Основа средней твёрдости в сочетании с покрытием MT-CVD нового поколения увеличенной толщины позволяет получать высокую стойкость и производительность в большинстве операций точения стали. Заменяет сплав АС250Р.

AC350P P35(P25-P45)

Первый выбор для чернового точения стали. Прочная основа и покрытие CVD небольшой толщины позволяют успешно работать на удар в нестабильных условиях резания, на повышенных подачах и малых скоростях обработки. Может применяться также для получистового и чернового точения нержавеющих сталей.

Дополнительные сплавы

AP200U P25(P15-P35)

Универсальный сплав с PVD покрытием. Основа средней прочности и новое PVD покрытие позволяют успешно применять сплав при получистовом и чистовом точении нержавеющих и углеродистых сталей. Является отличным выбором для обработки вязких типов нержавеющих сталей Позволяет получить режущую кромку повышенной остроты и прочности. Также успешно применяется для получистового и чернового точения жаропрочных сплавов на никелевой. кобальтовой или титановой основе.

AC200M P35(P25-P40)

Сплав с CVD покрытием для обработки нержавеющих сталей. Дополнительно может применяться для точения сталей в нестабильных условиях резания как альтернатива сплаву AC350P.

AT202 P15(P10-P20)

Кермет без покрытия обладает отличной сопротивляемостью к возникновению нароста, а также к выкрашиванию. Применяется для чистового скоростного точения. Возможно достижение отличного качества обработанной поверхности при низких усилиях резания.

В 2024-м году выходят в продажу также пластины из Кермета AT210A. О наличии и ассортименте возможно узнать у ближайшего авторизованного дистрибьютора АСНТЕСК.

Аустенитные, супераустенитные и дуплексные нержавеющие стали.

Основные сплавы

AC100M M15(M05-M20)

Сплав повышенной твёрдости с CVD покрытием. Является первым выбором для чистового точения нержавеющих сталей на повышенных скоростях резания. Может применяться для чистового и получистового точения углеродистых и легированных сталей, а также для обработки жаропрочных сплавов на повышенных скоростях резания.

AC200M M25(M15-M30)

Первый выбор для получистового и чернового точения нержавеющих сталей. Обладает основой повышенной прочности и покрытием CVD небольшой толщины. Обладает высокой сопротивляемостью ударным и переменным термическим нагрузкам. Может применяться в точении жаропрочных сплавов на средних скоростях резания, а также в черновом точении углеродистых и легированных сталей.

AP200U M25(M15-M35)

Универсальный сплав с PVD покрытием. Основа средней прочности и новое PVD покрытие позволяют успешно применять сплав при получистовом и чистовом точении нержавеющих и углеродистых сталей. Является отличным выбором для обработки вязких типов нержавеющих сталей Позволяет получить режущую кромку повышенной остроты и прочности. Также успешно применяется для получистового и чернового точения жаропрочных сплавов на никелевой, кобальтовой или титановой основе.

AP301M M25(M15-M35)

Сплав с основой высокой прочности с нанесённым на неё PVD покрытием. Рекомендуется для точения нержавеющих и углеродистых сталей при небольших скоростях резания. В основном применяется для точения небольших партий деталей. Отличная сопротивляемость возникновению нароста. Позволяет получить режущую кромку высокой прочности.

Дополнительные сплавы

AP100S M15(M05-M25)

Первый выбор для чистового и получистового точения жаропрочных сплавов. Обладает основой повышенной твёрдости с отличной сопротивляемостью большим температурам и пластической деформации с нанесённым на него покрытием PVD нового поколения. Также успешно применяется для получистовой и чистовой обработки нержавеющих сталей.

Серые, высокопрочные и ковкие чугуны

Основные сплавы

AC100K K05(K01-K15)

Сплав с CVD покрытием. Обладает толстым покрытием и основой высокой твёрдости. Рекомендуется для точения серого чугуна на повышенных скоростях резания.

AC102K K05(K01-K15)

Первый выбор для точения серого чугуна и чугуна с шаровидным графитом на высоких скоростях резания. Сплав обладает основой высокой твёрдости с нанесённым на неё толстым многослойным покрытием MT-CVD нового поколения.

AC202K K15(K10-K30)

Первый выбор для точения высокопрочных чугунов. Также рекомендуется для прерывистой обработки при средних и низких скоростях резания. Обладает основой средней твёрдости и покрытием MT-CVD нового поколения. Может применяться для скоростного точения углеродистых и легированных сталей.

Цветные сплавы

Основные сплавы

AW100K N15 (N05-N15)

Сплав с основой высокой твёрдости без покрытия является первым выбором для точения алюминиевых сплавов. Позволяет получить острую режущую кромку, обладающую высокой износостойкостью. Может применяться для токарной обработки

PD20 N10 (N01-N20)

Поликристаллический алмаз (РСD). Применяется для обработки цветных сплавов и неметаллических материалов. Позволяет достигать очень высокого качества поверхности и стойкости.

Жаропрочные сплавы

Основные сплавы

AP100S S15(S05-S25)

Первый выбор для чистового и получистового точения жаропрочных сплавов. Обладает основой повышенной твёрдости с отличной сопротивляемостью большим температурам и пластической деформации с нанесённым на него покрытием PVD нового поколения. Также успешно применяется для получистовой и чистовой обработки нержавеющих сталей.

AP200U S25(S15-S35)

Универсальный сплав с PVD покрытием. Основа средней прочности и новое PVD покрытие позволяют успешно применять . сплав при получистовом и чистовом точении нержавеющих и углеродистых сталей. Является отличным выбором для обработки вязких типов нержавеющих сталей. Позволяет получить режущую кромку повышенной остроты и прочности. Может применяться для точения жаропрочных сплавов на никелевой, кобальтовой или титановой основе.

Дополнительные сплавы

качества обработанной поверхности.

Дополнительные сплавы

Кубический нитрид бора (CBN) со средним содержанием

нитрида бора в структуре. Первый выбор для твёрдого точения

Кубический нитрид бора (CBN) с высоким содержанием нитрида

применять сплав для обработки закалённых сталей и чугунов в

бора в структуре. Повышенная прочность позволяет успешно

Кермет без покрытия обладает отличной сопротивляемостью

к возникновению нароста и к выкрашиванию. Применяется

для чистового скоростного точения. Возможно достижение

отличного качества обработанной поверхности при низких усилиях резания. Может применяться для точения чугунов с шаровидным графитом при достижения высокой точности и

нестабильных условиях резания и при точении на удар.

закалённых сталей, а также для обработки серого чугуна на

PB60 K15(K10-K30)

PB90 K10(K01-K20)

AT202 K15(K10-K20)

высоких скоростях резания.

AC100M S15(S05-S20)

Сплав повышенной твёрдости с CVD покрытием. Является первым выбором для чистового точения нержавеющих сталей на повышенных скоростях резания. Может применяться для чистового и получистового точения углеродистых и легированных сталей, а также для обработки жаропрочных сплавов на повышенных скоростях резания.

AC200M S25(S15-S35)

Первый выбор для получистового и чернового точения нержавеющих сталей. Обладает основой повышенной прочности и покрытием CVD небольшой толщины. Обладает высокой сопротивляемостью ударным и переменным термическим нагрузкам. Может применяться в точении жаропрочных сплавов на средних скоростях резания, а также в черновом точении углеродистых и легированных сталей.

В течение 2024 года выходят в продажу пластины из сплава AP010S для суперчистового точения жаропрочных сплавов с геометриями SC1 и SC2.

Закалённые стали и отбеленные чугуны

Основные сплавы

PB30 H10(H05-H15)

Кубический нитрид бора (СВN) с небольшим содержанием нитрида бора в структуре. Рекомендуется для обработки закалённых сталей в стабильных условиях резания..

PB60 H15(H10-H25)

Кубический нитрид бора (СВN) со средним содержанием нитрида бора в структуре. Первый выбор для твёрдого точения закалённых сталей, а также для обработки серого чугуна на высоких скоростях резания...

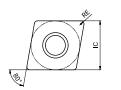
Кубический нитрид бора (СВN) с высоким содержанием нитрида бора в структуре. Повышенная прочность позволяет успешно применять сплав для обработки закалённых сталей и чугунов в нестабильных условиях резания и при точении на удар.

Режимы резания для токарной обработки Пластины без заднего угла

	Maı	ериалы обрабатываемы	х деталей									-					-
				<u>@</u> 0	ости				1						1		
				년 (H) 8	очнс л ²)	P	\T202	2	Α	C052	2P	Α	C152	2P	Α	C252	2P
SO	06	брабатываемые материа.	ПЫ	рдос	ел проч (Н/мм²)	f (f (мм/об)		f (мм/об)			f	(мм/о	б)	f	(мм/с	об)
ISO P N S				Твёрдость по Бринеллю (НВ)	Предел прочности (H/мм²)	0.1	0.3	0.5	0.1	0.4	0.6	0.1	0.4	0.6	0.1	0.4	0.6
		C ≤ 0.25%	Отожжённые	125	428	200	100	70	620	450	330	485	360	270	380	260	210
		0.25 < C ≤ 0.55%	Отожжённые	190	639	200	100	70	560	405	295	370	270	210	280	200	150
	Livera versa e su cerca con cerca co	0.25 < C ≤ 0.55%	Термообработанные	210	708	200	80	50	400	280	200	260	220	170	200	160	135
	Низкоуглеродистые стали	C > 0.55%	Отожжённые	190	639	200	80	50	530	385	275	270	220	160	240	160	125
		C > 0.55%	Термообработанные	300	1013	200	80	50	380	245	180	210	180	150	160	120	110
		Хорошо обрабатываемые стали (короткая стружка)	Отожжённые	220	745	200	80	50	600	420	300	440	310	250	340	220	175
		Отожжённы	е	175	591	180	80	50	610	410	285	350	260	220	240	175	135
Р	Низколегированные	Термообработа	нные	300	1013	180	80	50	530	350	250	220	170	150	140	100	85
	стали	Термообработа	нные	380	1282	180	80	50	330	230	175	160	120	100	100	70	55
		Термообработа	нные	430	1477	180	80	50	265	185	140	90	70				
	Высоколегированные	Отожжённы	е	200	675	160	80	50	445	295	215	330	230	150	210	145	85
	и инструментальные	Закалённые и отпу	щенные	300	1013	160	80	50	300	200	160	230	140	110	130	85	65
	стали	Закалённые и отпу	щенные	400	1361	150	80	50	220	140	105	80	70				
	Нержавеющие стали	Ферритные и мартенситны	ые, отожжённые	200	675										180	150	120
	Пержавеющие стали	Мартенситные, термоо	бработанные	330	1114										140	100	70
		Аустенитны	e	200	675												
M	Нержавеющие стали Аустенитные, закалённые (РЕ Аустенитно-ферритны		нержавеющие стали)	300	1013												
		Аустенитно-ферритные	(дуплексные)	230	778												
	Ковкие чугуны	Ферритные)	200	400												
		Перлитные)	260	700												
	Серые чугуны	С низким пределом і	прочности	180	200												
		С высоким пределом прочно	ости, аустенитный	245	350												
	Чугуны с шаровидным	Ферритные	•	155	400												
	графитом	Перлитные	•	265	700												
		ны с вермикулярным графитом (CGI)	230	400												
	Деформируемые алюминиевые	Алюминиевые сплавы, не подв		30	-												
	сплавы	Алюминиевые сплавы, подве		100	340												
	Литые алюминиевые	≤ 12% Si, не подвергнут		75	260												
	сплавы	≤ 12% Si, подвергнуты		90	310												
N		> 12% Si, не подвергну	гые старению	130	450												
	Магниевые сплавы	Неполуческий	THURSDES STATES	70	250												
	Медь и сплавы на	Нелегированная электроли		90	340 310												
	её основе (бронза,	Латунь, бронза, красі Медные сплавы, корот		110	380												
	латунь)	Высокопрочные спла		300	1010												
		высокопрочные спла															
		На основе железа (Fe)	Отожжённые	200	680												
	Жаропрочные		Отожжённые Состаренные	200 280	680 940												
	Жаропрочные сплавы	На основе железа (Fe) На основе никеля (Ni) и кобальта	Отожжённые Состаренные Отожжённые	200 280 250	680												
		На основе железа (Fe)	Отожжённые Состаренные Отожжённые	200 280	680 940 840												
s		На основе железа (Fe) На основе никеля (Ni) и кобальта	Отожжённые Состаренные Отожжённые Состаренные Литые	200 280 250 350	680 940 840 1180												
S		На основе железа (Fe) На основе никеля (Ni) и кобальта (Co)	Отожжённые Состаренные Отожжённые Состаренные Литые	200 280 250 350 320	680 940 840 1180 1080												
S	сплавы	На основе железа (Fe) На основе никеля (Ni) и кобальта (Co) Чистый тита	Отожжённые Состаренные Отожжённые Состаренные Литые	200 280 250 350 320 200	680 940 840 1180 1080 680												
S	сплавы Титановые сплавы Вольфрамовые	На основе железа (Fe) На основе никеля (Ni) и кобальта (Co) Чистый тита α , β сплавы, соста	Отожжённые Состаренные Отожжённые Состаренные Литые	200 280 250 350 320 200 375	680 940 840 1180 1080 680 1260												
S	сплавы Титановые сплавы Вольфрамовые сплавы Молибденовые	На основе железа (Fe) На основе никеля (Ni) и кобальта (Co) Чистый тита α , β сплавы, соста	Отожжённые Состаренные Отожжённые Состаренные Литые	200 280 250 350 320 200 375 410	680 940 840 1180 1080 680 1260												
S	сплавы Титановые сплавы Вольфрамовые сплавы	На основе железа (Fe) На основе никеля (Ni) и кобальта (Co) Чистый тита α , β сплавы, соста	Отожжённые Состаренные Отожжённые Состаренные Литые вн	200 280 250 350 320 200 375 410 300	680 940 840 1180 1080 680 1260 1400												
S	сплавы Титановые сплавы Вольфрамовые сплавы Молибденовые сплавы	На основе железа (Fe) На основе никеля (Ni) и кобальта (Co) Чистый тита α , β сплавы, соста β сплавы	Отожжённые Состаренные Отожжённые Состаренные Литые ин	200 280 250 350 320 200 375 410 300 300 50HRC	680 940 840 1180 1080 680 1260 1400												
s	сплавы Титановые сплавы Вольфрамовые сплавы Молибденовые	На основе железа (Fe) На основе никеля (Ni) и кобальта (Co) Чистый тита α , β сплавы, соста	Отожжённые Состаренные Отожжённые Состаренные Литые ин пренные пщенные	200 280 250 350 320 200 375 410 300	680 940 840 1180 1080 680 1260 1400												

рекомендованные режимы резания рассчитаны для средних условий обработки. При назначении окончательных режимов резания должны быть учтены такие факторы, как: жёсткость станка, оснастки, закрепления заготовки и подвод СОЖ. Подача и глубина резания должны быть установлены в зависимости от радиуса при вершине режущей пластины.

11.	2112=					ов Ас			10/	'n a \																	
Ha	ачаль	ные С350			скор С100		_	ния \ С200			 P200	U	Δ	C100	K	Δ	 C102	K	Δ	C202	K	Δ\	W100)K	Δ	P100	
	-	(мм/с			(мм/о			(мм/о			(мм/о			(мм/о			(мм/о			(мм/о			(мм/о	-		(мм/о	
	0.1	0.4	0.6	0.1	0.3	0.5				0.1		0.5	0.1				0.4	0.6		0.4			0.4		0.1		0.5
	250	170	140							220	210																
	200	135	110							170	150																
	150	125	90							140	120																
	170	110	90 65							130	120																
	125	75								400	470																
	220	145	115							190	170																
	200 135	165 90	150 70							130	110																
	90	65	45																								
	180	150	85							120	80																
	110	85	65																								
	150	120	95	220	180	150	190	160	130	145	130	90															
	110	80	60	170 250	140 190	130 150	200	110 160	100	105 180	80 120	70 80													240	190	150
				180	160	100	150	120	110	110	90	00													150	85	100
				190	170	130	160	130	100	120	100	70													170	145	100
													280	200	170	270	190	160	240	160	130						
													250	170	130	245	160	125	200	120	95						
													490	260	200	490	250	190	400	210	150						
													250 270	180 200	140 150	240	170 190	130 250	200	150 170	100 120						
													210	160	140	200	150	130	170	120	100						
				80 70	60 50	30	70 60	50 40	30 20	30	25 20														100 80	65 55	
				70	50	35	60	40	25	30	25														80	55 55	
				70	50	30	60	40	20	30	20														70	45	
				70	50	30	60	40	20	30	20														60	30	
																									200	180	140
																									90	55	45
	H																								55	35	30

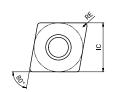

Режимы резания для токарной обработки Пластины с задним углом

	Ma	териалы обрабатываемы	х деталей															
				_ <u>_</u>	И													
				F H	HO(ļ	AT20	2	Α	C052	2P	Α	C152	2P	A	C252	2P	
ISO	0	брабатываемые материа.	лы	Твёрдость по Бринеллю (НВ)	Предел прочности (H/мм²)	f	мм/о	—— б)	f	(мм/о	—— б)	f	(мм/о	 б)	f	(мм/о	-	
				вёр	HE H			-,		Ì	-,		Ì	Ĺ	<u> </u>		-,	
					l □	0.1	0.2	0.4	0.1	0.2	0.4	0.1	0.2	0.4	0.1	0.2	0.4	
		C ≤ 0.25%	Отожжённые	125	428	200	100	70	600	430	310	465	400	330	360	310	260	
		0.25 < C ≤ 0.55%	Отожжённые	190	639	200	100	70	540	385	275	360	330	260	290	250	190	
	Низкоуглеродистые	0.25 < C ≤ 0.55%	Термообработанные	210	708	200	80	50	380	260	180	270	240	220	200	180	160	
	стали	C > 0.55%	Отожжённые	190	639	200	80	50	520	365	255	330	300	290	250	220	210	
		C > 0.55%	Термообработанные	300	1013	200	80	50	360	225	160	210	180	170	160	130	120	
		Хорошо обрабатываемые стали (короткая стружка)	Отожжённые	220	745	200	80	50	580	400	280	440	400	380	320	290	275	
		Отожжённы	le	175	591	180	80	50	590	390	265	330	310	300	260	240	220	
Р	Низколегированные	Термообработа	нные	300	1013	180	80	50	510	330	230	180	170	160	135	120	100	
	стали	Термообработа	нные	380	1282	180	80	50	320	210	155	120	100	90	100	85	65	
		Термообработа	нные	430	1477	180	80	50	265	165	120	80	70		65	55		
	Высоколегированные	Отожжённы	ie	200	675	160	80	50	425	275	195	320	290	280	270	240	220	
	и инструментальные	Закалённые и отпу	/щенные	300	1013	160	80	50	280	180	140	200	170	150	170	140	120	
	стали	Закалённые и отпу	/щенные	400	1361	150	80	50	200	120	105	80	70		65	55		
	Нержавеющие стали	Ферритные и мартенситны	ые, отожжённые	200	675										190	170	150	
				330	1114										90	80	60	
		Аустенитны		200	675													
M	Нержавеющие стали	Аустенитные, закалённые (РН		300	1013													
		Аустенитно-ферритные		230	778													
	Ковкие чугуны	Ферритныя Перлитныя		200	700													
		С низким пределом		180	200													
K	Серые чугуны	С высоким пределом прочно		245	350													
	 Чугуны с	Ферритные		155	400													
	шаровидным графитом	Перлитные		265	700													
		л	CGI)	230	400													
	Деформируемые	Алюминиевые сплавы, не поді	вергнутые старению	30	-													
	алюминиевые сплавы	Алюминиевые сплавы, подве	ергнутые старению	100	340												100 65 220 120	
		≤ 12% Si, не подвергнут	гые старению	75	260													
_	Литые алюминиевые сплавы	≤ 12% Si, подвергнуть	іе старению	90	310													
N		> 12% Si, не подвергну	тые старению	130	450													
	Магниевые сплавы			70	250													
		Нелегированная электроли	тическая бронза	100	340													
	Медь и сплавы на её основе (бронза,	Латунь, бронза, крас	ная латунь	90	310													
	латунь)	Медные сплавы, корот		110	380													
		Высокопрочные спла		300	1010													
		На основе железа (Fe)	Отожжённые	200	680													
	Жаропрочные		Состаренные Отожжённые	280 250	940													
	сплавы	На основе никеля (Ni) и кобальта		350	1180													
		(Co)	Литые	320	1080													
S		Чистый тита	·	200	680													
	Титановые сплавы	α , β сплавы, соста		375	1260													
		β сплавы		410	1400													
	Вольфрамовые			300	1010													
	сплавы Молибденовые																	
	сплавы			300	1010													
		Закалённые и отпу	/щенные	50HRC														
Н	Закалённые стали	Закалённые и отпу		55HRC 60HRC														
		Закалённые и отпущенные																
	Отбеленные чугуны	Закалённые и отпу	/щенные	50HRC														
								_										

^{*} рекомендованные режимы резания рассчитаны для средних условий обработки. При назначении окончательных режимов резания должны быть учтены такие факторы, как: жёсткость станка, оснастки, закрепления заготовки и подвод СОЖ. Подача и глубина резания должны быть установлены в зависимости от радиуса при вершине режущей пластины.

f (MM/OG)	AP100S (MM/o6)	б)
F (MAILOS)	(мм/об)	б)
1		Π
180		0.
180		
150		
115 68 55 64 64 65 65 64 64 65 65 64 64 65 65 65 65 65 65 65 65 65 65 65 65 65		
210		
100		
125		
170		
170		
100 80 60 70 70 70 70 70 70 7		
100 80 60 70 70 70 70 70 70 7		
70		
70		
1		
170	000	
180 180		13
		11
		Т
190 150 130 180 140 120 160 110 100		L
	\vdash	L
1	++	H
1		
1		
1		
10		
10		
10		
100 100		
100		
65 45 30 55 35 20 30 20 80 65 45 35 55 35 25 30 25 80 65 45 30 55 35 20 30 20 80		
65 45 35 55 35 25 30 25 65 45 30 55 35 20 30 20	70	
65 45 30 55 35 20 30 20 70	60	
	60	
1 00 70 00 00 20 00 20 00 20 00 00 00 00 00 00	50 40	
	10	
65 45 35		
35 35 30		

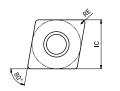
Пластины формы C (80°)



Основны	е разме	ры (мм)
Форморазмер	IC	S	D1
CN_1204_	12.7	4.76	5.16
CN_1606_	15.875	6.35	6.35
CN_1906_	19.05	6.35	7.94

				Условия обработки				•	Хор	оши	e (₩ Ср	едни	1e	# П.	лохи	<u> </u>		
				Условия с	бработки	•	•	•	+	*	•	+	+	+	•	+	*	+	•
				Режимы	резания			Р				N	И			K		N	s
	тины и вид работки	Обозначение пластины	RE (мм)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
	•	CNMG 120404E-PB1	0.4	0.05-0.15	0.26-3.2	•		•	•										
OTK8		120408E-PB1	0.8	0.10-0.30	0.52-3.2	•		•	•										
Чистовая обработка		120412E-PB1	1.2	0.15-0.45	0.78-3.2			•	•										
90 8		CNMG 120404E-SC1	0.4	0.07-0.18	0.20-0.8								•						
OBa		120408E-SC1	0.8	0.10-0.25	0.20-0.8								•						
- Иист Тист		CNMG 120404E-MB2	0.4	0.05-0.15	0.26-3.2						•	•	•						
	100	120408E-MB2	0.8	0.10-0.30	0.52-3.2						•	•	•						
Легкая обработка		CNMG 120404E-SL3	0.4	0.12-0.25	0.60-3.0								•						•
Лег обра		120408E-SL3	8.0	0.15-0.30	0.80-3.0								•						•
	_	CNMG 120404E-PB3	0.4	0.06-0.18	0.30-3.5	•		•	•										
Получистовая обработка		120408E-PB3	0.8	0.12-0.36	0.60-3.5	•	•	•	•										
олучистова обработка		120412E-PB3	1.2	0.18-0.54	0.90-3.5	•	•	•	•										
Пучь бра		CNMG 120404E-PC3	0.4	0.07-0.20	0.34-3.9	•		•	•										
₽°		120408E-PC3	0.8	0.14-0.40	0.68-3.9	•		•	•										
		120412E-PC3	1.2	0.20-0.60	1.02-3.9	•		•	•										
N I		CNMG 120404E-PD3	0.4	0.08-0.22	0.40-4.3	•	•	•	•	•									
X X		120408E-PD3	0.8	0.15-0.44	0.80-4.3	•	•	•	•	•									
) Ž		120412E-PD3	1.2	0.23-0.66	1.20-4.3	•	•	•	•	•									
НДӨ	S. Color	160608E-PD3	0.8	0.15-0.44	0.80-5.3		•	•	•	•									
g C		160612E-PD3	1.2	0.23-0.66	1.20-5.3		•	•	•	•									
Обработка средней тяжести		190608E-PD3	0.8	0.15-0.44	0.80-6.4		•	•	•	•									
pag		190612E-PD3	1.2	0.23-0.66	1.20-6.4		•	•	•										
8		190616E-PD3	1.6	0.30-0.66	1.60-6.4		•	•	•										

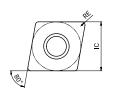
Пластины формы C (80°)



Основны	е разме	ры (мм)
Форморазмер	IC	S	D1
CN_1204_	12.7	4.76	5.16
CN_1606_	15.875	6.35	6.35
CN_1906_	19.05	6.35	7.94

							•	Хор	ошиє	e (• Ср	едни	ie	# П.	похи	—— e			
				Условия с	бработки	•	•	•	+	*	•	+	+	#	•	#	#	+	•
				Режимы	резания			Р					VI			K		N	S
	ластины и ц обработки	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
		CNMG 120404E-SC3	0.4	0.08-0.22	0.40-4.3						•	•	•						•
		120408E-SC3	0.8	0.15-0.44	0.80-4.3						•	•	•						•
		120412E-SC3	1.2	0.23-0.66	1.20-4.3						•	•	•						•
		160612E-SC3	1.2	0.23-0.66	1.20-5.3						•	•	•						$ \bullet $
		160616E-SC3	1.6	0.30-0.88	1.60-5.3						•	•	•						•
		190612E-SC3	1.2	0.23-0.66	1.20-6.4						•	•	•						•
_		190616E-SC3	1.6	0.30-0.88	1.60-6.4						•	•	•						•
ecTl		CNMG 120404E-MC3	0.4	0.08-0.22	0.32-4.3						•	•	•						
		120408E-MC3	0.8	0.15-0.44	0.64-4.3						•	•	•						ullet
ней		120412E-MC3	1.2	0.23-0.66	0.96-4.3						•	•	•						
ред		120416E-MC3	1.6	0.30-0.88	1.28-4.3						•	•	•						
Кас	The state of the s	160608E-MC3	0.8	0.15-0.44	0.64-5.3						•	•	•						
160T		160612E-MC3	1.2	0.23-0.66	0.96-5.3						•	•	•						
		190608E-MC3	0.8	0.15-0.44	0.64-6.4						•	•	•						
		190612E-MC3	1.2	0.23-0.66	0.96-6.4						•	•	•						
		CNMG 120404E-PC4	0.4	0.08-0.22	0.40-4.3			•	•							•	•		
		120408E-PC4	0.8	0.15-0.44	0.80-4.3		•	•	•							•	•		
		120412E-PC4	1.2	0.23-0.66	1.20-4.3		•	•	•							•	•		
		160612E-PC4	1.2	0.23-0.66	1.20-5.3		•	•	•							•	•		
		160616E-PC4	1.6	0.30-0.88	1.60-5.3		•	•	•							•	•		
		190612E-PC4	1.2	0.23-0.66	1.20-6.4		•	•	•							•	•		
Ка		CNMG 120408E-MC4	0.8	0.20-0.60	1.20-6.4						•	•	•						•
360-I		120412E-MC4	1.2	0.30-0.90	1.80-6.4						•	•	•						$ \bullet $
ogb;		160612E-MC4	1.2	0.30-0.90	1.80-8.1						•	•	•						$ \bullet $
		160616E-MC4	1.6	0.40-1.20	2.40-8.1						•	•	•						
рно		190612E-MC4	1.2	0.30-0.90	1.80-9.7						•	•	•						
He		190616E-MC4	1.6	0.40-1.20	2.40-9.7						•	•	•						

Пластины формы C (80°)

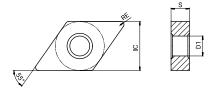


Основны	е разме	еры (мм)
Форморазмер	IC	S	D1
CN_0903_	9.525	3.18	3.81
CN_1204_	12.7	4.76	5.16
CN_1606_	15.875	6.35	6.35
CN_1906_	19.05	6.35	7.94

			Условия обработки												лохи	e			
				Условия с	обработки	•	•	•	+	*	•	+	+	+	•	+	#	+	•
				Режимы	резания			Р				N	Л			K		N	s
	пастины и ц обработки	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
		CNMG 090308E-KC4	0.8	0.18-0.48	0.96-3.9											•	•		
		120404E-KC4	0.4	0.09-0.24	0.48-5.2											•	•		
		120408E-KC4	0.8	0.18-0.48	0.96-5.2										•	•	•		
		120412E-KC4	1.2	0.26-0.72	1.44-5.2										•	•	•		
		120416E-KC4	1.6	0.35-0.96	1.92-5.2											•	•		
		160608E-KC4	0.8	0.18-0.48	0.96-6.4											•	•		
		160612E-KC4	1.2	0.26-0.72	1.44-6.4											•	•		
		160616E-KC4	1.6	0.35-0.96	1.92-6.4											•	•		
		190608E-KC4	0.8	0.18-0.48	0.96-7.7											•	•		
		190612E-KC4	1.2	0.26-0.72	1.44-7.7											•	•		
		190616E-KC4	1.6	0.35-0.96	1.92-7.7											•	•		
		190624E-KC4	2.4	0.53-1.44	2.88-7.7											•	•		
ka		CNMG 120408E-PD5	0.8	0.20-0.60	1.20-6.4		•	•	•	•									
абот		120412E-PD5	1.2	0.30-0.90	1.80-6.4		•	•	•	•									
26pg		160612E-PD5	1.2	0.30-0.90	1.80-8.1		•	•	•	•									
зая (160616E-PD5	1.6	0.40-1.20	2.40-8.1		•	•	•	•									
Черновая обработка		160624E-PD5	2.4	0.60-1.80	3.60-8.1		•	•	•										
Αeg		190612E-PD5	1.2	0.30-0.90	1.80-9.7		•	•	•	•									
		190616E-PD5	1.6	0.40-1.20	2.40-9.7		•	•	•	•									
		CNMA 120404E-KD5	0.4	0.10-0.30	0.60-6.4											•	•		
		120408E-KD5	0.8	0.20-0.60	1.20-6.4										•	•	•		
		120412E-KD5	1.2	0.30-0.90	1.80-6.4										•	•	•		
		120416E-KD5	1.6	0.40-1.20	2.40-6.4										•	•	•		
		160608E-KD5	0.8	0.20-0.60	1.20-8.1											•	•		
		160612E-KD5	1.2	0.30-0.90	1.80-8.1										•	•	•		
		160616E-KD5	1.6	0.40-1.20	2.40-8.1										•	•	•		
		160620E-KD5	2.0	0.50-1.50	3.00-8.1											•	•		
		190608E-KD5	0.8	0.20-0.60	1.20-9.7										•	•	•		
		190612E-KD5	1.2	0.30-0.90	1.80-9.7										•	•	•		
		190616E-KD5	1.6	0.40-1.20	2.40-9.7										•	•	•		

Режущие пластины для общей токарной обработки

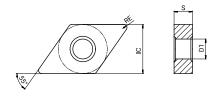
Пластины формы C (80°)



Основны	е разме	ры (мм)
Форморазмер	IC	S	D1
CN_1204_	12.7	4.76	5.16
CN_1606_	15.875	6.35	6.35
CN_1906_	19.05	6.35	7.94
CN_2507_	25.4	7.94	9.12
CN_2509_	25.4	9.53	9.12

				Условия обработки				•	Хор	эшие	e (• Cp	едни	e	# П	похи	—— е		
				Условия с	обработки	•	•	•	+	*	•	+	+	+	•	+	*	+	•
				Режимы	резания			Р				N	И			K		N	S
	ластины и ц обработки	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
		CNMM 190616E-PC8	1.6	0.32-0.64	2.88-7.7		•		•										
	Carre	190624E-PC8	2.4	0.48-0.96	4.32-7.7		•		•										
		CNMM 120408E-PD8	0.8	0.16-0.32	1.44-5.2		•	•	•	•									
		120412E-PD8	1.2	0.24-0.48	2.16-5.2		•	•	•	•									
		160612E-PD8	1.2	0.24-0.48	2.16-6.4		•	•	•	•									
		160616E-PD8	1.6	0.32-0.64	2.88-6.4		•	•	•	•									
		160624E-PD8	2.4	0.48-0.96	4.32-6.4		•	•	•	•									
TKa	Canal Control	190612E-PD8	1.2	0.24-0.48	2.16-7.7		•	•	•	•									
ago		190616E-PD8	1.6	0.32-0.64	2.88-7.7		•	•	•	•									
Тяжёлая черновая обработка		190624E-PD8	2.4	0.48-0.96	4.32-7.7		•	•	•	•									
вая		250724E-PD8	2.4	0.48-0.96	4.32-10.3		•	•	•	•									
) Hd		250924E-PD8	2.4	0.48-0.96	4.32-10.3		•	•	•	•									
В 4e		CNMM 190612S-PC9	1.2	0.26-0.60	2.40-9.7			•	•	•									
ёла		190616S-PC9	1.6	0.35-0.80	3.20-9.7			•	•	•									
Ě		190624S-PC9	2.4	0.53-1.20	4.80-9.7			•	•	•									
	*	250724S-PC9	2.4	0.53-1.20	4.80-12.9			•	•	•									
		250924S-PC9	2.4	0.53-1.20	4.80-12.9			•	•	•									
		CNMM 190612S-PD9	1.2	0.30-0.72	2.64-11.6			•	•	•									
		190616S-PD9	1.6	0.40-0.96	3.52-11.6			•	•	•									
		190624S-PD9	2.4	0.60-1.44	5.28-11.6			•	•	•									
		250724S-PD9	2.4	0.60-1.44	5.28-15.5			•	•										
		250924S-PD9	2.4	0.60-1.44	5.28-15.5			•	•	•									

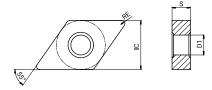
Пластины формы D (55°)



Основны	N_1104_ 9.525 4.76 3.8								
Форморазмер	IC	S	D1						
DN_1104_	9.525	4.76	3.81						
DN_1504_	12.7	4.76	5.16						
DN_1506_	12.7	6.35	5.16						

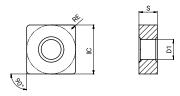
								•	Хор	ошиє	. •	• Ср	едни	е	# []	похи	e		
				Условия с	обработки	•	•	•	+	*	•	+	#	+	•	+	#	+	•
				Режимы	резания			Р				N	И			K		N	S
	тины и вид јработки	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
ая		DNMG 110408E-BS	0.8	0.10-0.25	0.70-2.0		•												
Jork Jork																			
Профильная обработка																			
₽,																			
		DNMG 110404E-PB1	0.4	0.05-0.15	0.26-2.3	•		•	•										
		150404E-PB1	0.4	0.05-0.15	0.26-3.1	•		•	•										
		150408E-PB1	8.0	0.10-0.30	0.52-3.1	•	•	•	•										
_		150604E-PB1	0.4	0.05-0.15	0.26-3.1	•		•	•										
Чистовая обработка		150608E-PB1	8.0	0.10-0.30	0.52-3.1	•	•	•	•										
pa6		DNMG 150404E-SC1	0.4	0.07-0.18	0.20-0.8								•						
9 в		150408E-SC1	8.0	0.10-0.25	0.20-0.8								•						
OBa		150604E-SC1	0.4	0.07-0.18	0.20-0.8								•						
- ДИСТ		150608E-SC1	8.0	0.10-0.25	0.20-0.8								•						
		DNMG 150404E-MB2	0.4	0.05-0.15	0.26-2.9						•	•							•
		150408E-MB2	8.0	0.10-0.30	0.52-2.9						•	•							•
		150604E-MB2	0.4	0.05-0.15	0.26-2.9						•	•							•
		150608E-MB2	8.0	0.10-0.30	0.52-2.9						•	•							•
тка		DNMG 110408E-SL3	8.0	0.12-0.30	0.80-2.5								•						•
a6o		150404E-SL3	0.4	0.12-0.25	0.60-2.5								•						•
Легкая обработка	4	150408E-SL3	8.0	0.12-0.30	0.80-2.5								•						•
кая		150604E-SL3	0.4	0.12-0.25	0.60-2.5								•						•
Лег		150608E-SL3	8.0	0.12-0.30	0.80-2.5								•						•
a		DNMG 150404R-M1T	0.4	0.10-0.35	0.70-4.5	•													
) N		150404L-M1T	0.4	0.10-0.35	0.70-4.5	•													
Spac		DNMG 150404E-PB3	0.4	0.06-0.18	0.30-3.1	•		•	•										
)))) (150408E-PB3	8.0	0.12-0.36	0.60-3.1	•	•	•	•										
TOB8		150412E-PB3	1.2	0.18-0.54	0.90-3.1	•	•	•	•										
ЧИС.		150604E-PB3	0.4	0.06-0.18	0.30-3.1	•		•	•										
Получистовая обработка		150608E-PB3	8.0	0.12-0.36	0.60-3.1	•	•	•	•										
-		150612E-PB3	1.2	0.18-0.54	0.90-3.1	•	•	•	•										

Режущие пластины ля общей токарной обработки


Пластины формы D (55°)

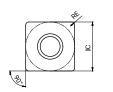
Основны	е разме	ры (мм)
Форморазмер	IC	S	D1
DN_1104_	9.525	4.76	3.81
DN_1504_	12.7	4.76	5.16
DN_1506_	12.7	6.35	5.16

								•	Хор	эшие	. (Ср	едни	ie	# П	похи	—— е		
				Условия с	бработки	•	•	•	+	*	•	+		+	•	+	#	+	•
				Режимы	резания			Р					И			K		N	S
	ластины и ц обработки	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
a		DNMG 110408E-PC3	0.8	0.14-0.40	0.68-2.6			•	•										
Ĭğ.		110412E-PC3	1.2	0.20-0.60	1.02-2.6			•	•										
Получистовая обработка		150404E-PC3	0.4	0.07-0.20	0.34-3.5	•		•	•										
) N		150408E-PC3	0.8	0.14-0.40	0.68-3.5	•		•	•										
1089		150412E-PC3	1.2	0.20-0.60	1.02-3.5	•		•	•										
-ZA		150604E-PC3	0.4	0.07-0.20	0.34-3.5	•		•	•										
6		150608E-PC3	0.8	0.14-0.40	0.68-3.5	•		•	•										
Ľ		150612E-PC3	1.2	0.20-0.60	1.02-3.5	•		•	•										
		DNMG 110404E-PD3	0.4	0.08-0.22	0.40-2.9	•		•	•										
		110408E-PD3	0.8	0.15-0.44	0.80-2.9	•	•	•	•										
		150404E-PD3	0.4	0.08-0.22	0.40-3.9	•		•	•										
		150408E-PD3	0.8	0.15-0.44	0.80-3.9	•	•	•	•	•									
	-	150412E-PD3	1.2	0.23-0.66	1.20-3.9		•	•	•	•									
		150604E-PD3	0.4	0.08-0.22	0.40-3.9			•	•										
		150608E-PD3	0.8	0.15-0.44	0.80-3.9		•	•	•	•									
		150612E-PD3	1.2	0.23-0.66	1.20-3.9		•	•	•	•									
Обработка средней тяжести		DNMG 150608R-PL5	0.8	0.15-0.44	0.80-3.9			•	•										
Ĭ TS		DNMG 150404E-SC3	0.4	0.08-0.22	0.40-3.9						•	•	•						•
Не		150408E-SC3	0.8	0.15-0.44	0.80-3.9						•	•	•						•
g		150412E-SC3	1.2	0.23-0.66	1.20-3.9						•	•	•						•
тка	1000	150604E-SC3	0.4	0.08-0.22	0.40-3.9						•	•	•						•
page		150608E-SC3	0.8	0.15-0.44	0.80-3.9						•	•	•						•
06		150612E-SC3	1.2	0.23-0.66	1.20-3.9						•	•	•						•
		DNMG 110404E-MC3	0.4	0.08-0.22	0.32-2.9						•	•	•						
		110408E-MC3	0.8	0.15-0.44	0.64-2.9						•	•	•						
		150404E-MC3	0.4	0.08-0.22	0.32-3.9						•	•	•						
	1	150408E-MC3	0.8	0.15-0.44	0.64-3.9						•	•	•						
		150412E-MC3	1.2	0.23-0.66	0.96-3.9						•	•	•						
		150604E-MC3	0.4	0.08-0.22	0.32-3.9						•	•	•						
		150608E-MC3	0.8	0.15-0.44	0.64-3.9						•	•	•						
		150612E-MC3	1.2	0.23-0.66	0.96-3.9						•	•	•						


Пластины формы D (55°)

Основны	е разме	еры (мм)			
Форморазмер IC S D1 DN_1104_ 9.525 4.76 3.81						
DN_1104_	9.525	4.76	3.81			
DN_1504_	12.7	4.76	5.16			
DN_1506_	12.7	6.35	5.16			

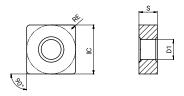
				\\\-				•	Хор	ошиє	• •	• Ср	едни	е	# []	похи	e		
				Условия с	обработки	•	•	•	+	#	•	+	#	+	•	+	#	*	•
				Режимы	резания			Р				N	И			K		N	s
	тины и вид бработки	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
ž		DNMG 150404E-PC4	0.4	0.08-0.22	0.40-3.9	•		•	•							•	•		
РДН		150408E-PC4	8.0	0.15-0.44	0.80-3.9	•	•	•	•							•	•		
Обработка средней тяжести		150412E-PC4	1.2	0.23-0.66	1.20-3.9		•	•	•							•	•		
OTK		150604E-PC4	0.4	0.08-0.22	0.40-3.9	•		•	•							•	•		
pag		150608E-PC4	0.8	0.15-0.44	0.80-3.9	•	•	•	•							•	•		
၂၀		150612E-PC4	1.2	0.23-0.66	1.20-3.9		•	•	•							•	•		
		DNMG 150408E-MC4	8.0	0.20-0.60	1.20-5.4						•	•	•						
		150412E-MC4	1.2	0.30-0.90	1.80-5.4						•	•	•						
		150608E-MC4	8.0	0.20-0.60	1.20-5.4						•	•	•						•
		150612E-MC4	1.2	0.30-0.90	1.80-5.4						•	•	•						•
		DNMG 110404E-KC4	0.4	0.09-0.24	0.48-3.5											•	•		
		110408E-KC4	8.0	0.18-0.48	0.96-3.5											•	•		
		150404E-KC4	0.4	0.09-0.24	0.48-4.6											•	•		
		150408E-KC4	8.0	0.18-0.48	0.96-4.6											•	•		
		150412E-KC4	1.2	0.26-0.72	1.44-4.6											•	•		
ка		150604E-KC4	0.4	0.09-0.24	0.48-4.6											•	•		
абот		150608E-KC4	8.0	0.18-0.48	0.96-4.6											•	•		
Черновая обработка		150612E-KC4	1.2	0.26-0.72	1.44-4.6											•	•		
зая		DNMG 150408E-PD5	8.0	0.20-0.60	1.20-5.4		•	•	•	•									
ЭНО		150412E-PD5	1.2	0.30-0.90	1.80-5.4		•	•	•	•									
ج ا		150416E-PD5	1.6	0.40-1.20	2.40-5.4		•	•	•										
		150608E-PD5	8.0	0.20-0.60	1.20-5.4		•	•	•	•									
		150612E-PD5	1.2	0.30-0.90	1.80-5.4		•	•	•	•									
		150616E-PD5	1.6	0.40-1.20	2.40-5.4		•	•	•	•									
		DNMA 150404E-KD5	0.4	0.10-0.30	0.60-5.4											•	•		
		150408E-KD5	8.0	0.20-0.60	1.20-5.4										•	•	•		
		150412E-KD5	1.2	0.30-0.90	1.80-5.4										•	•	•		
		150604E-KD5	0.4	0.10-0.30	0.60-5.4											•	•		
		150608E-KD5	8.0	0.20-0.60	1.20-5.4										•	•	•		
		150612E-KD5	1.2	0.30-0.90	1.80-5.4										•	•	•		


Пластины формы S (90°)

Основны	е разме	ры (мм)
Форморазмер	IC	S	D1
SN_1204_	12.7	4.76	5.16
SN_1506_	15.875	6.35	6.35
SN_1906_	19.05	6.35	7.94

				\\\	<i>C C</i>			•	Хор	эшиє	• •	• Ср	едни	ie	# []	похи	e		
				Условия с	обработки	•	•	•	+	*	•	+	*	+	•	+	*	+	•
				Режимы	резания			Р				N	И			K		N	S
	тины и вид работки	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
ка	2000	SNMG 120404E-PB1	0.4	0.05-0.15	0.26-3.2	•		•	•										
 1601		120408E-PB1	0.8	0.10-0.30	0.52-3.2	•	•	•	•										
Чистовая обработка	(Translet	120412E-PB1	1.2	0.15-0.45	0.78-3.2		•	•	•										
зая		SNMG 120404E-MB2	0.4	0.05-0.15	0.26-3.2						•	•	•						•
CTO	101	120408E-MB2	0.8	0.10-0.30	0.52-3.2						•	•	•						•
2		120412E-MB2	1.2	0.15-0.45	0.78-3.2						•	•	•						•
Легкая обработка	5907-073	SNMG 120404E-SL3	0.4	0.12-0.25	0.60-3.0								•						•
Легкая бработк		120408E-SL3	0.8	0.15-0.30	0.80-3.0								•						•
ддо		120412E-SL3	1.2	0.18-0.35	1.00-3.0								•						•
Вая		SNMG 120404E-PC3	0.4	0.07-0.20	0.34-3.8	•		•	•										
1CTO SOTK		120408E-PC3	0.8	0.14-0.40	0.68-3.8	•		•	•										
Получистовая обработка		120412E-PC3	1.2	0.20-0.60	1.02-3.8	•		•	•										
P °																			
		SNMG 120404E-PD3	0.4	0.08-0.22	0.40-4.2	•		•	•	•									
		120408E-PD3	0.8	0.15-0.44	0.80-4.2	•	•	•	•	•									
	Distance of the last	120412E-PD3	1.2	0.23-0.66	1.20-4.2	•	•	•	•	•									
		190608E-PD3	0.8	0.15-0.44	0.80-6.3		•	•	•	•									
		SNMG 120408E-SC3	0.8	0.15-0.44	0.80-4.2						•	•	•						•
Z Z		120412E-SC3	1.2	0.23-0.66	1.20-4.2						•	•	•						•
X G		150612E-SC3	1.2	0.23-0.66	1.20-5.2						•	•	•						•
) Ž		150616E-SC3	1.6	0.30-0.88	1.60-5.2						•	•	•						•
Обработка средней тяжести		190612E-SC3	1.2	0.23-0.66	1.20-6.3						•	•	•						•
g C		SNMG 120404-M3T	0.4	0.20-0.40	1.0-4.0	•													
OTK	Somens	120408-M3T	0.8	0.20-0.40	1.0-4.0	•													
pag		SNMG 120404E-MC3	0.4	0.08-0.22	0.32-4.2						•	•	•						
8		120408E-MC3	0.8	0.15-0.44	0.64-4.2						•	•	•						
		120412E-MC3	1.2	0.23-0.66	0.96-4.2						•	•	•						
		150612E-MC3	1.2	0.23-0.66	0.96-5.2						•	•	•						
		150616E-MC3	1.6	0.30-0.88	1.28-5.2						•	•	•						
		190612E-MC3	1.2	0.23-0.66	0.96-6.3						•	•	•						
		190616E-MC3	1.6	0.30-0.88	1.28-6.3						•	•	•						

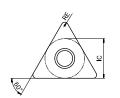
Пластины формы S (90°)



Основны	е разме	ры (мм)
Форморазмер	IC	S	D1
SN_0903_	9.525	3.18	3.81
SN_1204_	12.7	4.76	5.16
SN_1506_	15.875	6.35	6.35
SN_1906_	19.05	6.35	7.94

				\\\	<i>C</i> - <i>C</i>			•	Хоро	ошиє	• •	• Ср	едни	е	# П.	похи	e		
				Условия с	оработки	•	•	•	+	*	•	+	#	#	•	+	*	+	•
				Режимы	резания			Р				N	И			K		N	s
	тины и вид работки	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
Ϊ		SNMG 120404E-PC4	0.4	0.08-0.22	0.40-4.2	•		•	•							•	•		
тка	1	120408E-PC4	8.0	0.15-0.44	0.80-4.2	•	•	•	•						•	•	•		
Обработка дней тяжес		120412E-PC4	1.2	0.23-0.66	1.20-4.2	•	•	•	•						•	•	•		
Обработка средней тяжести																			
		SNMG 120408E-MC4	0.8	0.20-0.60	1.20-6.4						•	•	•						•
	BER	120412E-MC4	1.2	0.30-0.90	1.80-6.4						•	•	•						•
	13 /13	150612E-MC4	1.2	0.30-0.90	1.80-7.9						•	•	•						
		150616E-MC4	1.6	0.40-1.20	2.40-7.9						•	•	•						
		190612E-MC4	1.2	0.30-0.90	1.80-9.5						•	•	•						
		190616E-MC4	1.6	0.40-1.20	2.40-9.5						•	•	•						•
		SNMG 090304E-KC4	0.4	0.09-0.24	0.48-3.8														
		090308E-KC4	8.0	0.18-0.48	0.96-3.8														
_		120404E-KC4	0.4	0.09-0.24	0.48-5.1											•	•		
OTK	5 - 27	120408E-KC4	8.0	0.18-0.48	0.96-5.1											•	•		
Черновая обработка		120412E-KC4	1.2	0.26-0.72	1.44-5.1											•	•		
9 ов		150608E-KC4	8.0	0.18-0.48	0.96-6.4											•	•		
ова		150612E-KC4	1.2	0.26-0.72	1.44-6.4											•	•		
lepH		150616E-KC4	1.6	0.35-0.96	1.92-6.4											•	•		
ر		190608E-KC4	8.0	0.18-0.48	0.96-7.6											•	•		
		190612E-KC4	1.2	0.26-0.72	1.44-7.6											•	•		
		190616E-KC4	1.6	0.35-0.96	1.92-7.6											•	•		
		190624E-KC4	2.4	0.53-1.44	2.88-7.6														
		SNMG 150608E-PD5	8.0	0.20-0.60	1.20-7.9		•	•	•	•									
	100	150612E-PD5	1.2	0.30-0.90	1.80-7.9		•	•	•	•									
		150616E-PD5	1.6	0.40-1.20	2.40-7.9		•	•	•	•									
		190612E-PD5	1.2	0.30-0.90	1.80-9.5		•	•	•	•									
		190616E-PD5	1.6	0.40-1.20	2.40-9.5		•	•	•	•									

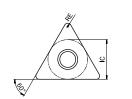
ежущие пластины пя общей токарной обработки

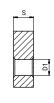

Пластины формы S (90°)

Основны	е разме	ры (мм)
Форморазмер	IC	S	D1
SN_1204_	12.7	4.76	5.16
SN_1506_	15.875	6.35	6.35
SN_1906_	19.05	6.35	7.94
SN_2507_	25.4	7.94	9.12
SN_2509_	25.4	9.52	9.12
SN_3109_	31.75	9.52	9.45

								•	Хор	эшие	e (Ср	едни	<u> </u>	# П	похи	—— е		
				Условия с	обработки	•	•	•	+	*	•	+	#	+	•	+	#	+	•
				Режимы	резания			Р				N	И			K		Z	s
	ластины и ц обработки	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
		SNMA 120408E-KD5	0.8	0.20-0.60	1.20-6.4										•	•	•		
OTK		120412E-KD5	1.2	0.30-0.90	1.80-6.4										•	•	•		
Черновая обработка		120416E-KD5	1.6	0.40-1.20	2.40-6.4										•	•	•		
Я об		150612E-KD5	1.2	0.30-0.90	1.80-7.9											•	•		
ЮВа		150616E-KD5	1.6	0.40-1.20	2.40-7.9											•	•		
lepH		190612E-KD5	1.2	0.30-0.90	1.80-9.5											•	•		
		190616E-KD5	1.6	0.40-1.20	2.40-9.5											•	•		
		SNMM120408E-PD8	0.8	0.16-0.32	1.44-5.1			•	•	•									
		120412E-PD8	1.2	0.24-0.48	2.16-5.1			•	•	•									
		150612E-PD8	1.2	0.24-0.48	2.16-6.4			•	•	•									
		150616E-PD8	1.6	0.32-0.64	2.88-6.4		•	•	•	•									
		190612E-PD8	1.2	0.24-0.48	2.16-7.6			•	•	•									
		190616E-PD8	1.6	0.32-0.64	2.88-7.6		•	•	•	•									
a		190624E-PD8	2.4	0.48-0.96	4.32-7.6		•	•	•	•									
20TK		250724E-PD8	2.4	0.48-0.96	4.32-10.2			•	•	•									
5pa(250924E-PD8	2.4	0.48-0.96	4.32-10.2			•	•	•									
)O K		SNMM190612S-PC9	1.2	0.26-0.60	2.40-9.5			•	•										
 일 위		190616S-PC9	1.6	0.35-0.80	3.20-9.5			•	•	•									
 		190624S-PC9	2.4	0.53-1.20	4.80-9.5			•	•	•									
Тяжёлая черновая обработка		250724S-PC9	2.4	0.53-1.20	4.80-12.7			•	•	•									
1XË		250924S-PC9	2.4	0.53-1.20	4.80-12.7			•	•	•									
ľ		SNMH 310924S-PC9	2.4	0.53-1.20	4.80-15.9				•	•									
		SNMM190612S-PD9	1.2	0.30-0.72	2.64-11.4			•	•	•									
		190616S-PD9	1.6	0.40-0.96	3.52-11.4			•	•	•									
		190624S-PD9	2.4	0.60-1.44	5.28-11.4			•	•	•									
		250724S-PD9	2.4	0.60-1.44	5.28-15.2			•	•	•									
		250924S-PD9	2.4	0.60-1.44	5.28-15.2			•	•	•									
		SNMX 310924S-PD9	2.4	0.60-1.44	5.28-19.1				•	•									

Пластины формы T (60°)

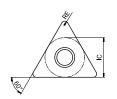


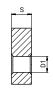


Основнь	е разме	ры (мм)									
Форморазмер												
TN_1103_	6.35	3.18	2.26									
TN_1604_	9.525	4.76	3.81									
TN_2204_	12.7	4.76	5.16									

				V	<i>C</i> - <i>C</i>			•	Хор	оши	e (Ор	едни	ie	# П.	похи	е		
				Условия с	оораоотки	•	•	•	+	*	•	+	#	+	•	•	#	+	•
				Режимы	резания			Р				N	1			K		N	S
	гины и вид работки	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
	A	TNMG 160404E-PB1	0.4	0.05-0.15	0.26-3.1	•		•	•										
OTK		160408E-PB1	0.8	0.10-0.30	0.52-3.1	•	•	•	•										
pa6		160412E-PB1	1.2	0.15-0.45	0.78-3.1	•	•	•	•										
90 6		TNMG 160404E-SC1	0.4	0.07-0.18	0.20-0.8								•						
0Ba		160408E-SC1	0.8	0.10-0.25	0.20-0.8								•						
Чистовая обработка		TNMG 160404E-MB2	0.4	0.05-0.15	0.26-3.1						•	•	•						•
Ľ		160408E-MB2	0.8	0.10-0.30	0.52-3.1						•	•	•						•
Я ТКа	A	TNMG 160404E-SL3	0.4	0.12-0.25	0.60-3.0								•						•
Легкая обработка		160408E-SL3	0.8	0.15-0.30	0.80-3.0								•						•
ogb		160412E-SL3	1.2	0.18-0.30	1.00-3.0								•						•
a	li.	TNMG 160404R-M1T	0.4	0.10-0.30	0.10-0.30	•													
Получистовая обработка		160404L-M1T	0.4	0.10-0.30	0.10-0.30	•													
Spac	A	TNMG 160404E-PB3	0.4	0.06-0.18	0.30-3.3	•		•	•										
)0 K		160408E-PB3	0.8	0.12-0.36	0.60-3.3	•	•	•	•										
_0Ba		160412E-PB3	1.2	0.18-0.54	0.90-3.3	•	•	•	•										
ДИС	A	TNMG 160404E-PC3	0.4	0.07-0.20	0.34-3.7	•		•	•										
fo		160408E-PC3	0.8	0.14-0.40	0.68-3.7	•		•	•										
		160412E-PC3	1.2	0.20-0.60	1.02-3.7	•		•	•										
	A	TNMG 160404E-PD3	0.4	0.08-0.22	0.40-4.1	•		•	•	•									
		160408E-PD3	0.8	0.15-0.44	0.80-4.1	•	•	•	•	•									
Ϊ́	-	160412E-PD3	1.2	0.23-0.66	1.20-4.1	•	•	•	•	•									
Xe	1/2	TNMG 160404R-M2T	0.4	0.10-0.30	0.70-3.5	•													
NĂ T		160404L-M2T	0.4	0.10-0.30	0.70-3.5	•													
Обработка средней тяжести		TNMG 160404R-PL5	0.4	0.08-0.22	0.40-4.1	•		•	•										
cbe		160408R-PL5	0.8	0.15-0.44	0.80-4.1	•	•	•	•										
Отка		160404L-PL5	0.4	0.08-0.22	0.40-4.1	•		•	•										
pa6		160408L-PL5	0.8	0.15-0.44	0.80-4.1	•	•	•	•										
8	<u> </u>	TNMG 160404E-SC3	0.4	0.08-0.22	0.40-4.1						•	•	•						•
		160408E-SC3	0.8	0.15-0.44	0.80-4.1						•	•	•						•
		160412E-SC3	1.2	0.23-0.66	1.20-4.1						•	•	•						•

Пластины формы T (60°)

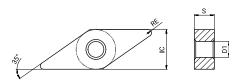




Основны	е разме	ры (мм)
Форморазмер	IC	S	D1
TN_1103_	6.35	3.18	2.26
TN_1604_	9.525	4.76	3.81
TN_2204_	12.7	4.76	5.16

				Условия обработки Режимы резания f (мм/об) ар (мм) 0.08-0.22 0.32-4.1 0.15-0.44 0.64-4.1 0.23-0.66 0.96-4.1 0.15-0.44 0.64-4.9 0.23-0.66 0.96-4.9 0.08-0.22 0.40-4.1 0.15-0.44 0.80-4.1 0.23-0.66 1.20-4.1 0.23-0.66 1.20-4.9 0.20-0.60 1.20-5.8 0.30-0.90 1.80-5.8 0.20-0.60 1.20-6.6 0.30-0.90 1.80-6.6 0.09-0.24 0.48-3.3			•	Хор	эшие	• •	Сре	едни	<u> </u>	# Пı	похие	e			
				Условия с	бработки	•	•	•	+	#	•	+	+	+	•	•	#	#	•
				Режимы	резания			Р				N	И			K		N	S
	ластины и ц обработки	Обозначение пластины	RE (MM)	f (мм/об)		AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
		TNMG 160404E-MC3	0.4	0.08-0.22	0.32-4.1						•	•	•						
ecT/	A	160408E-MC3	0.8	0.15-0.44	0.64-4.1						•	•	•						
Обработка средней тяжести		160412E-MC3	1.2	0.23-0.66	0.96-4.1						•	•	•						
HeŇ		220408E-MC3	0.8	0.15-0.44	0.64-4.9						•	•	•						•
реді		220412E-MC3	1.2	0.23-0.66	0.96-4.9						•	•	•						
Ka C	_	TNMG 160404E-PC4	0.4	0.08-0.22	0.40-4.1	•		•	•										
Тод		160408E-PC4	0.8	0.15-0.44	0.80-4.1	•	•	•	•										
ed90		160412E-PC4	1.2	0.23-0.66	1.20-4.1		•	•	•										
		220412E-PC4	1.2	0.23-0.66	1.20-4.9			•	•										
		TNMG 160408E-MC4	0.8	0.20-0.60	1.20-5.8						•	•	•						•
		160412E-MC4	1.2	0.30-0.90	1.80-5.8						•	•	•						•
		220408E-MC4	0.8	0.20-0.60	1.20-6.6						•	•	•						
		220412E-MC4	1.2	0.30-0.90	1.80-6.6						•	•	•						
		TNMG 110304E-KC4	0.4	0.09-0.24	0.48-3.3											•	•		
Ka		160404E-KC4	0.4	0.09-0.24	0.48-4.9											•	•		
3601		160408E-KC4	0.8	0.18-0.48	0.96-4.9										•	•	•		
Черновая обработка		160412E-KC4	1.2	0.26-0.72	1.44-4.9										•	•	•		
зая		160416E-KC4	1.6	0.35-0.96	1.92-4.9											•	•		
PHO		220412E-KC4	1.2	0.26-0.72	1.44-6.0											•	•		
카		220416E-KC4	1.6	0.35-0.96	1.92-6.0											•	•		
		TNMG 160408E-PD5	0.8	0.20-0.60	1.20-5.8		•	•	•	•									
		160412E-PD5	1.2	0.30-0.90	1.80-5.8		•	•	•	•									
		220408E-PD5	0.8	0.20-0.60	1.20-7.7		•	•	•	•									
		220412E-PD5	1.2	0.30-0.90	1.80-7.7		•	•	•	•									
		220416E-PD5	1.6	0.40-1.20	2.40-7.7		•	•	•	•									

Пластины формы T (60°)

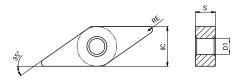


Основны	_1103_ 6.35 3.18 2.26							
TN_1103_	6.35	3.18	2.26					
TN_1604_	9.525	4.76	3.81					
TN_2204_	IC S 6.35 3.18		5.16					

				\/	<i>55</i>			•	Хор	ошие	• (• Ср	едни	e	# □	похи	e		
				Условия с	ораоотки	•	•	•	+	*	•	+	#	+	•	•	#	+	•
	казаны			Режимы	резания			Р				N	Л			K		N	S
левос	астины стороннего лнения на фото	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
		TNMA 160404E-KD5	0.4	0.10-0.30	0.60-5.8											•	•		
OTK		160408E-KD5	8.0	0.20-0.60	1.20-5.8										•	•	•		
Черновая обработка		160412E-KD5	1.2	0.30-0.90	1.80-5.8										•	•	•		
9 об	0	160416E-KD5	1.6	0.40-1.20	2.40-5.8										•	•	•		
Юва		220408E-KD5	8.0	0.20-0.60	1.20-7.7											•	•		
lepH		220412E-KD5	1.2	0.30-0.90	1.80-7.7											•	•		
		220416E-KD5	1.6	0.40-1.20	2.40-7.7											•	•		
вая		TNMM160408E-PD8	8.0	0.16-0.32	1.44-4.9				•										
Тяжёлая черновая обработка	A	160412E-PD8	1.2	0.24-0.48	2.16-4.9				•										
ёлая чернс обработка		220408E-PD8	8.0	0.16-0.32	1.44-6.0				•										
ела	CHECKE	220412E-PD8	1.2	0.24-0.48	2.16-6.0				•										
Ĕ		220416E-PD8	1.6	0.32-0.64	2.88-6.0				•										
	A	TNGG 160401FP-UF	0.1	0.03-0.11	0.3-2.5									•					
OTK		160402FP-UF	0.2	0.03-0.11	0.3-2.5									•					
Чистовая обработка		160404FP-UF	0.4	0.03-0.11	0.3-2.5									•					
9 o R		TNGG 160402FR-F	0.2	0.08-0.20	0.5-2.3									•					
OBa		160402FL-F	0.2	0.08-0.20	0.5-2.3									•					
Тист		160404FR-F	0.4	0.08-0.20	0.5-2.3									•					
		160404FL-F	0.4	0.08-0.20	0.5-2.3									•					
, Ka		TNGG 160404R-H	0.4	0.22-0.38	1.2-3.8									•					
360T		160404L-H	0.4	0.22-0.38	1.2-3.8									•					
 		160408R-H	8.0	0.22-0.38	1.2-3.8									•					
зая		160408L-H	8.0	0.22-0.38	1.2-3.8									•					
DHO!																			
уче	пучерновая обработка																		
Получ																			

Режущие пластины цля общей токарной обработки

Пластины формы V (35°)

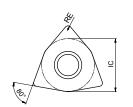


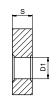
Основны	е разме	ры (мм)
Форморазмер	IC	S	D1
VN_1604_	9.525	4.76	3.81

				,				•	Хор	эшие	• •	Ср	едни	e	# П	похи	—— е		
				Условия с	оработки	•	•	•	+	*	•	+	#	+	•	•	*	+	•
				Режимы	резания			Р				N	Л			K		N	s
	стины и вид бработки	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
Ка		VNMG 160404E-PB1	0.4	0.05-0.15	0.26-2.1	•		•	•										
бот	70-	160408E-PB1	0.8	0.10-0.30	0.52-2.1	•	•	•	•										
Чистовая обработка		VNMG 160404E-SC1	0.4	0.10-0.25	0.20-0.8								•						
аяс		160408E-SC1	0.8	0.15-0.30	0.20-0.8								•						
CTOE		VNMG 160404E-MB2	0.4	0.05-0.15	0.26-2.1						•	•	•						•
چَّ		160408E-MB2	0.8	0.10-0.30	0.52-2.1						•	•	•						•
ТКа		VNMG 160404E-SL3	0.4	0.10-0.20	0.60-2.5								•						•
Легкая обработка		160408E-SL3	0.8	0.12-0.25	0.80-2.5								•						•
ц ф																			
ая		VNMG 160404E-BS	0.4	0.08-0.20	0.20-2.0	•	•	•	•										
Профильная обработка		160408E-BS	0.8	0.08-0.20	0.20-2.0	•	•	•	•										
_		VNMG 160404E-PB3	0.4	0.06-0.18	0.30-3.1	•		•	•										
胀		160408E-PB3	0.8	0.12-0.36	0.60-3.1	•	•	•	•										
тов		160412E-PB3	1.2	0.18-0.54	0.90-3.1	•	•	•	•										
Получистовая обработка		VNMG 160404E-PC3	0.4	0.07-0.20	0.34-3.3	•		•	•										
[50 10 10 10 10 10 10 10 1		160408E-PC3	0.8	0.14-0.40	0.68-3.3	•		•	•										
_		160412E-PC3	1.2	0.20-0.60	1.02-3.3	•		•	•										

Также доступны пластины VNMG 12T304/08E-PD3 из сплавов AC152P и AC252P

Пластины формы V (35°)

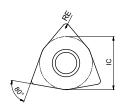


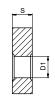

Основные размеры (мм) Форморазмер IC S D1											
Форморазмер IC S D1											
VN_1604_	9.525	4.76	3.81								

								•	Хор	ошие		⊕ Ср	едни	ie	* П.	похи	—— е		
				Условия с	обработки	•	•	•	+	*	•	+	+	+	•	•	#	+	•
				Режимы	резания			Р				N	Л			K		N	S
	тины и вид бработки	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
		VNMG 160404E-PD3	0.4	0.08-0.22	0.40-3.3	•		•	•										
		160408E-PD3	0.8	0.15-0.44	0.80-3.3	•	•	•	•	•									
_		160412E-PD3	1.2	0.23-0.66	1.20-3.3	•	•	•	•	•									
ecTl		VNMG 160404-M3T	0.4	0.20-0.40	1.0-4.0	•													
X		160408-M3T	0.8	0.20-0.40	1.0-4.0	•													
Обработка средней тяжести		VNMG 160404E-SC3	0.4	0.08-0.22	0.40-3.3						•	•	•						•
ред		160408E-SC3	0.8	0.15-0.44	0.80-3.3						•	•	•						•
Ka c		160412E-SC3	1.2	0.23-0.66	1.20-3.3						•	•	•						•
		VNMG 160404E-MC3	0.4	0.08-0.22	0.32-3.3						•	•	•						
- - - - - - - - - - - - - - - - - - -		160408E-MC3	0.8	0.15-0.44	0.64-3.3						•	•	•						
		VNMG 160404E-PC4	0.4	0.08-0.22	0.40-3.3	•		•	•							•	•		
	<0>	160408E-PC4	0.8	0.15-0.44	0.80-3.3	•	•	•	•							•	•		
		160412E-PC4	1.2	0.23-0.66	1.20-3.3	•	•	•	•							•	•		
зая		VNMG 160404E-KC4	0.4	0.09-0.24	0.48-3.3											•	•		
Черновая обработка	0	160408E-KC4	0.8	0.18-0.48	0.96-3.3											•	•		
Leg do		160412E-KC4	1.2	0.26-0.72	1.44-3.3											•	•		
Чистовая обработка		VNGG 160401FP-UF	0.1	0.02-0.1	0.5-2.0									•					
Чистовая обработка		160402FP-UF	0.2	0.02-0.1	0.5-2.0									•					
출형		160404FP-UF	0.4	0.02-0.1	0.5-2.0									•					

Режущие пластины для общей токарной обработки

Пластины формы W (80°)

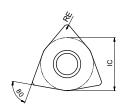


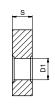


Основны	е разме	еры (мм)
Форморазмер	IC	S	D1
WN_0604_	9.525	4.76	3.81
WN_0804_	12.7	4.76	5.16

				Условия обработки				•	Хор	ошие	• (D Cp	едни	е	# П	похи	—— е		
				Условия с	бработки	•	•	•	+	*	•	+	*	+	•	•	*	+	•
				Режимы	резания			Р				ı	И			K		N	S
	ластины и ц обработки	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
		WNMG 080404-F1T	0.4	0.05-0.15	0.50-2.5	•													
		080408-F1T	0.8	0.05-0.15	0.50-2.5	•													
ā	A	WNMG 080404E-PB1	0.4	0.05-0.15	0.26-2.2	•		•	•										
Тобі		080408E-PB1	0.8	0.10-0.30	0.52-2.2	•	•	•	•										
ogbs		080412E-PB1	1.2	0.15-0.45	0.78-2.2	•	•	•	•										
ая	а Чистовая обработка	WNMG 080404E-SC1	0.4	0.10-0.25	0.20-0.8								•						
CTOE		080408E-SC1	0.8	0.15-0.30	0.20-0.8								•						
툿	- Chic	WNMG 080404E-MB2	0.4	0.05-0.15	0.26-2.2						•	•							•
		080408E-MB2	0.8	0.10-0.30	0.52-2.2						•	•							•
	Легкая обработка																		
тка		WNMG 060404E-SL3	0.4	0.12-0.25	0.60-2.5								•						
Sago		060408E-SL3	0.8	0.15-0.25	0.80-2.5								•						•
ogb		080404E-SL3	0.4	0.12-0.25	0.60-3.0								•						
Кая		080408E-SL3	0.8	0.15-0.25	0.80-3.0								•						•
Ле		080412E-SL3	1.2	0.18-0.30	1.00-3.0								•						•
	A	WNMG 080404E-PB3	0.4	0.06-0.18	0.30-2.3	•		•	•										
ΤΚα		080408E-PB3	0.8	0.12-0.36	0.60-2.3	•	•	•	•										
ago		080412E-PB3	1.2	0.18-0.54	0.90-2.3	•	•	•	•										
gg		WNMG 080404E-PC3	0.4	0.07-0.20	0.34-2.6	•		•	•										
Вая		080408E-PC3	0.8	0.14-0.40	0.68-2.6	•		•	•										
Получистовая обработка		080412E-PC3	1.2	0.20-0.60	1.02-2.6	•		•	•										
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\																			
6																			

Пластины формы W (80°)

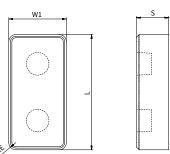



Основны	е разме	IC S D1 9.525 4.76 3.81										
WN_0604_ 9.525 4.76 3.81												
WN_0604_	9.525	4.76	3.81									
WN_0804_	12.7	4.76	5.16									

							•	Хор	оши	e (Н Ср	едни	1e	# □	лохи	e			
				Условия с	бработки	•	•	•	+	*	•	+		+	•	•	#	+	•
				Режимы	резания			Р				N	И			K		N	S
	пастины и , обработки	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
	•	WNMG 080404R-PL5	0.4	0.20-0.50	0.40-4.0				•										
		080404L-PL5	0.4	0.20-0.50	0.40-4.0				•										
		080408R-PL5	0.8	0.20-0.50	0.40-5.0				•				•						
		080408L-PL5	0.8	0.20-0.50	0.40-5.0				•				•						
		WNMG 060408E-PD3	0.8	0.15-0.44	0.80-2.1		•	•	•										
		080404E-PD3	0.4	0.08-0.22	0.40-2.9	•	•	•	•	•									
		080408E-PD3	0.8	0.15-0.44	0.80-2.9	•	•	•	•	•									
Ϊ́		080412E-PD3	1.2	0.23-0.66	1.20-2.9	•	•	•	•	•									
X ec		WNMG 080404E-SC3	0.4	0.08-0.22	0.40-2.9						•	•	•						•
йТЯ	-01	080408E-SC3	0.8	0.15-0.44	0.80-2.9						•	•	•						•
Обработка средней тяжести		080412E-SC3	1.2	0.23-0.66	1.20-2.9						•	•	•						•
obe 1		WNMG 080404-M3T	0.4	0.20-0.40	1.0-4.0	•													
ОТКа		080408-M3T	0.8	0.20-0.40	1.0-4.0	•													
pa6																			
%		WNMG 060408E-MC3	0.8	0.15-0.44	0.64-2.1						•	•	•						
		060412E-MC3	1.2	0.23-0.66	0.96-2.1						•	•	•						
	XCX	080404E-MC3	0.4	0.08-0.22	0.32-2.9						•	•	•						
		080408E-MC3	0.8	0.15-0.44	0.64-2.9						•	•	•						•
		080412E-MC3	1.2	0.23-0.66	0.96-2.9						•	•	•						
		WNMG 080404E-PC4	0.4	0.08-0.22	0.40-2.9	•		•	•							•	•		
		080408E-PC4	0.8	0.15-0.44	0.80-2.9	•	•	•	•							•	•		
		080412E-PC4	1.2	0.23-0.66	1.20-2.9	•	•	•	•							•	•		

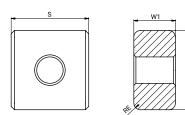
Режущие пластины гля общей токарной обработки

Пластины формы W (80°)



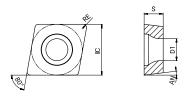
Основн	ые разме	еры (мм)
Форморазмер	IC	S	D1
WN_0604_	9.525	4.76	3.81
WN_0804_	12.7	4.76	5.16

				Условия обработки				•	Хор	эшие	• •	Ср	едни	е	# П	похи	—— е		
						•	•	•	+	*	•	+	•	+	•	•	*	+	•
Пластины и вид обработки				Режимы	резания			Р				ı	И			K		N	s
		Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
	_	WNMG 060408E-MC4	0.8	0.20-0.60	1.20-3.3														
		060412E-MC4	1.2	0.30-0.90	1.80-3.3						•	•	•						
	A CA	080408E-MC4	0.8	0.20-0.60	1.20-4.3						•	•	•						•
		080412E-MC4	1.2	0.30-0.90	1.80-4.3						•	•	•						•
		WNMG 060404E-KC4	0.4	0.09-0.24	0.48-2.6														
	•	060408E-KC4	0.8	0.18-0.48	0.96-2.6											•	AC202K		
Ŕ		080404E-KC4	0.4	0.09-0.24	0.48-3.5											•	•		
Черновая обработка		080408E-KC4	0.8	0.18-0.48	0.96-3.5										•	•	•		
edge		080412E-KC4	1.2	0.26-0.72	1.44-3.5										•	•	•		
зая		080416E-KC4	1.2	0.35-0.96	1.92-3.5											•	•		
왕	•	WNMG 080408E-PD5	0.8	0.20-0.60	1.20-4.3		•	•	•	•									
무 본		080412E-PD5	1.2	0.30-0.90	1.80-4.3		•	•	•	•								N S	
	•	WNMA 080404E-KD5	0.4	0.10-0.30	0.60-4.3											•	•		
		080408E-KD5	0.8	0.20-0.60	1.20-4.3										•	•	•		
		080412E-KD5	1.2	0.30-0.90	1.80-4.3										•	•	•		
		080416E-KD5	1.6	0.40-1.20	2.40-4.3											•	•		


Пластины формы L (90°)

Основные размеры (мм)										
Форморазмер	L	S	W1							
LN_5014_	50.8	14.2	25.4							

	₂ t, \	<u> </u>						• >	Короі	шие	+ (Сред	ние	*	7лохі	—— ие		
				Условия с	обработки	•	•	+	*	•	+	*	+	•	•	*	+	•
				Режимы	резания		F	,		М					K		N	S
Пластины и вид обработки		Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
тка		LNMX 501432S-HE	3.2	0.70-1.6	6.0-40.0				•									
Тяжёлая черновая обработка	1																	
вая о(
ерно																		
елая ч																		
Ţ																		
!																		


Пластины формы L (90°)
Пластины для переточки железнодорожных колёсных пар

Основные размеры (мм)												
Форморазмер	L	S	W1									
LN_1919_	19.05	19.05	10									
LN_3019_	30	30	12									

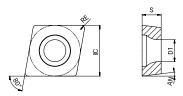
			Условия обработки				• 3	Xopo	шие	0	Сред	ние	#1	Плох	ие		
					•	•	+	*	•	*	*	+	•	•	*	+	•
			Режимы	резания			Р				И			K		N	S
Пластины и вид обработки	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
Чистовая обработка ————————————————————————————————————	LNMX 191940-AS	4.0	0.7-1.2	2.0-10.0		•											
В	LNMX 191940-AM	4.0	0.7-1.2	2.0-10.0	•	•	•										
и черное	LNMX 301940-AM	4.0	0.7-1.2	2.0-20.0		•	•										
Получерновая и черновая обработка	LNMX 301940-AR	4.0	0.7-1.2	2.0-20.0													

Пластины формы С (80°) с задним углом

Осно	вные ра	азмеры	(мм)	
Форморазмер	IC	S	D1	AN
CC_0602_	6.35	2.38	2.8	7°
CC_09T3_	9.525	3.97	4.4	7°

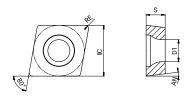
				\\.	● Хорошие (+) Средние (*) Плохие														
				Условия с	обработки	•	•	•	+	*	•	+	#	+	•	•	#	#	•
				Режимы	резания			Р				N	Л			K		N	s
	пастины и ц обработки	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
		CCGT 060201FP-LF	<0.1	0.05-0.2	0.35-3.0									•					
		060202FP-LF	0.2	0.05-0.2	0.35-3.0									•					
		060204FP-LF	0.4	0.05-0.2	0.35-3.0									•					
		09T301FP-LF	<0.1	0.05-0.2	0.35-3.0									•					
		09T302FP-LF	0.2	0.05-0.2	0.35-3.0									•					
		09T304FP-LF	0.4	0.05-0.2	0.35-3.0									•					
		CCGT 060201FP-UF	0.1	0.02-0.15	0.10-1.4									•					
		060202FP-UF	0.2	0.02-0.15	0.10-1.4									•					
		060204FP-UF	0.4	0.03-0.20	0.10-1.4									•					
	1	09T301FP-UF	0.1	0.02-0.15	0.10-2.4									•					
ка	*	09T302FP-UF	0.2	0.02-0.15	0.10-2.4									•					
Чистовая обработка		09T304FP-UF	0.4	0.03-0.20	0.10-2.4									•					
ogbs		CCGT 060201F-UF	0.1	0.02-0.15	0.10-1.4									•					
зая		060202F-UF	0.2	0.02-0.15	0.10-1.4									•					
СТОЕ	•	060204F-UF	0.4	0.03-0.20	0.10-1.4									•					
툿		09T301F-UF	0.1	0.02-0.15	0.10-2.4									•					
		09T302F-UF	0.2	0.02-0.15	0.10-2.4									•					
		09T304F-UF	0.4	0.03-0.20	0.10-2.4									•					
		09T308F-UF	0.8	0.03-0.25	0.10-2.4									•					
		CCGT 060201E-UF	0.1	0.02-0.15	0.10-1.4									•					•
		060202E-UF	0.2	0.02-0.15	0.10-1.4									•					ullet
		060204E-UF	0.4	0.03-0.20	0.10-1.4									•					•
		09T301E-UF	0.1	0.02-0.15	0.10-2.4									•					$ \bullet $
		09T302E-UF	0.2	0.02-0.15	0.10-2.4									•					•
		09T304E-UF	0.4	0.03-0.20	0.10-2.4									•					•
		09T308E-UF	0.8	0.03-0.25	0.10-2.4									•					•

Режущие пластины для общей токарной обработки


Пластины формы С (80°) с задним углом

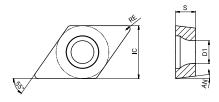
Осно	вные ра	азмеры	(MM)	
Форморазмер	IC	S	D1	AN
CC_0602_	6.35	2.38	2.8	7°
CC_09T3_	9.525	3.97	4.4	7°
CC_1204_	12.7	4.76	5.5	7°
CP_0802_	7.94	2.38	3.4	11°
CP_0903_	9.525	3.18	4.4	11°

								•	Хоро	эшиє	• •	Сре	едни	<u> </u>	# Пл	похие	e		
				Условия с	бработки	•	•	•	+	#	•	+	+	+	•	•	#	#	•
				Режимы	резания			Р				N	Л			K		Z	S
	тины и вид работки	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
		CCGT 060204F-NC2	0.4	0.05-0.20	0.32-2.9													•	
зая	_	09T302F-NC2	0.2	0.02-0.10	0.16-4.4													•	
Получистовая обработка		09T304F-NC2	0.4	0.05-0.20	0.32-4.4													•	
тучи Браб		09T308F-NC2	0.8	0.10-0.40	0.64-4.4													•	
	•	120404F-NC2	0.4	0.05-0.20	0.32-5.8													•	
		120408F-NC2	8.0	0.10-0.40	0.64-5.8													•	
	^	CCMT 060202-F1T	0.2	0.05-0.15	0.3-1.5	•													
		060204-F1T	0.4	0.05-0.15	0.3-1.5	•													
		CCMT 060202E-PB1	0.2	0.02-0.07	0.15-1.6	•		•	•		•	•	•						
ĸa		060204E-PB1	0.4	0.04-0.14	0.30-1.6	•		•	•		•	•	•						
тодк		060208E-PB1	8.0	0.09-0.28	0.60-1.6	•		•	•		•	•	•						
		09T302E-PB1	0.2	0.02-0.07	0.15-2.4	•		•	•		•	•	•						
Зая (09T304E-PB1	0.4	0.04-0.14	0.30-2.4	•		•	•		•	•	•						ullet
Чистовая обработка		09T308E-PB1	8.0	0.09-0.28	0.60-2.4	•		•	•		•	•	•						
툿		CPMT 080202E-PB1	0.2	0.02-0.07	0.15-2.0	•													
		080204E-PB1	0.4	0.04-0.14	0.30-2.0	•													
		090302E-PB1	0.2	0.02-0.07	0.15-2.4	•													
		090304E-PB1	0.4	0.04-0.14	0.30-2.4	•			•										
		090308E-PB1	8.0	0.09-0.28	0.60-2.4	•			•										
		CCMT 060204E-PC2	0.4	0.05-0.16	0.35-1.9	•		•	•		•	•	•						ullet
a		060208E-PC2	8.0	0.10-0.32	0.70-1.9	•		•	•		•	•	•						ullet
бработка		09T304E-PC2	0.4	0.05-0.16	0.35-2.9	•	•	•	•		•	•	•						ullet
 5pa(09T308E-PC2	8.0	0.10-0.32	0.70-2.9	•	•	•	•		•	•	•						ullet
)о к		09T312E-PC2	1.2	0.16-0.48	1.05-2.9		•	•	•		•	•	•						
TOBE		120404E-PC2	0.4	0.05-0.16	0.35-3.9	•		•	•		•	•	•						lacksquare
Получистовая о	*	120408E-PC2	8.0	0.10-0.32	0.70-3.9	•		•	•		•	•	•						•
— Іолу		120412E-PC2	1.2	0.16-0.48	1.05-3.9	•		•	•		•	•	•						•
		CPMT 090304E-PC2	0.4	0.05-0.15	0.35-2.9	•													
		090308E-PC2	8.0	0.10-0.32	0.70-2.9	•													


Пластины формы С (80°) с задним углом

Осно	вные ра	азмеры	(мм)	
Форморазмер	IC	S	D1	AN
CC_0301_	3.5	1.4	2.0	7°
CC_0602_	6.35	2.38	2.8	7°
CC_09T3_	9.525	3.97	4.4	7°
CC_1204_	12.7	4.76	5.5	7°

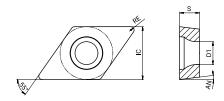
				Условия обработки						ошие	•	• Ср	едни	e	# П	похи	е		
				условия с	обработки	•	•	•	+	#	•	+	#	+	•	•	#	+	•
	Показаны пластины			Режимы	резания			Р				N	Л			K		N	S
лев	востороннего полнения на фото	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
	(A)	CCMT 09T304E-M2T	0.4	0.10-0.25	0.70-3.5	•													
"		09T308E-M2T	0.8	0.10-0.25	0.70-3.5	•													
OTK.																			
pag		CCMT 060204E-KC2	0.4	0.06-0.18	0.40-2.1	•		•	•	•	•	•	•			•	•		•
) N		060208E-KC2	8.0	0.12-0.36	0.80-2.1	•		•	•	•	•	•	•			•	•		
Получистовая обработка		09T304E-KC2	0.4	0.06-0.18	0.40-3.2	•		•	•	•	•	•	•		•	•	•		
- ANC		09T308E-KC2	0.8	0.12-0.36 0.80-3.2			•	•	•	•	•	•		•	•	•			
FO		120404E-KC2	0.4	0.06-0.18	0.40-4.3	•		•	•	•	•	•	•			•	•		
-		120408E-KC2	0.8	0.12-0.36	0.80-4.3	•		•	•	•	•	•	•			•	•		
		120412E-KC2	1.2	0.18-0.54	1.20-4.3	•		•	•	•	•	•	•			•	•		
Ка		CCMW 060204E-KD5	0.4	0.10-0.22	0.40-3.2											•	•		
Черновая обработка		09T304E-KD5	0.4	0.10-0.22	0.40-4.8											•	•		
dgo		09T308E-KD5	0.8	0.20-0.44	0.80-4.8											•	•		
Вая		120404E-KD5	0.4	0.10-0.22	0.40-6.4											•	•		
Ed		120408E-KD5	0.8	0.20-0.44	0.80-6.4											•	•		
유		120412E-KD5	1.2	0.30-0.66	1.20-6.4											•	•		
		CCET 0301003FR-F	<0.03	0.01-0.05	0.1-0.3									•					
		0301003FL-F	<0.03	0.01-0.05	0.1-0.3									•					
Ka		0301005FR-F	<0.05	0.01-0.05	0.1-0.3									•					
<u>а</u> бол		0301005FL-F	<0.05	0.01-0.05	0.1-0.3									•					
Чистовая обработка		030101FR-F	<0.1	0.01-0.05	0.1-0.3									•					
Вая		030101FL-F	<0.1	0.01-0.05	0.1-0.3									•					
CTO		030102FR-F	<0.2	0.01-0.05	0.1-0.3									•					
🗦		030102FL-F	<0.2	0.01-0.05	0.1-0.3									•					
		030104FR-F	<0.4	0.01-0.05	0.1-0.3									•					
		030104FL-F	<0.4	0.01-0.05	0.1-0.3									•					


Пластины формы С (80°) с задним углом

Осно	вные ра	азмеры	(мм)	
Форморазмер	IC	S	D1	AN
CC_0401_	4.3	1.8	2.3	7°
CC_0602_	6.35	2.38	2.8	7°
CC_09T3_	9.525	3.97	4.4	7°

				Условия обработки				•	Хоро	шие	•	Сре	едни	e	# []	ТОХИ			
				Условия с	бработки	•	•	•	+	*	•	+	*	+	•	•	*	+	•
	Токазаны пластины			Режимы	резания			Р				ı	И			K		N	s
лев	остороннего полнения на фото	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
		CCET 0401003FR-F	<0.03	0.01-0.06	0.1-0.4									•					
		0401003FL-F	<0.03	0.01-0.06	0.1-0.4									•					
ğ		0401005FR-F	<0.05	0.01-0.06	0.1-0.4									•					
Тод		0401005FL-F	<0.05	0.01-0.06	0.1-0.4									•					
ogbe		040101FR-F	<0.1	0.01-0.06	0.1-0.4									•					
ая		040101FL-F	<0.1	0.01-0.06	0.1-0.4									•					
Чистовая обработка	•	040102FR-F	<0.2	0.01-0.06	0.1-0.4									•					
Ē		040102FL-F	<0.2	0.01-0.06	0.1-0.4									•					
		040104FR-F	<0.4	0.01-0.06	0.1-0.4									•					
		040104FL-F	<0.4	0.01-0.06	0.1-0.4									•					
		CCET 0602003FR-M	<0.03	0.02-0.10	0.5-2.5									•					
		0602003FL-M	<0.03	0.02-0.10	0.5-2.5									•					
		0602005FR-M	<0.05	0.02-0.10	0.5-2.5									•					
		0602005FL-M	<0.05	0.02-0.10	0.5-2.5									•					
		060201FR-M	<0.1	0.02-0.10	0.5-2.5									•					
		060201FL-M	<0.1	0.02-0.10	0.5-2.5									•					
	•	060202FR-M	<0.2	0.02-0.10	0.5-2.5									•					
		060202FL-M	<0.2	0.02-0.10	0.5-2.5									•					
ачи		060204FR-M	<0.4	0.01-0.10	0.5-2.5									•					
5		060204FL-M	<0.4	0.01-0.10	0.5-2.5									•					
Низкие подачи		CCET 09T3003FR-M	<0.03	0.02-0.10	0.5-4.0									•					
H		09T3003FL-M	<0.03	0.02-0.10	0.5-4.0									•					
		09T3005FR-M	<0.05	0.02-0.10	0.5-4.0									•					
		09T3005FL-M	<0.05	0.02-0.10	0.5-4.0									•					
		09T301FR-M	<0.1	0.02-0.10	0.5-4.0									•					
		09T301FL-M	<0.1	0.02-0.10	0.5-4.0									•					
			0.5-4.0									•							
		09T302FL-M	<0.2	0.02-0.10	0.5-4.0									•					
	09T304FR-M <0.4 0.02-0.10		0.5-4.0									•							
		09T304FL-M <0.4 0.02-0.10 0.5-4.0		0.5-4.0									•						

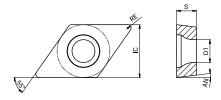
Пластины формы D (55°) с задним углом



Осно	вные ра	азмеры	(мм)						
Форморазмер	орморазмер IC S								
DC_0702_	6.35	2.38	2.8	7°					
DC_11T3_	9.525	3.97	4.4	7°					

				\\.	<i>C.C</i>			•	Хор	оши	e (• Ср	едни	e	#П	похи	e		
				Условия с	обработки	•	•	•	+	*	•	+	#	+	•	•	#	+	•
				Режимы	резания			Р				N	И			K		N	S
	пастины и , обработки	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
		DCGT 0702005FP-LF	<0.05	0.05-0.15	0.35-3.0									•					
		070201FP-LF	<0.1	0.05-0.2	0.35-3.0									•					
		070202FP-LF	0.2	0.05-0.2	0.35-3.0									•					
		070204FP-LF	0.4	0.05-0.2	0.35-3.0									•					
		11T301FP-LF	<0.1	0.05-0.2	0.35-3.0									•					
		11T302FP-LF	0.2	0.05-0.2	0.35-3.0									•					
		11T304FP-LF	0.4	0.05-0.2	0.35-3.0									•					
		DCGT 0702005FP-UF	<0.05	0.02-0.15	0.10-1.4									•					
		070201FP-UF	0.1	0.02-0.15	0.10-1.4									•					
		070202FP-UF	0.2	0.02-0.15	0.10-1.4									•					
ا ڀ		070204FP-UF	0.4	0.03-0.20	0.10-1.4									•					
OTK	•	11T301FP-UF	0.1	0.02-0.15	0.10-2.4									•					
pag		11T302FP-UF	0.2	0.02-0.15	0.10-2.4									•					
Я об		11T304FP-UF	0.4	0.03-0.20	0.10-2.4									•					
Чистовая обработка		DCGT 0702005F-UF	<0.05	0.02-0.15	0.10-1.4									•					
- L H L		070201F-UF	0.1	0.02-0.15	0.10-1.4									•					
		070202F-UF	0.2	0.02-0.15	0.10-1.4									•					
		070204F-UF	0.4	0.03-0.20	0.10-1.4									•					
	•	11T301F-UF	0.1	0.02-0.15	0.10-2.4									•					
		11T302F-UF	0.2	0.02-0.15	0.10-2.4									•					
		11T304F-UF	0.4	0.03-0.20	0.10-2.4									A					
		DCGT 070201E-UF	0.1	0.02-0.15	0.10-1.4									•					•
		070202E-UF	0.2	0.02-0.15	0.10-1.4									•					•
		070204E-UF	0.4	0.03-0.20	0.10-1.4									•					•
		11T301E-UF	0.1	0.02-0.15	0.10-2.4									•					•
		11T302E-UF	0.2	0.02-0.15	0.10-2.4									•					•
		11T304E-UF	0.4	0.03-0.20	0.10-2.4									•					•

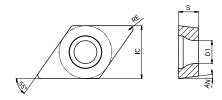
Режущие пластины џля общей токарной обработки


Пластины формы D (55°) с задним углом

Осно	вные ра	азмеры	(мм)	
Форморазмер	IC	S	D1	AN
DC_0702_	6.35	2.38	2.8	7°
DC_11T3_	9.525	3.97	4.4	7°

										эшие		• Ср	—— едни	e	# Пı	ТОХИ	e		
				Условия с	бработки	•	•	•	+	#	•	•	*	+	•	•	#	#	•
				Режимы	резания			Р				N	1			K		N	s
	тины и вид работки	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
T.		DCGT 070202F-NC2	0.2	0.02-0.10	0.16-3.5													•	
ТКа		070204F-NC2	0.4	0.05-0.20	0.32-3.5													•	
Получистовая обработка		11T302F-NC2	0.2	0.02-0.10	0.16-5.2													•	
обр 1		11T304F-NC2	0.4	0.05-0.20	0.32-5.2													•	
-		11T308F-NC2	8.0	0.10-0.40	0.64-5.2													•	
		DCMT 070202-F1T	0.2	0.07-0.20	0.40-1.5	•													
		070204-F1T	0.4	0.07-0.20	0.40-1.5	•													
, Ka		11T302-F1T	0.2	0.07-0.20	0.40-1.5	•													
		11T304-F1T	0.4	0.10-0.25	0.60-1.5	•													
Чистовая обработка		11T308-F1T	8.0	0.10-0.25	0.60-1.5	•													
зая		DCMT 070202E-PB1	0.2	0.02-0.07	0.15-1.5	•		•	•		•	•	•						
CTOE		070204E-PB1	0.4	0.04-0.14	0.30-1.5	•		•	•		•	•	•						
Ž		11T302E-PB1	0.2	0.02-0.07	0.15-2.3	•		•	•		•	•	•						
		11T304E-PB1	0.4	0.04-0.14	0.30-2.3	•		•	•		•	•	•						
		11T308E-PB1	8.0	0.09-0.28	0.60-2.3	•		•	•		•	•	•						
Ка		DCMT 070204E-PC2	0.4	0.05-0.16	0.35-2.1	•		•	•		•	•	•						•
Получистовая обработка		070208E-PC2	8.0	0.10-0.32	0.70-2.1	•		•	•		•	•	•						$ \bullet $
dgo		11T304E-PC2	0.4	0.05-0.16	0.35-3.1	•	•	•	•		•	•	•						ullet
Вая		11T308E-PC2	8.0	0.10-0.32	0.70-3.1	•	•	•	•		•	•	•						$ \bullet $
ICTO		11T312E-PC2	1.2	0.16-0.48	1.05-3.1	•		•	•		•	•	•						ullet
¥	San January San Ja	DCMT 11T304-M2T	0.4	0.10-0.25	0.50-3.0	•													
₽	The State of the S	11T308-M2T	8.0	0.10-0.25	0.50-3.0	•													
_		DCMT 070204E-KC2	0.4	0.06-0.18	0.40-2.3	•		•	•	•						•	•		
кести		070208E-KC2	8.0	0.12-0.36	0.80-2.3	•		•	•	•						•	•		
XRT		11T304E-KC2	0.4	0.06-0.18	0.40-3.5	•		•	•	•						•	•		
Heď		11T308E-KC2	8.0	0.12-0.36	0.80-3.5	•	•	•	•	•					•	•	•		
ред		11T312E-KC2	1.2	0.18-0.54	1.20-3.5		•	•	•	•						•	•		
Обработка средней тях																			
 ₹60T																			

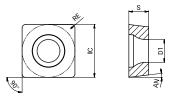
Пластины формы D (55°) с задним углом



Осно	вные ра	азмеры	(мм)	
Форморазмер	IC	S	D1	AN
DC_0702_	6.35	2.38	2.8	7°
DC_11T3_	9.525	3.97	4.4	7°

				.,				•	Хор	эшие	• •	Сре	едни	e	# Пл	похи	Э		
				Условия о	бработки	•	•	•	+	*	•	+	#	+	•	•	*	#	•
	оказаны пастины			Режимы	резания			Р				N	Л			K		N	s
лево	стороннего олнения на фото	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
т а		DCMW 070204E-KD5	0.4	0.06-0.18	0.40-3.9											•	•		
овая 5отк		070208E-KD5	0.8	0.12-0.36	0.80-3.9											•	•		
Черновая обработка		11T304E-KD5	0.4	0.06-0.18	0.40-5.8											•	•		
7 0		11T308E-KD5	8.0	0.12-0.36	0.80-5.8											•	•		
		DCET 0702003FR-F	<0.03	0.02-0.18	0.1-0.4									•					
		0702003FL-F	<0.03	0.02-0.18	0.1-0.4									•					
		0702005FR-F	<0.05	0.02-0.18	0.1-0.4									•					
		0702005FL-F	<0.05	0.02-0.18	0.1-0.4									•					
		070201FR-F	<0.1	0.02-0.18	0.1-0.4									•					
		070201FL-F	<0.1	0.02-0.18	0.1-0.4									•					
		070202FR-F	<0.2	0.02-0.18	0.1-0.4									•					
Ка		070202FL-F	<0.2	0.02-0.18	0.1-0.4									•					
a6o		070204FR-F	<0.4	0.02-0.18	0.1-0.4									•					
Чистовая обработка		070204FL-F	<0.4	0.02-0.18	0.1-0.4									•					
вая		DCET 11T3003FR-F	<0.03	0.02-0.20	0.1-0.4									•					
СТОІ		11T3003FL-F	<0.03	0.02-0.20	0.1-0.4									•					
7		11T3005FR-F	<0.05	0.02-0.20	0.1-0.4									•					
		11T3005FL-F	<0.05	0.02-0.20	0.1-0.4									•					
		11T301FR-F	<0.1	0.02-0.20	0.1-0.4									•					
		11T301FL-F	<0.1	0.02-0.20	0.1-0.4									•					
		11T302FR-F	<0.2	0.02-0.20	0.1-0.4									•					
		11T302FL-F	<0.2	0.02-0.20	0.1-0.4									•					
		11T304FR-F	<0.4	0.02-0.20	0.1-0.4									•					
		11T304FL-F	<0.4	0.02-0.20	0.1-0.4									•					

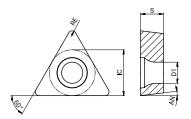
Режущие пластины для общей токарной обработки


Пластины формы D (55°) с задним углом

Осно	вные ра	азмеры	(мм)	
Форморазмер	IC	S	D1	AN
DC_0702_	6.35	2.38	2.8	7°
DC_11T3_	9.525	3.97	4.4	7°

				Условия обработки				•	Хоро	эшие	. •	Сре	едни	e	# Пı	10ХИ			
				Условия о	бработки	•	•	•	+	*	•	+	+	+	•	•	*	+	•
	Показаны пластины			Режимы	резания			Р				N	Л			K		N	S
	востороннего сполнения на фото	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
		DCET 0702003FR-M	<0.03	0.01-0.08	0.5-2.8									•					
		0702003FL-M	<0.03	0.01-0.08	0.5-2.8									•					
		0702005FR-M	<0.05	0.01-0.08	0.5-2.8									•					
		0702005FL-M	<0.05	0.01-0.08	0.5-2.8									•					
		070201FR-M	<0.1	0.01-0.08	0.5-2.8									•					
		070201FL-M	<0.1	0.01-0.08	0.5-2.8									•					
		070202FR-M	<0.2	0.01-0.08	0.5-2.8									•					
		070202FL-M	<0.2	0.01-0.08	0.5-2.8									•					
ачи		070204FR-M	<0.4	0.01-0.08	0.5-2.8									•					
Низкие подачи		070204FL-M	<0.4	0.01-0.08	0.5-2.8									•					
KNe		DCET 11T3003FR-M	<0.03	0.01-0.10	0.5-4.0									•					
Низ		11T3003FL-M	<0.03	0.01-0.10	0.5-4.0									•					
		11T3005FR-M	<0.05	0.01-0.10	0.5-4.0									•					
		11T3005FL-M	<0.05	0.01-0.10	0.5-4.0									•					
		11T301FR-M	<0.1	0.01-0.10	0.5-4.0									•					
		11T301FL-M	<0.1	0.01-0.10	0.5-4.0									•					
		11T302FR-M	<0.2	0.01-0.10	0.5-4.0									•					
		11T302FL-M	<0.2	0.01-0.10	0.5-4.0									•					
		11T304FR-M	<0.4	0.01-0.10	0.5-4.0									•					
		11T304FL-M	<0.4	0.01-0.10	0.5-4.0									•					

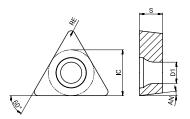
Пластины формы S (90°) с задним углом



Осно	вные ра	азмеры	(мм)	
Форморазмер	IC	S	D1	AN
SC_09T3_	9.525	3.97	4.4	7°
SC_1204_	12.7	4.76	5.5	7°
SC_3809_	38.1	9.525	9.8	7°

				,		отки • • • •					e (№ Ср	едни	ie	# П.	похи	<u> </u>		
				Условия с	бработки	•	•	•	+	*	•	+	#	+	•	•	*	+	•
				Режимы	резания			Р				ı	VI			K		N	S
	тины и вид работки	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
Получистовая обработка	0	SCGT 09T308F-NC2	0.8	0.10-0.40	0.64-4.3													•	
Чистовая По обработка		SCMT 09T304E-PB1	0.4	0.04-0.14	0.30-2.4	•		•	•		•	•	•						
Чист обраб		09T308E-PB1 120404E-PB1	0.8	0.09-0.28	0.60-2.4 0.30-3.2	•		•	•		•	•	•						
отка		SCMT 09T304E-PC2 09T308E-PC2	0.4	0.05-0.16 0.10-0.32	0.35 - 2.9 0.70 - 2.9	•		•	•		•	•	•						•
н обраб		120404E-PC2 120408E-PC2	0.4	0.05-0.16 0.10-0.32	0.35-3.8 0.70-3.8	•	•	•	•		•	•	•						•
товая		120412E-PC2	1.2	0.16-0.48	1.05-3.8		•	•	•		•	•	•						•
Получистовая обработка		SCMT 09T304-M2T 09T308-M2T	0.4	0.10-0.25 0.10-0.25	0.70-3.5 0.70-3.5	•													
Z		SCMT 09T304E-KC2 09T308E-KC2	0.4	0.06-0.18 0.12-0.36	0.40-3.1 0.80-3.1	•		•	•	•						•	•		
Обработка средней тяжести		120404E-KC2 120408E-KC2	0.4	0.06-0.18 0.12-0.36	0.40-4.2 0.80-4.2	•		•	•	•						•	•		
а средне		120412E-KC2 SCMW 09T304E-KD5	0.4	0.18-0.54 0.10-0.22	1.20-4.2 0.40-4.8			•	•	•						•	•		
бработк		09T308E-KD5 120404E-KD5	0.8	0.20-0.44 0.10-0.22	0.80-4.8 0.40-6.4										•	•	•		
		120408E-KD5 120412E-KD5	0.8 1.2	0.20-0.44 0.30-0.66	0.80-6.4 1.20-6.4										•	•	•		
Черновая обработка		SCMT 380932S-HT	3.2	0.70-1.40	4.0-18.0					•									

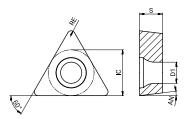
Режущие пластины для общей токарной обработки


Пластины формы T (60°) с задним углом

Основ	вные ра	змеры	(мм)	
Форморазмер	IC	S	D1	AN
TC_1102_	6.35	2.38	2.8	7°
TC_16T3_	9.525	3.97	4.4	7°

				.,				•	Хор	эшиє	. •	• Ср	едни	е	# []	похи	—— е		
				Условия с	обработки	•	•	•	+	*	•	+	+	+	•	•	*	+	•
				Режимы	резания			Р				ı	И			K		N	s
	пастины и ц обработки	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
		TCGT 110201FP-LF	<0.1	0.05-0.2	0.35-3.0									•					
		110202FP-LF	0.2	0.05-0.2	0.35-3.0									•					
		110204FP-LF	0.4	0.05-0.2	0.35-3.0									•					
		16T304FP-LF	0.4	0.05-0.2	0.35-3.0									•					
	A	TCGT 110201FP-UF	<0.1	0.02-0.15	0.10-2.4									•					
ā		110202FP-UF	0.2	0.02-0.15	0.20-2.4									•					
Чистовая обработка		110204FP-UF	0.4	0.03-0.20	0.20-2.4									•					
edge		16T304FP-UF	0.4	0.03-0.20	0.20-2.4									•					
ая	_	TCGT 110201F-UF	0.1	0.02-0.15	0.10-2.4									A					
CTOE		110202F-UF	0.2	0.02-0.15	0.20-2.4									•					
Ž		110204F-UF	0.4	0.03-0.20	0.20-2.4									•					
		16T304F-UF	0.4	0.03-0.20	0.20-2.4									•					
İ	A	TCGT 110201E-UF	0.1	0.02-0.15	0.10-2.4									•					•
İ		110202E-UF	0.2	0.02-0.15	0.20-2.4									•					$ \bullet $
İ		110204E-UF	0.4	0.03-0.20	0.20-2.4									•					•
		16T304E-UF	0.4	0.03-0.20	0.20-2.4									•					•
Ка	A	TCGT 110204F-NC2	0.4	0.05-0.20	0.32-4.9													•	
a6o		16T304F-NC2	0.4	0.05-0.20	0.32-7.4													•	
Получистовая обработка		16T308F-NC2	0.8	0.10-0.40	0.64-7.4													•	
Вая																			
1CT0																			
1																			
2																			

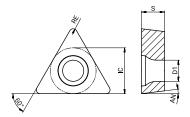
Пластины формы T (60°) с задним углом



Основ	вные ра	змеры	(мм)	
Форморазмер	IC	S	D1	AN
TCMT_0902_	5.56	2.38	2.5	7°
TC_1102_	6.35	2.38	2.8	7°
TC_16T3_	9.525	3.97	4.4	7°
TPMT_0902_	5.56	2.38	2.5	11°
TPMT_1103_	6.35	3.18	3.4	11°
TPMT_1603_	9.525	3.18	4.4	11°

				.,				•	Хор	ошие	• •) Ср	едни	ie	#П	похи	e		
				Условия с	оработки	•	•	•	+	*	•	+	+	+	•	•	#	#	•
				Режимы	резания			Р				N	Л			K		N	S
	ластины и ц обработки	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
		TCMT 090204E-PB1	0.4	0.04-0.14	0.30-1.9	•		•	•		•	•	•						
	A	110202E-PB1	0.2	0.02-0.07	0.15-2.2	•		•	•		•	•	•						
		110204E-PB1	0.4	0.04-0.14	0.30-2.2	•		•	•		•	•	•						
		110208E-PB1	0.8	0.09-0.28	0.60-2.2	•		•	•		•	•	•						
ка		16T304E-PB1	0.4	0.04-0.14	0.30-3.3	•		•	•		•	•	•						
360T		16T308E-PB1	0.8	0.09-0.28	0.60-3.3	•		•	•		•	•	•						
Чистовая обработка		TPMT 090202E-PB1	0.2	0.02-0.07	0.15-1.9	•													
зая		090204E-PB1	0.4	0.04-0.14	0.30-1.9	•													
CTO		090208E-PB1	0.8	0.09-0.28	0.60-1.9	•													
₹		110302E-PB1	0.2	0.02-0.07	0.15-2.2	•													
		110304E-PB1	0.4	0.04-0.14	0.30-2.2	•													
		110308E-PB1	0.8	0.09-0.28	0.60-2.2	•													
		160304E-PB1	0.4	0.04-0.14	0.30-3.3	•													
		160308E-PB1	0.8	0.09-0.28	0.60-3.3	•													
		TCMT 090204E-PC2	0.4	0.05-0.16	0.35-2.6	•		•	•		•	•	•						•
		090208E-PC2	0.8	0.10-0.32	0.70-2.6	•		•	•		•	•	•						•
		110204E-PC2	0.4	0.05-0.16	0.35-3.0	•		•	•		•	•	•						•
TKa		110208E-PC2	0.8	0.10-0.32	0.70-3.0	•		•	•		•	•	•						•
ago		16T304E-PC2	0.4	0.05-0.16	0.35-4.5	•		•	•		•	•	•						•
dgo		16T308E-PC2	0.8	0.10-0.32	0.70-4.5	•	•	•	•		•	•	•						•
вая		16T312E-PC2	1.2	0.16-0.48	1.05-4.5			•	•		•	•	•						•
Получистовая обработка		TPMT 090204E-PC2	0.4	0.05-0.16	0.35-2.6	•		•	•		•	•	•						
1		090208E-PC2	0.8	0.10-0.32	0.70-2.6	•		•	•		•	•	•						
6		110304E-PC2	0.4	0.05-0.16	0.35-3.0	•		•	•		•	•	•						•
		110308E-PC2	0.8	0.10-0.32	0.70-3.0	•		•	•		•	•	•						
		160304E-PC2	0.4	0.10-0.25	0.60-2.0	•					•	•	•						
		160308E-PC2	0.8	0.10-0.25	0.60-2.0	•					•	•	•						

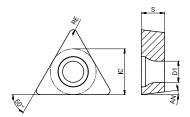
Режущие пластины пля общей токарной обработки


Пластины формы T (60°) с задним углом

Основ	вные ра	змеры	(мм)	
Форморазмер	IC	S	D1	AN
TBET_0601_	3.97	1.59	2.3	5°
TCMT_0902_	5.56	2.38	2.5	7°
TC_1102_	6.35	2.38	2.8	7°
TC_16T3_	9.525	3.97	4.4	7°

								•	Хор	ошие		Ср	едни	—— іе	# П	похи	e		
				Условия о	бработки	•	•	•	+	*	•	+	+	+	•	•	*	+	•
	оказаны пастины			Режимы	резания			Р				N	И			K		Z	S
лево	стороннего олнения на фото	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
	<u> </u>	TCMT 110204-M2T	0.4	0.10-0.25	0.60-2.0	•													
зая		110208-M2T	0.8	0.10-0.25	0.60-2.0	•													
Получистовая обработка																			
тучи Браб	A	16T304-M2T	0.4	0.06-0.18	0.40-2.9	•													
		16T308-M2T	0.8	0.12-0.36	0.80-2.9	•													
		TCMT 090204E-KC2	0.4	0.06-0.18	0.40-2.9	•	•	•	•		•	•	•			•	•		
Обработка средней тяжести		090208E-KC2	0.8	0.12-0.36	0.80-2.9	•	•	•	•		•	•	•			•	•		
ред Ти	•	110204E-KC2	0.4	0.06-0.18	0.40-3.3	•	•	•	•		•	•	•			•	•		
5отка сре тяжести		110208E-KC2	0.8	0.12-0.36	0.80-3.3	•	•	•	•		•	•	•			•	•		
або [.]		16T304E-KC2	0.4	0.06-0.18	0.40-4.9	•	•	•	•		•	•	•			•	•		
Обр		16T308E-KC2	0.8	0.12-0.36	0.80-4.9	•	•	•	•		•	•	•			•	•		
		16T312E-KC2	1.2	0.18-0.54	1.20-4.9		•	•	•		•	•	•		•	•	•		
F 6		TCMW 110204E-KD5	0.4	0.06-0.18	0.40-5.5											•	•		
ова ботк		110208E-KD5	0.8	0.12-0.36	0.80-5.5											•	•		
Черновая обработка		16T304E-KD5	0.4	0.06-0.18	0.40-8.2											•	•		
ه د		16T308E-KD5	0.8	0.12-0.36	0.80-8.2											•	•		
		TBET 0601003FR-F	<0.03	0.03-0.08	0.1-0.5									•					
		0601003FL-F	<0.03	0.03-0.08	0.1-0.5									•					
ГКа		0601005FR-F	<0.05	0.03-0.08	0.1-0.5									•					
Чистовая обработка		0601005FL-F	<0.05	0.03-0.08	0.1-0.5									•					
обр		060101FR-F	<0.1	0.03-0.08	0.1-0.5									•					
вая		060101FL-F	<0.1	0.03-0.08	0.1-0.5									•					
СТО		060102FR-F	<0.2	0.03-0.08	0.1-0.5									•					
7		060102FL-F	<0.2		0.1-0.5									•					
		060104FR-F	<0.4	0.03-0.08	0.1-0.5									•					
		060104FL-F	<0.4	0.03-0.08	0.1-0.5									•					

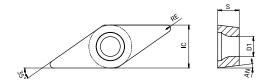
Пластины формы T (60°) с задним углом



Основ	вные ра	змеры	(мм)	
Форморазмер	IC	S	D1	AN
TPEH_0802_	4.76	2.38	2.3	11°
TPEH_0902_	5.56	2.38	3.0	11°
TCET_1102_	6.35	2.41	2.8	11°

				Условия обработки			•	Хор	оши	e (Н Ср	едни	ie	# П.	похи	—— е			
				Условия с	обработки	•	•	•	+	#	•	+	*	+	•	•	*	+	•
	Показаны пластины			Режимы	резания			Р				N	M			K		N	S
лев	остороннего полнения на фото	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
		TCET 110201FR-F	<0.1	0.03-0.13	0.10-0.80									•					
		110201FL-F	<0.1	0.03-0.13	0.10-0.80									•					
		110202FR-F	<0.2	0.03-0.13	0.10-0.80									•					
		110202FL-F	<0.2	0.03-0.13	0.10-0.80									•					
		110204FR-F	<0.4	0.03-0.13	0.10-0.80									•					
		110204FL-F	<0.4	0.03-0.13	0.10-0.80									•					
		110208FR-F	<0.8	0.03-0.13	0.10-0.80									•					
Ŕ		110208FL-F	<0.8	0.03-0.13	0.10-0.80									•					
Чистовая обработка		TPEH 080201FR-F	<0.1	0.01-0.10	0.1-0.8									•					
ogbs		080201FL-F	<0.1	0.01-0.10	0.1-0.8									•					
зая		080202FR-F	<0.2	0.01-0.10	0.1-0.8									•					
CTO		080202FL-F	<0.2	0.01-0.10	0.1-0.8									•					
₹		080204FR-F	<0.4	0.01-0.10	0.1-0.8									•					
		080204FL-F	<0.4	0.01-0.10	0.1-0.8									•					
		TPEH 090201FR-F	<0.1	0.01-0.10	0.1-0.8									•					
		090201FL-F	<0.1	0.01-0.10	0.1-0.8									•					
		090202FR-F	<0.2	0.01-0.10	0.1-0.8									•					
		090202FL-F	<0.2	0.01-0.10	0.1-0.8									•					
		090204FR-F	<0.4	0.01-0.10	0.1-0.8									•					
		090204FL-F	<0.4	0.01-0.10	0.1-0.8									•					

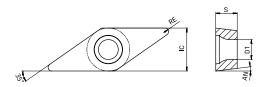
Режущие пластины для общей токарной обработки


Пластины формы T (60°) с задним углом

Основ	вные ра	змеры	(мм)	
Форморазмер	IC	S	D1	AN
TCET_0802_	4.76	2.38	2.3	7°
TCET_1103_	6.35	3.18	2.8	7°
TPEH_1103_	6.35	3.18	3.3	11°

					Условия обработки				•	Хоро	эшие	• •	• Ср	едни	<u> </u>	# []	похи	—— е		
					Условия с	бработки	•	•	•	+	*	•	+	*	+	•	•	#	+	•
	Токазаны пластины				Режимы	резания			Р				N	VI			K		N	s
лев	остороннего полнения на фото	Обозна	чение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
Бã		TPEH	110302FR-F	<0.2	0.01-0.12	0.2-0.8									•					
бот	•		110302FL-F	<0.2	0.01-0.12	0.2-0.8									•					
edgo			110304FR-F	<0.4	0.01-0.12	0.2-0.8									•					
ая			110304FL-F	<0.4	0.01-0.12	0.2-0.8									•					
Чистовая обработка			110308FR-F	<0.8	0.01-0.12	0.2-0.8									•					
Ž			110308FL-F	<0.8	0.01-0.12	0.2-0.8									•					
		TCET	0802003FR-M	<0.03	0.01-0.08	0.5-2.5									•					
	•		0802003FL-M	<0.03	0.01-0.08	0.5-2.5									•					
			080201FR-M	<0.1	0.01-0.08	0.5-2.5									•					
			080201FL-M	<0.1	0.01-0.08	0.5-2.5									•					
			080202FR-M	<0.2	0.01-0.08	0.5-2.5									•					
Низкие подачи			080202FL-M	<0.2	0.01-0.08	0.5-2.5									•					
ПОД		TCET	1103003FR-M	<0.03	0.02-0.10	0.5-4.0									•					
КИе			1103003FL-M	<0.03	0.02-0.10	0.5-4.0									•					
Низ	A		110301FR-M	<0.1	0.02-0.10	0.5-4.0									•					
			110301FL-M	<0.1	0.02-0.10	0.5-4.0									•					
			110302FR-M	<0.2	0.02-0.10	0.5-4.0									•					
			110302FL-M	<0.2	0.02-0.10	0.5-4.0									•					
			110304FR-M	<0.4	0.02-0.10	0.5-4.0									•					
			110304FL-M	<0.4	0.02-0.10	0.5-4.0									•					

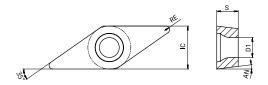
Пластины формы V (35°) с задним углом



Основ	вные ра	змеры	(мм)	
Форморазмер	IC	S	D1	AN
VB_1103_	6.35	3.18	2.8	5°
VB_1604_	9.52	4.76	4.4	5°
VC_1103_	6.35	3.18	2.8	7°
VP_1103_	6.35	3.18	2.8	11°

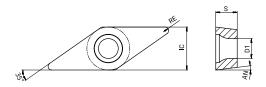
				\\.	<i>C</i> - <i>C</i>	● Хорошие 🙌 Средние 🗱 Пл						похи	e						
				Условия с	оработки	•	•	•	+	*	•	+	+	+	•	•	#	#	•
				Режимы	резания			Р				N	И			K		N	s
	пастины и ц обработки	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
		VBGT 1103005FP-LF	<0.05	0.05-0.2	0.35-3.0									•					
		110301FP-LF	<0.1	0.05-0.2	0.35-3.0									•					
		110302FP-LF	0.2	0.05-0.2	0.35-3.0									•					
		110304FP-LF	0.4	0.05-0.2	0.35-3.0									•					
		160401FP-LF	<0.1	0.05-0.2	0.35-3.0									•					
		160402FP-LF	0.2	0.05-0.2	0.35-3.0									•					
		VCGT 1103005FP-LF	<0.05	0.05-0.2	0.35-3.0									•					
		110301FP-LF	<0.1	0.05-0.2	0.35-3.0									•					
		110302FP-LF	0.2	0.05-0.2	0.35-3.0									•					
		110304FP-LF	0.4	0.05-0.2	0.35-3.0									•					
		VPGT 1103005FP-LF	<0.05	0.05-0.2	0.35-3.0									•					
ка		110301FP-LF	<0.1	0.05-0.2	0.35-3.0									•					
Чистовая обработка		110302FP-LF	0.2	0.05-0.2	0.35-3.0									•					
dgo		VBGT 110301FP-UF	0.1	0.02-0.15	0.10-1.4									•					
зая		110302FP-UF	0.2	0.02-0.15	0.20-1.4									•					
CTO		110304FP-UF	0.4	0.03-0.20	0.20-1.4									•					
툿		160401FP-UF	0.1	0.02-0.15	0.10-1.4									•					
		160402FP-UF	0.2	0.02-0.15	0.20-1.4									•					
		VBGT 110301F-UF	0.1	0.02-0.15	0.10-1.4									•					
		110302F-UF	0.2	0.02-0.15	0.20-1.4									•					
		110304F-UF	0.4	0.03-0.20	0.20-1.4									•					
		160401F-UF	0.1	0.02-0.15	0.10-1.4									•					
		160402F-UF	0.2	0.02-0.15	0.20-1.4									A					
		VBGT 110301E-UF	0.1	0.02-0.15	0.10-1.4									•					•
		110302E-UF	0.2	0.02-0.15	0.20-1.4									•					•
		110304E-UF	0.4	0.03-0.20	0.20-1.4									•					•
		160401E-UF	0.1	0.02-0.15	0.10-1.4									•					•
		160402E-UF	0.2	0.02-0.15	0.20-1.4									•					•

ежущие пластины пя общей токарной обработки


Пластины формы V (35°) с задним углом

				Условия обработки				•	Хоро	эшие	• •	€ Сре	едни	e	# 🗆	похие			
				Условия с	бработки	•	•	•	+	#	•	+	+	+	•	•	#	#	•
				Режимы	резания			Р					Л			K		N	S
	тастины и , обработки	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
		VCGT 1103005FP-UF	<0.05	0.02-0.15	0.10-1.4									•					
		110301FP-UF	0.1	0.02-0.15	0.10-1.4									•					
		110302FP-UF	0.2	0.02-0.15	0.20-1.4									•					
		110304FP-UF	0.4	0.03-0.20	0.20-1.4									•					
_		VCGT 1103005F-UF	<0.05	0.02-0.15	0.10-1.4									A					
Чистовая обработка		110301F-UF	0.1	0.02-0.15	0.10-1.4									•					
pa6		110302F-UF	0.2	0.02-0.15	0.20-1.4									•					
90 F		110304F-UF	0.4	0.03-0.20	0.20-1.4									•					
овая		VCGT 110301E-UF	0.1	0.02-0.15	0.10-1.4									•					•
ИСТ		110302E-UF	0.2	0.02-0.15	0.20-1.4									•					•
-		110304E-UF	0.4	0.03-0.20	0.20-1.4									•					•
		VPGT 110301FP-UF	0.1	0.02-0.15	0.1-1.4									•					
		110302FP-UF	0.2	0.02-0.15	0.2-1.4									•					
		VPGT 110301F-UF	0.1	0.02-0.15	0.1-1.4									A					
		110302F-UF	0.2	0.02-0.15	0.2-1.4									A					
_		VCGT 110302F-NC2	0.2	0.02-0.10	0.16-2.8													•	
OTK		110304F-NC2	0.4	0.05-0.20	0.32-2.8													•	
pa6		160404F-NC2	0.4	0.05-0.20	0.32-4.2													•	
90 F		160408F-NC2	0.8	0.10-0.40	0.64-4.2													•	
ова		160412F-NC2	1.2	0.14-0.60	0.96-4.2													•	
ИСТ		220530F-NC2	3.0	0.36-1.50	2.40-5.5													•	
Получистовая обработка	-	VPGT 220520E-NC2	2.0	0.24-1.0	1.60-5.5													•	
Ĕ		VPGT 220520F-NC2	2.0	0.24-1.0	1.60-5.5													•	
Ка		VBMT 110302E-BS	0.2	0.10-0.32	0.70-2.1	•	•												
		110304E-BS	0.4	0.05-0.16	0.35-3.1	•	•												
бра		110308E-BS	0.8	0.10-0.32	0.70-3.1	•	•												
Профильная обрабо		160404E-BS	0.4	0.06-0.18	0.40-3.3	•	•												
발		160408E-BS	0.8	0.12-0.36	0.80-3.3	•	•												
) g		160412E-BS	1.2	0.18-0.54	1.20-3.3	•	•												
[ĕ																			

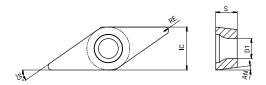
Пластины формы V (35°) с задним углом



Осно	вные ра	азмеры	(мм)	
Форморазмер	IC	S	D1	AN
VB_1103_	6.35	3.18	2.8	5°
VB_1604_	9.52	4.76	4.4	5°
VC_1103_	6.35	3.18	2.8	7°
VC_1604_	9.525	4.76	4.4	7°

				.,				•	Хор	ошие	e () Ср	едни	e	#П	похи	e		
				Условия с	оработки	•	•	•	+	*	•	+	#	+	•	•	#	#	•
	оказаны			Режимы	резания			Р				N	Л			K		N	S
лево	пастины стороннего олнения на фото	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
		VBMT 110304E-PB1	0.4	0.04-0.14	0.30-1.4	•		•	•		•	•	•						
ОТК		110308E-PB1	0.8	0.09-0.28	0.60-1.4	•		•	•		•	•	•						
pa6		160402E-PB1	0.2	0.02-0.07	0.15-2.1	•		•	•		•	•	•						
90 н		160404E-PB1	0.4	0.04-0.14	0.30-2.1	•		•	•		•	•	•						
ова		160408E-PB1	0.8	0.09-0.28	0.60-2.1	•		•	•		•	•	•						
Чистовая обработка		VCMT 160404E-PB1	0.4	0.04-0.14				•	•		•	•	•						
		160408E-PB1	0.8	0.09-0.28				•	•		•	•	•						
		VBMT 110304E-PC2	0.4	0.05-0.16	0.35-2.1	•		•	•		•	•	•						•
гка		110308E-PC2	0.8	0.10-0.32	0.70-2.1	•		•	•		•	•	•						•
або		160404E-PC2	0.4	0.05-0.16	0.35-3.1	•	•	•	•		•	•	•						$ \bullet $
обр		160408E-PC2	0.8	0.10-0.32	0.70-3.1	•	•	•	•		•	•	•						•
Получистовая обработка		160412E-PC2	1.2	0.16-0.48	1.05-3.1		•	•	•		•	•	•						$ \bullet $
1СТО		VCMT 110304E-PC2	0.4	0.05-0.16	0.35-2.1			•	•		•	•	•						
- Iy4⊩		110308E-PC2	0.8	0.10-0.32	0.70-2.1			•	•		•	•	•						
		160404E-PC2	0.4	0.05-0.16	0.35-3.1			•	•		•	•	•						
		160408E-PC2	0.8	0.10-0.32	0.70-3.1			•	•		•	•	•						
ТТ		VBMT 160404E-KC2	0.4	0.06-0.18	0.40-3.3	•		•	•		•	•	•			•	•		
тка		160408E-KC2	0.8	0.12-0.36	0.80-3.3	•	•	•	•		•	•	•			•	•		
Обработка дней тяжес		160412E-KC2	1.2	0.18-0.54	1.20-3.3	•	•	•	•		•	•	•			•	•		
Обработка средней тяжести																			
g																			
		VBET 1103003FR-F	<0.03	0.01-0.18	0.1-0.3									•					
Гка		1103003FL-F	<0.03	0.01-0.18	0.1-0.3									•					
Чистовая обработка		1103005FR-F	<0.05	0.01-0.18	0.1-0.3									•					
ogb;		1103005FL-F	<0.05	0.01-0.18	0.1-0.3									•					
вая		110301FR-F	<0.1	0.01-0.18	0.1-0.3									•					
ICTOI		110301FL-F	<0.1	0.01-0.18	0.1-0.3									•					
2		110302FR-F	<0.2	0.01-0.18	0.1-0.3									•					
		110302FL-F	<0.2	0.01-0.18	0.1-0.3									•					

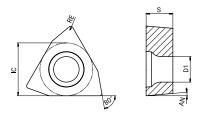
Режущие пластины ля общей токарной обработки


Пластины формы V (35°) с задним углом

Основ	вные ра	змеры	(мм)									
Форморазмер	IC	S	D1	AN								
VB_1103_												
VC_1103_	6.35	3.18	2.8	7°								
VP_0802_	4.76	2.38	2.3	11°								

				i					•	Хоро		. •	• Ср	едни	е	# Пı	ТОХИ			
					Условия с	бработки	•	•	•	+	#	•	+	+	+	•	•	#	+	•
	Токазаны пластины				Режимы	резания			Р				N				K		N	S
лев	остороннего полнения на фото	Обозна	ачение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
		VBET	1103005FR-M	<0.05	0.01-0.06	0.2-2.0									•					
			1103005FL-M	<0.05	0.01-0.06	0.2-2.0									•					
adi			110301FR-M	<0.1	0.01-0.06	0.2-2.0									•					
ДОП			110301FL-M	<0.1	0.01-0.06	0.2-2.0									•					
Низкие подачи			110302FR-M	<0.2	0.01-0.06	0.2-2.0									•					
Низ			110302FL-M	<0.2	0.01-0.06	0.2-2.0									•					
			110304FR-M	<0.4	0.01-0.06	0.2-2.0									•					
			110304FL-M	<0.4	0.01-0.06	0.2-2.0									•					
		VCET	1103005FR-F	<0.05	0.01-0.18	0.1-0.3									•					
			1103005FL-F	<0.05	0.01-0.18	0.1-0.3									•					
			110301FR-F	<0.1	0.01-0.18	0.1-0.3									•					
Ka			110301FL-F	<0.1	0.01-0.18	0.1-0.3									•					
Эбол			110302FR-F	<0.2	0.01-0.18	0.1-0.3									•					
ogbs			110302FL-F	<0.2	0.01-0.18	0.1-0.3									•					
зая			110304FR-F	<0.4	0.01-0.18	0.1-0.3									•					
Чистовая обработка			110304FL-F	<0.4	0.01-0.18	0.1-0.3									•					
₹		VPET	080201FR-F	<0.1	0.02-0.15	0.05-0.2									•					
			080201FL-F	<0.1	0.02-0.15	0.05-0.2									•					
			080202FR-F	<0.2	0.02-0.15	0.05-0.2									•					
			080202FL-F	<0.2	0.02-0.15	0.05-0.2									•					

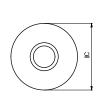
Пластины формы V (35°) с задним углом

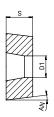


Основ	вные ра	змеры	(мм)	
Форморазмер	IC	S	D1	AN
VB_1103_	6.35	3.18	2.8	5°
VB_1604_	9.52	4.76	4.4	5°
VP_0802_	4.76	2.38	2.3	11°
VP 1103	6.35	3.18	2.8	11°

				V			•	Хор	ошиє	e () Ср	едни	е	# □	похи	e			
				условия с	Условия обработки				+	*	•	+	*	+	•	•	*	#	•
	Токазаны			Режимы	резания			Р			М				К			N	S
лев	пластины остороннего полнения на фото	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
		VPET 080201FR-M	<0.1	0.01-0.06	0.2-1.5									•					
		080201FL-M	<0.1	0.01-0.06	0.2-1.5									•					
		080202FR-M	<0.2	0.01-0.06	0.2-1.5									•					
		080202FL-M	<0.2	0.01-0.06	0.2-1.5									•					
		VPET 110301FR-M	<0.1	0.01-0.06	0.2-2.0									•					
		110301FL-M	<0.1	0.01-0.06	0.2-2.0									•					
		110302FR-M	<0.2	0.01-0.06	0.2-2.0									•					
		110302FL-M	<0.2	0.01-0.06	0.2-2.0									•					
		110304FR-M	<0.4	0.01-0.06	0.2-2.0									•					
		110304FL-M	<0.4	0.01-0.06	0.2-2.0									•					
		VBET 1103003FR-Y	<0.03	0.08-0.22	0.5-1.8									•					
јачи		1103003FL-Y	<0.03	0.08-0.22	0.5-1.8									•					
ДОП		1103005FR-Y	<0.05	0.08-0.22	0.5-1.8									•					
Низкие подачи		1103005FL-Y	<0.05	0.08-0.22	0.5-1.8									•					
Ϊ		110301FR-Y	<0.1	0.08-0.22	0.5-1.8									•					
		110301FL-Y	<0.1	0.08-0.22	0.5-1.8									•					
		110302FR-Y	<0.2	0.08-0.22	0.5-1.8									•					
		110302FL-Y	<0.2	0.08-0.22	0.5-1.8									•					
		110304FR-Y	<0.4	0.08-0.22	0.5-1.8									•					
		110304FL-Y	<0.4	0.08-0.22	0.5-1.8									•					
		VBET 160402FR-Y	<0.2	0.1-0.25	0.8-2.0									•					
		160402FL-Y	<0.2	0.1-0.25	0.8-2.0									•					
		160404FR-Y	<0.4	0.1-0.25	0.8-2.0									•					
		160404FL-Y	<0.4	0.1-0.25	0.8-2.0									•					
		160408FR-Y	0.8	0.1-0.25	0.8-2.0									•					
		160408FL-Y	0.8	0.1-0.25	0.1-0.25 0.8-2.0									•					

Режущие пластины для общей токарной обработки


Пластины формы W (80°) с задним углом



Основ	вные ра	змеры	(мм)	
Форморазмер	IC	S	D1	AN
WB_0601_	3.97	1.59	2.3	5°
WB_0802_	4.76	2.38	2.3	5°

						Условия обработки -			● Хорошие 🗱 Средние 🗱 Плохие											
					Условия с				•	+	*	•	+	+	+	•	•	#	+	•
	Показаны пластины				Режимы	резания			Р				N	M			K		N	s
лев	востороннего полнения на фото	Обозна	чение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
	WBET 0601003FR-F <0.03 0601003FL-F <0.03		0.05-0.08	0.1-0.8									•							
			<0.03	0.05-0.08	0.1-0.8									•						
		A		0.05-0.08	0.1-0.8									•						
				0.05-0.08	0.1-0.8									•						
	060102FR-F <0.2		0.05-0.08	0.1-0.8									•							
ğ			060102FL-F	<0.2	0.05-0.08	0.1-0.8									•					
Чистовая обработка			060104FR-F	<0.4	0.05-0.08	0.1-0.8									•					
2600			060104FL-F	<0.4	0.05-0.08	0.1-0.8									•					
зая		WBET	0802003FR-F	<0.03	0.05-0.08	0.1-0.8									•					
CTO			0802003FL-F	<0.03	0.05-0.08	0.1-0.8									•					
₹			080201FR-F	<0.1	0.05-0.08	0.1-0.8									•					
			080201FL-F	<0.1	0.05-0.08	0.1-0.8									•					
	100		080202FR-F	<0.2	0.05-0.08	0.1-0.8									•					
			080202FL-F	<0.2	0.05-0.08	0.1-0.8									•					
			080204FR-F	<0.4	0.05-0.08	0.1-0.8									•					
			080204FL-F	<0.4	0.05-0.08	0.1-0.8									•					

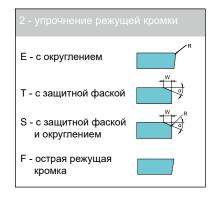
Пластины круглой формы (R)

Основные размеры (мм)											
Основ	вные ра	змеры	(мм)								
Форморазмер	IC	S	D1	AN							
RCGT_0803_	3.18	8.0	3.4	7°							
RCGT_1003_	3.18	10.0	4.4	7°							
RCGT_10T3_	3.97	10.0	4.4	7°							
RCMX_1003_	3.18	10.0	3.6	7°							
RCMX_1204_	4.76	12.0	4.2	7°							
RCMX_1606_	6.35	16.0	5.2	7°							
RCMX_2006_	6.35	20.0	6.5	7°							
RCMX_2507_	7.94	25.0	7.2	7°							
RCMX_3209_	9.525	32.0	9.6	7°							

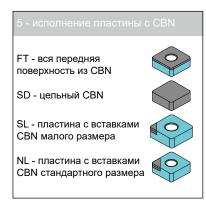
				Условия обработки				● Хорошие 🐪 Средние 🗱 Плохие											
				условия с	•	•	•	*	*	•	+	+	+	•	•	#	#	•	
				Режимы	резания			Р				N	И			K		N	s
	гины и вид работки	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	AT202	AC052P	AC152P	AC252P	AC350P	AC100M	AC200M	AP200U	AP301M	AC100K	AC102K	AC202K	AW100K	AP100S
		RCGT 0803MOF-NC2	-	0.10-1.00	0.70-3.3													•	
ая		1003MOF-NC2	-	0.20-1.30	0.90-4.0													•	
Получистовая обработка		10T3MOF-NC2	-	0.20-1.30	0.90-4.0													•	
тучи Браб		RCMX 2006MOS-PD8	-	0.48-0.90	3.5-9.0			•	•										
		2507MOS-PD8	-	0.55-1.20	4.0-12.0			•	•										
		3209MOS-PD8	-	0.65-1.50	5.0-15.0			•	•										
Σ̈́		RCMX 100300S	-	0.25-0.50	1.5-4.0			•	•										
1 H		120400S	-	0.30-0.60	2.5-5.0		•	•	•										
Обработка средней тяжести		160600S	-	0.40-0.75	3.0-7.0		•	•	•										
OTK		200600S	-	0.48-0.90	3.5-9.0		•	•	•										
Spac		250700S	-	0.55-1.20	4.0-12.0		•	•	•										
Ö		320900S	-	0.65-1.50	5.0-15.0		•	•	•										

ACHTECK

www.achtecktool.com/ru


ЭКСПЕРТ В РЕЗАНИИ ТРУДНООБРАБАТЫВАЕМЫХ МАТЕРИАЛОВ

Токарные пластины из СВN и PCD


Система обозначения сменных режущих пластин из CBN

0050.05мм
0100.10мм
0150.15мм
$020_{}0.20_{MM}$

1010°
1515°
2020°
2525°

- количество режущих 1 - одна режущая кромка
- 2 две режущие кромки
- 3 три режущие кромки
- исполнение режущей
- СВ со стружколомающей геометрией
- WG с зачистными кромками (Wiper)
- " " с плоской передней поверхностью

РВ30--- Низкое содержание CBN в структуре, высокая твёрдость

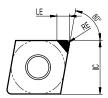
РВ60---Среднее содержание CBN в структуре, средняя твёрдость

РВ90---Высокое содержание CBN в структуре, высокая прочность

Описание марок CBN

Марка сплава	Отличительные особенности	Рекомендации по применению
PB30	Самая высокая износостойкость и сопротивляемость высоким температурам	Первый выбор для точения закалённых сталей в стабильных условиях, жёсткой системе СПИД, на максимальных скоростях резания
PB60	Средняя твёрдость, повышенная прочность	Первый выбор для твёрдого точения. Обладает повышенной прочностью и может применяться в слегка нестабильный условиях обработки закалённых сталей, порошковых материалов и чугуна.
PB90	Высокая прочность и стойкость к ударным нагрузкам	Первый выбор для высокоскоростного точения чугуна. Применяется также для обработки закалённых сталей и порошковых материалов в нестабильных условиях резания.

Режимы резания для пластин CBN и рекомендуемые условия обработки

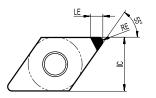

Марка сплава	Обрабатываемый материал		Скорость резания Vc (м/мин)	Подача fn (мм/об)	Глубина резания ар (мм)	Рекомендуемые условия обработки
PB30	Закалённые стали	HRC58-62	150250	0.030.2	0.05-0.3	Высокая жёсткость
	Закалённые стали HRC55-60		50150	0.030.2	0.05-0.5	Прерывистое резание
PB60	Чугуны	HB180-220	150450 0.030		0.30-0.5	Высокая жёсткость/ Прерывистое резание
	Порошковые материалы	-	200500	0.030.3	0.10-0.3	Высокая жёсткость/ Прерывистое резание
	Закалённые стали	HRC55-60	30120	0.030.2	0.05-0.5	Работа на удар
PB90	Чугуны НВ180-220		150450	0.030.3	0.30-0.5	Высокая жёсткость/ Прерывистое резание
	Порошковые материалы	-	300800	0.030.3	0.10-0.3	Высокая жёсткость/ Прерывистое резание

Пластины и: Сви

Область применения марок сплавов из CBN

		0	бласть применения марс	к сплавов из CBN		
Группа обрабатываемого	Описание	ISO		Сплав без покрытия		ISO
оораоатываемого материала	обрабатываемого материала	150	PB30	PB60	PB90	ISO
		P01				P01
		P10				P10
P	Углеродистые и	P20				P20
	легированный стали	P30				P30
		P40				P40
		P50				P50
		M01				M01
		M10				M10
M	Нержавеющие стали	M20				M20
		M30				M30
		M40				M40
		K01				K01
	Чугуны	K10			PB90	K10
K		K20				K20
		K30				K30
		K40				K40
		K50				K50
		N01				N01
	Алюминиевые	N10				N10
N	сплавы	N20				N20
		N30				N30
		S01				S01
		S10				S10
S	Жаропрочные сплавы на основе Ni, Co, Fe, Ti	S20				S20
	20, 10, 11	S30				S30
		S40				S40
		H01	PB30			H01
Н	Закалённые стали,	H10	- B	PB60		H10
	Закалённые стали, отбеленные чугуны	H20		8		H20
		H30				H30

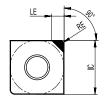
Пластины формы C (80°)



Осно	вные ра	азмеры	(мм)	
Форморазмер	IC	S	LE	D1
CN_1204_	12.7	4.76	2.2	5.16

			V		• Хорошие	⊕ Средние	# Плохие
			Условия обработки Режимы резания		•	+	#
		5-	Режимы	резания	ŀ	1	K
Режущие пластины	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	PB30	PB60	PB90
_	CNGA 120402-S01020-SL-1	0.2	0.03-0.3	0.05-0.5	•	•	•
	120404-S01020-SL-1	0.4	0.03-0.3	0.05-0.5	•	•	•
	120408-S01020-SL-1	0.8	0.03-0.3	0.05-0.5	•	•	•
	120412-S01020-SL-1	1.2	0.03-0.3	0.05-0.5	•	•	•
_	CNGA 120402-S01020-SL-2	0.2	0.03-0.3	0.05-0.5	•	•	•
	120404-S01020-SL-2	0.4	0.03-0.3	0.05-0.5	•	•	•
	120408-S01020-SL-2	0.8	0.03-0.3	0.05-0.5	•	•	•
	120412-S01020-SL-2	1.2	0.03-0.3	0.05-0.5	•	•	•
	CNGA 120402-S01020-SL-4	0.2	0.03-0.3	0.05-0.5	•	•	•
	120404-S01020-SL-4	0.4	0.03-0.3	0.05-0.5	•	•	•
	120408-S01020-SL-4	0.8	0.03-0.3	0.05-0.5	•	•	•
	120412-S01020-SL-4	1.2	0.03-0.3	0.05-0.5	•	•	•
•							

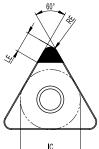
Пластины формы D (55°)

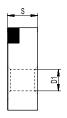


Основные размеры (мм)							
Форморазмер	орморазмер IC S LE D1						
DN_1504_	12.7	4.76	2.2	5.16			
DN_1506_	12.7	6.35	2.2	5.16			

					• Хорошие	Средние	# Плохие
			Условия с	обработки	•	#	*
		RE	Режимы	Режимы резания		Н	
Режущие пластины	Обозначение пластины	(MM)	f (мм/об)	ар (мм)	PB30	PB60	PB90
	DNGA 150402-S01020-SL-1	0.2	0.03-0.3	0.05-0.5	•	•	•
	150404-S01020-SL-1	0.4	0.03-0.3	0.05-0.5	•	•	•
	150408-S01020-SL-1	0.8	0.03-0.3	0.05-0.5	•	•	•
	150412-S01020-SL-1	1.2	0.03-0.3	0.05-0.5	•	•	•
	150602-S01020-SL-1	0.2	0.03-0.3	0.05-0.5	•	•	•
	150604-S01020-SL-1	0.4	0.03-0.3	0.05-0.5	•	•	•
	150608-S01020-SL-1	0.8	0.03-0.3	0.05-0.5	•	•	•
	150612-S01020-SL-1	1.2	0.03-0.3	0.05-0.5	•	•	•
	DNGA 150402-S01020-SL-2	0.2	0.03-0.3	0.05-0.5	•	•	•
	150404-S01020-SL-2	0.4	0.03-0.3	0.05-0.5	•	•	•
	150408-S01020-SL-2	0.8	0.03-0.3	0.05-0.5	•	•	•
	150412-S01020-SL-2	1.2	0.03-0.3	0.05-0.5	•	•	•
	150602-S01020-SL-2	0.2	0.03-0.3	0.05-0.5	•	•	•
	150604-S01020-SL-2	0.4	0.03-0.3	0.05-0.5	•	•	•
	150608-S01020-SL-2	0.8	0.03-0.3	0.05-0.5	•	•	•
	150612-S01020-SL-2	1.2	0.03-0.3	0.05-0.5	•	•	•
	DNGA 150402-S01020-SL-4	0.2	0.03-0.3	0.05-0.5	•	•	•
	150404-S01020-SL-4	0.4	0.03-0.3	0.05-0.5	•	•	•
	150408-S01020-SL-4	0.8	0.03-0.3	0.05-0.5	•	•	•
	150412-S01020-SL-4	1.2	0.03-0.3	0.05-0.5	•	•	•
	150602-S01020-SL-4	0.2	0.03-0.3	0.05-0.5	•	•	•
	150604-S01020-SL-4	0.4	0.03-0.3	0.05-0.5	•	•	•
	150608-S01020-SL-4	0.8	0.03-0.3	0.05-0.5	•	•	•
	150612-S01020-SL-4	1.2	0.03-0.3	0.05-0.5	•	•	•

Пластины формы S (90°)

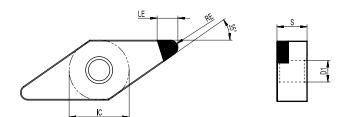




Основные размеры (мм)						
Форморазмер	IC	S	LE	D1		
SN_1204_	12.7	4.76	2.2	5.16		

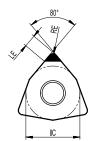
			.,		• Хорошие	(4) Средние	# Плохие
			Условия с	обработки	•	•	#
		RE	Режимы	резания	ŀ	1	К
Режущие пластины	Обозначение пластины	(MM)	f (мм/об)	ар (мм)	PB30	PB60	PB90
	SNGA 120402-S01020-SL-1	0.2	0.03-0.3	0.05-0.5	•	•	•
	120404-S01020-SL-1	0.4	0.03-0.3	0.05-0.5	•	•	•
	120408-S01020-SL-1	0.8	0.03-0.3	0.05-0.5	•	•	•
	120412-S01020-SL-1	1.2	0.03-0.3	0.05-0.5	•	•	•
	SNGA 120402-S01020-SL-4	0.2	0.03-0.3	0.05-0.5	•	•	•
	120404-S01020-SL-4	0.4	0.03-0.3	0.05-0.5	•	•	•
	120408-S01020-SL-4	0.8	0.03-0.3	0.05-0.5	•	•	•
	120412-S01020-SL-4	1.2	0.03-0.3	0.05-0.5	•	•	•
	SNGA 120402-S01020-SL-8	0.2	0.03-0.3	0.05-0.5	•	•	•
	120404-S01020-SL-8	0.4	0.03-0.3	0.05-0.5	•	•	•
	120408-S01020-SL-8	0.8	0.03-0.3	0.05-0.5	•	•	•
	120412-S01020-SL-8	1.2	0.03-0.3	0.05-0.5	•	•	•

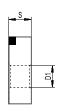
Пластины формы Т (60°)



Основные размеры (мм)						
Форморазмер	IC	S	LE	D1		
TN_1604_	9.52	4.76	2.2	3.81		

IC			Уолория (- English	• Хорошие	Средние	# Плохие
			условия (обработки	•	•	*
		RE	Режимы	резания	ŀ	1	K
Режущие пластины	Обозначение пластины	(MM)	f (мм/об)	ар (мм)	PB30	PB60	PB90
	TNGA 160402-S01020-SL-1	0.2	0.03-0.3	0.05-0.5	•	•	•
	160404-S01020-SL-1	0.4	0.03-0.3	0.05-0.5	•	•	•
	160408-S01020-SL-1	0.8	0.03-0.3	0.05-0.5	•	•	•
	160412-S01020-SL-1	1.2	0.03-0.3	0.05-0.5	•	•	•
	TNGA 160402-S01020-SL-3	0.2	0.03-0.3	0.05-0.5	•	•	•
	160404-S01020-SL-3	0.4	0.03-0.3	0.05-0.5	•	•	•
	160408-S01020-SL-3	0.8	0.03-0.3	0.05-0.5	•	•	•
	160412-S01020-SL-3	1.2	0.03-0.3	0.05-0.5	•	•	•
	TNGA 160402-S01020-SL-6	0.2	0.03-0.3	0.05-0.5	•	•	•
	160404-S01020-SL-6	0.4	0.03-0.3	0.05-0.5	•	•	•
	160408-S01020-SL-6	0.8	0.03-0.3	0.05-0.5	•	•	•
	160412-S01020-SL-6	1.2	0.03-0.3	0.05-0.5	•	•	•

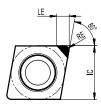

Пластины формы V (35°)



Основные размеры (мм)						
Форморазмер	IC	S	LE	D1		
VN_1604_	9.52	4.76	2.2	3.81		

			\/		• Хорошие	(+) Средние	# Плохие
			Условия с	оораоотки	•	#	*
		RE	Режимы резания		Н		K
Режущие пластины	Обозначение пластины	(MM)	f (мм/об)	ар (мм)	PB30	PB60	PB90
	VNGA 160402-S01020-SL-1	0.2	0.03-0.3	0.05-0.5	•	•	•
	160404-S01020-SL-1	0.4	0.03-0.3	0.05-0.5	•	•	•
	160408-S01020-SL-1	0.8	0.03-0.3	0.05-0.5	•	•	•
	160412-S01020-SL-1	1.2	0.03-0.3	0.05-0.5	•	•	•
	VNGA 160402-S01020-SL-2	0.2	0.03-0.3	0.05-0.5	•	•	•
	160404-S01020-SL-2	0.4	0.03-0.3	0.05-0.5	•	•	•
	160408-S01020-SL-2	0.8	0.03-0.3	0.05-0.5	•	•	•
	160412-S01020-SL-2	1.2	0.03-0.3	0.05-0.5	•	•	•
	VNGA 160402-S01020-SL-4	0.2	0.03-0.3	0.05-0.5	•	•	•
	160404-S01020-SL-4	0.4	0.03-0.3	0.05-0.5	•	•	•
	160408-S01020-SL-4	0.8	0.03-0.3	0.05-0.5	•	•	•
	160412-S01020-SL-4	1.2	0.03-0.3	0.05-0.5	•	•	•

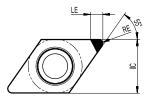
Пластины формы W (80°)



Основные размеры (мм)						
Форморазмер	IC	S	LE	D1		
WN 0804	12.7	4.76	2.2	5.16		

			V		• Хорошие	(†) Средние	# Плохие
			условия (обработки	•	+	*
		DE	Режимы	резания	ŀ	-1	K
Режущие пластины	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	PB30	PB60	PB90
	WNGA 080402-S01020-SL-1	0.2	0.03-0.3	0.05-0.5	•	•	•
	080404-S01020-SL-1	0.4	0.03-0.3	0.05-0.5	•	•	•
	080408-S01020-SL-1	0.8	0.03-0.3	0.05-0.5	•	•	•
	080412-S01020-SL-1	1.2	0.03-0.3	0.05-0.5	•	•	•
	WNGA 080402-S01020-SL-3	0.2	0.03-0.3	0.05-0.5	•	•	•
	080404-S01020-SL-3	0.4	0.03-0.3	0.05-0.5	•	•	•
	080408-S01020-SL-3	0.8	0.03-0.3	0.05-0.5	•	•	•
	080412-S01020-SL-3	1.2	0.03-0.3	0.05-0.5	•	•	•
	WNGA 080402-S01020-SL-6	0.2	0.03-0.3	0.05-0.5	•	•	•
	080404-S01020-SL-6	0.4	0.03-0.3	0.05-0.5	•	•	•
	080408-S01020-SL-6	0.8	0.03-0.3	0.05-0.5	•	•	•
	080412-S01020-SL-6	1.2	0.03-0.3	0.05-0.5	•	•	•

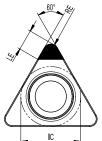
Пластины формы С (80°) с задним углом

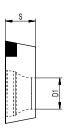


Основные размеры (мм)						
Форморазмер	орморазмер IC S LE D1					
CC_0602_	6.35	2.38	2.2	2.8		
CC_09T3_	9.52	3.97	2.2	4.4		
CC_1204_	12.7	4.76	2.2	5.5		

					• Хорошие	♦ Средние	# Плохие
			Условия с	обработки	•	•	*
		RE	Режимы	резания	Н		K
Режущие пластины	Обозначение пластины	(MM)	f (мм/об)	ар (мм)	PB30	PB60	PB90
	CCGW 060202-S01020-SL-1	0.2	0.03-0.3	0.05-0.5	•	•	•
	060204-S01020-SL-1	0.4	0.03-0.3	0.05-0.5	•	•	•
	060208-S01020-SL-1	0.8	0.03-0.3	0.05-0.5	•	•	•
	09T302-S01020-SL-1	0.2	0.03-0.3	0.05-0.5	•	•	•
	09T304-S01020-SL-1	0.4	0.03-0.3	0.05-0.5	•	•	•
	09T308-S01020-SL-1	0.8	0.03-0.3	0.05-0.5	•	•	•
	120402-S01020-SL-1	0.2	0.03-0.3	0.05-0.5	•	•	•
	120404-S01020-SL-1	0.4	0.03-0.3	0.05-0.5	•	•	•
	120408-S01020-SL-1	0.8	0.03-0.3	0.05-0.5	•	•	•
	120412-S01020-SL-1	1.2	0.03-0.3	0.05-0.5	•	•	•
	CCGW 060202-S01020-SL-2	0.2	0.03-0.3	0.05-0.5	•	•	•
	060204-S01020-SL-2	0.4	0.03-0.3	0.05-0.5	•	•	•
	060208-S01020-SL-2	0.8	0.03-0.3	0.05-0.5	•	•	•
	09T302-S01020-SL-2	0.2	0.03-0.3	0.05-0.5	•	•	•
	09T304-S01020-SL-2	0.4	0.03-0.3	0.05-0.5	•	•	•
	09T308-S01020-SL-2	0.8	0.03-0.3	0.05-0.5	•	•	•
	120402-S01020-SL-2	0.2	0.03-0.3	0.05-0.5	•	•	•
	120404-S01020-SL-2	0.4	0.03-0.3	0.05-0.5	•	•	•
	120408-S01020-SL-2	0.8	0.03-0.3	0.05-0.5	•	•	•
	120412-S01020-SL-2	1.2	0.03-0.3	0.05-0.5	•	•	•

Пластины формы D (55°) с задним углом

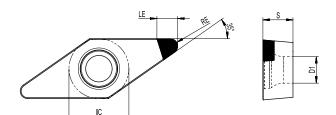




Основные размеры (мм)					
Форморазмер	IC	S	LE	D1	
DC_0702_	6.35	2.38	2.2	2.8	
DC_11T3_	9.52	3.97	2.2	4.4	

			\/	. E E	• Хорошие	(4) Средние	# Плохие
			Условия с	оораоотки	•	+	*
		RE	Режимы	резания	ŀ	1	K
Режущие пластины	Обозначение пластины	(MM)	f (мм/об)	ар (мм)	PB30	PB60	PB90
	DCGW 070204-S01020-SL-1	0.4	0.03-0.3	0.05-0.5	•	•	•
	070208-S01020-SL-1	0.8	0.03-0.3	0.05-0.5	•	•	•
	11T302-S01020-SL-1	0.2	0.03-0.3	0.05-0.5	•	•	•
	11T304-S01020-SL-1	0.4	0.03-0.3	0.05-0.5	•	•	•
	11T308-S01020-SL-1	0.8	0.03-0.3	0.05-0.5	•	•	•
	11T312-S01020-SL-1	1.2	0.03-0.3	0.05-0.5	•	•	•
	DCGW 070202-S01020-SL-2	0.2	0.03-0.3	0.05-0.5	•	•	•
	070204-S01020-SL-2	0.4	0.03-0.3	0.05-0.5	•	•	• •
	070208-S01020-SL-2	0.8	0.03-0.3	0.05-0.5	•	H	•
	11T302-S01020-SL-2	0.2	0.03-0.3	0.05-0.5	•	•	•
	11T304-S01020-SL-2	0.4	0.03-0.3	0.05-0.5	•	•	•
	11T308-S01020-SL-2	0.8	0.03-0.3	0.05-0.5	•	•	•
	11T312-S01020-SL-2	1.2	0.03-0.3	0.05-0.5	•	•	•

Пластины формы T (60°) с задним углом



Основные размеры (мм)							
Форморазмер	IC	S	LE	D1			
TP_0802_	4.76	2.38	2.2	2.4			
TP_0902_	5.56	2.38	2.2	2.8			
TP_1103_	6.35	3.18	2.2	3.3			
TP 1604	9.52	4.76	2.2	4.4			

IC _			Условия обработки		• Хорошие	♣ Средние	# Плохие
			Условия с	обработки	•	+	*
			Режимы	резания	Н		K
Режущие пластины	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	PB30	PB60	PB90
	TPGW 080202-S01020-SL-1	0.2	0.03-0.3	0.05-0.5	•	•	•
	080204-S01020-SL-1	0.4	0.03-0.3	0.05-0.5	•	•	•
	090202-S01020-SL-1	0.2	0.03-0.3	0.05-0.5	•	•	•
	090204-S01020-SL-1	0.4	0.03-0.3	0.05-0.5	•	•	•
	090208-S01020-SL-1	0.8	0.03-0.3	0.05-0.5	•	•	•
	110302-S01020-SL-1	0.2	0.03-0.3	0.05-0.5	•	•	•
	110304-S01020-SL-1	0.4	0.03-0.3	0.05-0.5	•	•	•
	160402-S01020-SL-1	0.2	0.03-0.3	0.05-0.5	•	•	•
	160404-S01020-SL-1	0.4	0.03-0.3	0.05-0.5	•	•	•
	160408-S01020-SL-1	0.8	0.03-0.3	0.05-0.5	•	•	•
	TPGW 080202-S01020-SL-3	0.2	0.03-0.3	0.05-0.5	•	•	•
	080204-S01020-SL-3	0.4	0.03-0.3	0.05-0.5	•	•	•
	090202-S01020-SL-3	0.2	0.03-0.3	0.05-0.5	•	•	•
	090204-S01020-SL-3	0.4	0.03-0.3	0.05-0.5	•	•	•
	090208-S01020-SL-3	0.8	0.03-0.3	0.05-0.5	•	•	•
	110302-S01020-SL-3	0.2	0.03-0.3	0.05-0.5	•	•	•
	110304-S01020-SL-3	0.4	0.03-0.3	0.05-0.5	•	•	•
	160402-S01020-SL-3	0.2	0.03-0.3	0.05-0.5	•	•	•
	160404-S01020-SL-3	0.4	0.03-0.3	0.05-0.5	•	•	•
	160408-S01020-SL-3	0.8	0.03-0.3	0.05-0.5	•	•	•

Пластины формы V (35°) с задним углом

Основные размеры (мм)						
Форморазмер	IC	S	LE	D1		
VB_1103_	6.35	3.18	2.2	2.8		
VC_1103_	6.35	3.18	2.2	2.8		
VB_1604_	9.52	4.76	2.2	4.4		
VC_1604_	9.52	4.76	2.2	4.4		

			.,		• Хорошие	Средние	# Плохие
			Условия с	обработки	•	#	*
			Режимы	резания	Н		K
Режущие пластины	Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	PB30	PB60	PB90
	VBGW 110302-S01020-SL-1	0.2	0.03-0.3	0.05-0.5	•	•	•
	110304-S01020-SL-1	0.4	0.03-0.3	0.05-0.5	•	•	•
	110308-S01020-SL-1	0.8	0.03-0.3	0.05-0.5	•	•	•
	160402-S01020-SL-1	0.2	0.03-0.3	0.05-0.5	•	•	•
	160404-S01020-SL-1	0.4	0.03-0.3	0.05-0.5	•	•	•
	160408-S01020-SL-1	0.8	0.03-0.3	0.05-0.5	•	•	•
	VBGW 110302-S01020-SL-2	0.2	0.03-0.3	0.05-0.5	•	•	•
	110304-S01020-SL-2	0.4	0.03-0.3	0.05-0.5	•	•	•
6	110308-S01020-SL-2	0.8	0.03-0.3	0.05-0.5	•	•	•
	160402-S01020-SL-2	0.2	0.03-0.3	0.05-0.5	•	•	•
	160404-S01020-SL-2	0.4	0.03-0.3	0.05-0.5	•	•	•
	160408-S01020-SL-2	0.8	0.03-0.3	0.05-0.5	•	•	•
	VCGW 110302-S01020-SL-1	0.2	0.03-0.3	0.05-0.5	•	•	•
	110304-S01020-SL-1	0.4	0.03-0.3	0.05-0.5	•	•	•
	110308-S01020-SL-1	0.8	0.03-0.3	0.05-0.5	•	•	•
	160402-S01020-SL-1	0.2	0.03-0.3	0.05-0.5	•	•	•
	160404-S01020-SL-1	0.4	0.03-0.3	0.05-0.5	•	•	•
	160408-S01020-SL-1	0.8	0.03-0.3	0.05-0.5	•	•	•
	VCGW 110302-S01020-SL-2	0.2	0.03-0.3	0.05-0.5	•	•	•
	110304-S01020-SL-2	0.4	0.03-0.3	0.05-0.5	•	•	•
	110308-S01020-SL-2	0.8	0.03-0.3	0.05-0.5	•	•	•
	160402-S01020-SL-2	0.2	0.03-0.3	0.05-0.5	•	•	•
	160404-S01020-SL-2	0.4	0.03-0.3	0.05-0.5	•	•	•
	160408-S01020-SL-2	0.8	0.03-0.3	0.05-0.5	•	•	•

Система обозначения режущих пластин с РСD

CCGW 09T304

1

2

05

_

CB 5

PD20

1-стандартное обозначение пластин по ISO

2-Количество режущих кромок

- 1 Одна режущая кромка
- 2 Две режущие кромки
- 3 Три режущие кромки...

3-Исполнение пластин с РС[

NL - пластина со вставками из PCD стандартного размера

LL - вставка из PCD на всю длину главной режущей кромки

4-Передний угол

00---0°
05---5°
07-- 7°
10---10°

5 - исполнение режущей кромки

CB - со стружколомающей геометрией

WG - с зачистными кромками (Wiper)

" - " - с плоской передней поверхностью

6 - Марка сппава

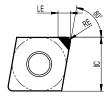
PD01 - поликристаллический алмаз с мелкозернистой структурой

PD10 - поликристаллический алмаз со среднезернистой структурой

PD20 - поликристаллический алмаз с крупнозернистой структурой

Описание марок РСD

Марка сплава	Отличительные особенности	Рекомендации по применению
PD20	Универсальное применение, оптимальное сочетание высокой твёрдости и прочности	Первый выбор для высокоскоростного точения алюминиевых сплавов

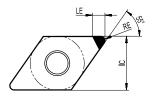

Режимы резания для пластин PCD и рекомендуемые условия обработки

Марка сплава	Обрабатываемый материал	Скорость резания Vc (м/мин)	Подача fn (мм/об)	Глубина резания ар (мм)	Рекомендуемые условия обработки
PD20	Алюминиевые сплавы с низким содержанием кремния (Si < 12%)	300-4000	0.03-0.2	0.05-0.5	Как при стабильных, так и нестабильных условиях резания

Область применения марок сплавов из РСD

		С	бласть применения марок сплавов из PCD	
Группа обрабатываемого	Описание обрабатываемого	ISO	Сплав без покрытия	ISO
материала	материала	130	PD20	130
		P01		P01
		P10		P10
P	Углеродистые и	P20		P20
	легированный стали	P30		P30
		P40		P40
		P50		P50
		M01		M01
		M10		M10
M	Нержавеющие стали	M20		M20
		M30		M30
		M40		M40
		K01		K01
		K10		K10
	у Чугуны	K20		K20
K		K30		K30
		K40		K40
		K50		K50
		N01	03	N01
	Алюминиевые	N10		N10
N	сплавы	N20		N20
		N30		N30
		S01		S01
		S10		S10
S	Жаропрочные сплавы на основе Ni,	S20		S20
	Co, Fe, Ti	S30		S30
		S40		S40
		H01		H01
	Закалённые стали,	H10		H10
Н	отбеленные чугуны	H20		H20
		H30		H30

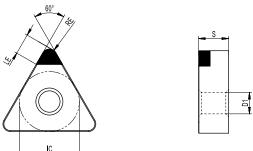
Пластины формы C (80°)



Основные размеры (мм)							
Форморазмер IC S LE D1							
CN_1204_	12.7	4.76	3.0	5.16			

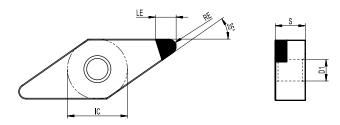
			\/	Условия обработки	
		условия с	•		
			Режимы	резания	N
Режущие пластины	ие пластины Обозначение пластины	RE (MM)	f (мм/об)	ар (мм)	PD20
	CNGA 120402-1-NL-00	0.2	0.03-0.2	0.05-0.5	•
	120404-1-NL-00	0.4	0.03-0.2	0.05-0.5	•
	120408-1-NL-00	0.8	0.03-0.2	0.05-0.5	•

Пластины формы D (55°)



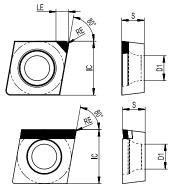
Основные размеры (мм)						
Форморазмер IC S LE D1						
DN_1504_	12.7	4.76	3.0	5.16		

		Условия обработки		• Хорошие	
	условия с	•			
			Режимы	резания	N
Режущие пластины	гины Обозначение пластины	RЕ (мм)	f (мм/об)	ар (мм)	PD20
	DNGA 150402-1-NL-00	0.2	0.03-0.2	0.05-0.5	•
	150404-1-NL-00	0.4	0.03-0.2	0.05-0.5	•
	150408-1-NL-00	0.8	0.03-0.2	0.05-0.5	•


Пластины формы Т (60°)

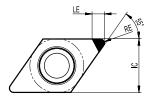
Основные размеры (мм)							
Форморазмер	Форморазмер IC S LE D1						
TN_1604_	9.52	4.76	3.0	3.81			

IC		Условия обработки		● Хорошие	
	условия с	•			
			Режимы	резания	N
Режущие пластины	Обозначение пластины	RE (мм)	f (мм/об)	ар (мм)	PD20
	TNGA 160402-1-NL-00	0.2	0.03-0.2	0.05-0.5	•
	160404-1-NL-00	0.4	0.03-0.2	0.05-0.5	•
	160408-1-NL-00	0.8	0.03-0.2	0.05-0.5	•


Пластины формы V (35°)

Основные размеры (мм)						
Форморазмер IC S LE D1						
VN_1604_	9.525	4.76	3.0	3.81		

	Условия обработки		● Хорошие		
		условия с	•		
			Режимы	резания	N
Режущие пластины	Обозначение пластины	RЕ (мм)	f (мм/об)	ар (мм)	PD20
	VNGA 160402-1-NL-00	0.2	0.03-0.2	0.05-0.5	•
	160404-1-NL-00	0.4	0.03-0.2	0.05-0.5	•
	160408-1-NL-00	0.8	0.03-0.2	0.05-0.5	•


Пластины формы С (80°) с задним углом

Основные размеры (мм)							
Форморазмер	IC	S	LE	D1			
CC_0602_	6.35	2.38	3.0	2.8			
CC_09T3_	9.52	3.97	3.0	4.4			
CC_1204_	12.7	4.76	3.0	5.5			

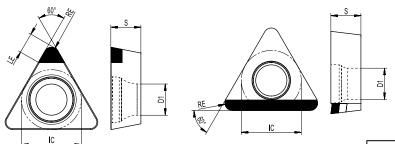
	Условия с	• Хорошие				
	3 03 10 13 17	•				
		RE	Передний	Режимы резания		N
Режущие пластины	Обозначение пластины	(MM)	угол (°)	f (мм/об)	ар (мм)	PD20
	CCGW 060202-1-NL-00	0.2	0°	0.03-0.2	0.05-0.5	•
	060204-1-NL-00	0.4	0°	0.03-0.2	0.05-0.5	•
	09T302-1-NL-00	0.2	0°	0.03-0.2	0.05-0.5	•
	09T304-1-NL-00	0.4	0°	0.03-0.2	0.05-0.5	•
	09T308-1-NL-00	0.8	0°	0.03-0.2	0.05-0.5	•
	CCGW 060202-1-NL-05	0.2	5°	0.03-0.2	0.05-0.5	•
	060204-1-NL-05	0.4	5°	0.03-0.2	0.05-0.5	•
	09T302-1-NL-05	0.2	5°	0.03-0.2	0.05-0.5	•
	09T304-1-NL-05	0.4	5°	0.03-0.2	0.05-0.5	•
	09T308-1-NL-05	0.8	5°	0.03-0.2	0.05-0.5	•
	120402-1-NL-05	0.2	5°	0.03-0.2	0.05-0.5	•
	120404-1-NL-05	0.4	5°	0.03-0.2	0.05-0.5	•
	120408-1-NL-05	0.8	5°	0.03-0.2	0.05-0.5	•
	CCGW 060202L-1-LL-07	0.2	7°	0.03-0.2	0.05-0.5	•
	060202R-1-LL-07	0.2	7°	0.03-0.2	0.05-0.5	•
	060204L-1-LL-07	0.4	7°	0.03-0.2	0.05-0.5	•
	060204R-1-LL-07	0.4	7°	0.03-0.2	0.05-0.5	•
	09T302L-1-LL-07	0.2	7°	0.03-0.2	0.05-0.5	•
	09T302R-1-LL-07	0.2	7°	0.03-0.2	0.05-0.5	•
	09T304L-1-LL-07	0.4	7°	0.03-0.2	0.05-0.5	•
•	09T304R-1-LL-07	0.4	7°	0.03-0.2	0.05-0.5	•
	120404L-1-LL-07	0.4	7°	0.03-0.2	0.05-0.5	•
	120404R-1-LL-07	0.4	7°	0.03-0.2	0.05-0.5	•
	120408L-1-LL-07	0.8	7°	0.03-0.2	0.05-0.5	•
	120408R-1-LL-07	0.8	7°	0.03-0.2	0.05-0.5	•

Пластины формы D (55°) с задним углом

Основные размеры (мм)						
Форморазмер IC S LE D1						
DC_0702_	6.35	2.38	3.0	2.8		
DC_11T3_	9.52	3.97	3.0	4.4		

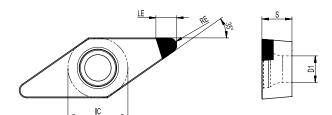
				\/		• Хорошие
		Условия обработки		•		
			Передний	Режимы	резания	N
Режущие пластины	цие пластины Обозначение пластины	RE (MM)	KE VOU	f (мм/об)	ар (мм)	PD20
	DCGW 070202-1-NL-00	0.2	0°	0.03-0.2	0.05-0.5	•
	070204-1-NL-00	0.4	0°	0.03-0.2	0.05-0.5	•
	070208-1-NL-00	0.8	0°	0.03-0.2	0.05-0.5	•
	070202-1-NL-05	0.2	5°	0.03-0.2	0.05-0.5	•
	070204-1-NL-05	0.4	5°	0.03-0.2	0.05-0.5	•
	070208-1-NL-05	0.8	5°	0.03-0.2	0.05-0.5	•
	DCGW 11T302-1-NL-05	0.2	5°	0.03-0.2	0.05-0.5	•
	11T304-1-NL-05	0.4	5°	0.03-0.2	0.05-0.5	•
	11T308-1-NL-05	0.8	5°	0.03-0.2	0.05-0.5	•

Пластины формы S (90°) с задним углом



Основные размеры (мм)									
Форморазмер	IC	S	LE	D1					
SC_0602_	6.35	2.38	3.0	2.8					
SC_09T3_	9.52	3.97	3.0	4.4					
SC 1204	12.7	4.76	3.0	5.5					

				Vопория (обработки	● Хорошие
			условия с	оораоотки	•	
			Передний	Режимы	N	
Режущие пластины		RE (MM)	угол (°)	f (мм/об)	ар (мм)	PD20
	SCGW 060204-1-LL-07	0.4	7°	0.03-0.2	0.05-0.5	•
	09T304-1-LL-07	0.4	7°	0.03-0.2	0.05-0.5	•
	09T308-1-LL-07	0.8	7°	0.03-0.2	0.05-0.5	•
	120404-1-LL-07	0.4	7°	0.03-0.2	0.05-0.5	•
	120408-1-LL-07	0.8	7°	0.03-0.2	0.05-0.5	•


Пластины формы T (60°) с задним углом

Осно	Основные размеры (мм)									
Форморазмер	IC	S	LE	D1						
TB_0601_	3.97	1.59	2.0	2.2						
TC_0802_	4.76	2.38	3.0	2.4						
TC_0902_	5.56	2.38	3.0	2.8						
TC_1102_	6.35	2.38	3.0	2.8						
TC_1103_	6.35	3.18	3.0	2.8						
TC_16T3_	9.52	3.97	3.0	4.4						
TP_0802_	4.76	2.38	3.0	2.4						
TP_0902_	5.56	2.38	3.0	2.8						
TP_1604_	9.52	4.76	3.0	4.4						

 			Условия с	обработки	• Хорошие	
				УСЛОВИЯ С	ораоотки	•
		DE	Передний	Режимы	резания	N
Режущие пластины	Обозначение пластины	RЕ (мм)	угол (°)	f (мм/об)	ар (мм)	PD20
	TBGW 060102-1-NL-05	0.2	5°	0.03-0.2	0.05-0.5	•
	060104-1-NL-05	0.4	5°	0.03-0.2	0.05-0.5	•
	TCGW 110202-1-NL-00	0.2	0°	0.03-0.2	0.05-0.5	•
	110204-1-NL-00	0.4	0°	0.03-0.2	0.05-0.5	•
	110302-1-NL-00	0.2	0°	0.03-0.2	0.05-0.5	•
	110304-1-NL-00	0.4	0°	0.03-0.2	0.05-0.5	•
	110308-1-NL-00	0.8	0°	0.03-0.2	0.05-0.5	•
	TCGW 110202-1-NL-05	0.2	5°	0.03-0.2	0.05-0.5	•
	110204-1-NL-05	0.4	5°	0.03-0.2	0.05-0.5	•
	110302-1-NL-05	0.2	5°	0.03-0.2	0.05-0.5	•
	110304-1-NL-05	0.4	5°	0.03-0.2	0.05-0.5	•
	110308-1-NL-05	0.8	5°	0.03-0.2	0.05-0.5	•
	16T302-1-NL-05	0.2	5°	0.03-0.2	0.05-0.5	•
	16T304-1-NL-05	0.4	5°	0.03-0.2	0.05-0.5	•
	16T308-1-NL-05	0.8	5°	0.03-0.2	0.05-0.5	•
	TPGW 080202-1-NL-00	0.2	0°	0.03-0.2	0.05-0.5	•
	080204-1-NL-00	0.4	0°	0.03-0.2	0.05-0.5	•
	090202-1-NL-00	0.2	0°	0.03-0.2	0.05-0.5	•
	090204-1-NL-00	0.4	0°	0.03-0.2	0.05-0.5	•
	TPGW 080202-1-NL-05	0.2	5°	0.03-0.2	0.05-0.5	•
	080204-1-NL-05	0.4	5°	0.03-0.2	0.05-0.5	•
	090202-1-NL-05	0.2	5°	0.03-0.2	0.05-0.5	•
	090204-1-NL-05	0.4	5°	0.03-0.2	0.05-0.5	•
	160402-1-NL-05	0.2	5°	0.03-0.2	0.05-0.5	•
	160404-1-NL-05	0.4	5°	0.03-0.2	0.05-0.5	•
	160408-1-NL-05	0.8	5°	0.03-0.2	0.05-0.5	•
	TCGW 090202-1-LL-07	0.2	7°	0.03-0.2	0.05-0.5	•
	090204-1-LL-07	0.4	7°	0.03-0.2	0.05-0.5	•
	110202-1-LL-07	0.2	7°	0.03-0.2	0.05-0.5	•
	110204-1-LL-07	0.4	7°	0.03-0.2	0.05-0.5	•
	16T304-1-LL-07	0.4	7°	0.03-0.2	0.05-0.5	•
	16T308-1-LL-07	0.8	7°	0.03-0.2	0.05-0.5	•

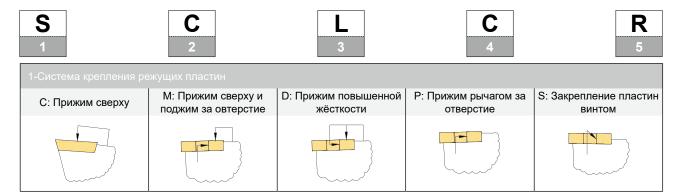
Пластины формы V (35°) с задним углом

Основные размеры (мм)									
Форморазмер IC S LE D1									
VB_1103_	6.35	3.18	3.0	2.8					
VB_1604_	9.52	4.76	3.0	4.4					

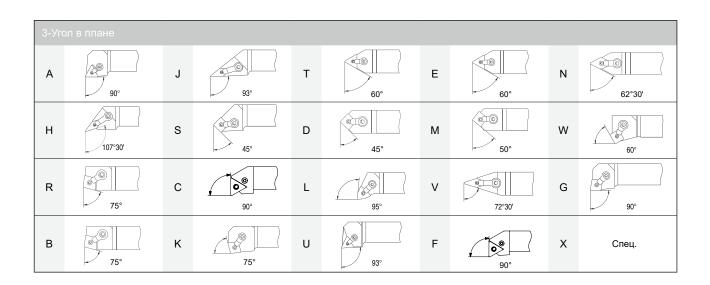
				V		• Хорошие
				условия (обработки	•
		DE	Передний	Режимы	резания	N
Режущие пластины	Обозначение пластины	RЕ (мм)	угол (°)	f (мм/об)	ар (мм)	PD20
	VBGW 110302-1-NL-05	0.2	5°	0.03-0.2	0.05-0.5	•
	110304-1-NL-05	0.4	5°	0.03-0.2	0.05-0.5	•
	160402-1-NL-05	0.2	5°	0.03-0.2	0.05-0.5	•
	160404-1-NL-05	0.4	5°	0.03-0.2	0.05-0.5	•
	VCGW 110302-1-NL-05	0.2	5°	0.03-0.2	0.05-0.5	•
	110304-1-NL-05	0.4	5°	0.03-0.2	0.05-0.5	•
	160402-1-NL-05	0.2	5°	0.03-0.2	0.05-0.5	•
	160404-1-NL-05	0.4	5°	0.03-0.2	0.05-0.5	•

Заметки

ACHTECK


www.achtecktool.com/ru

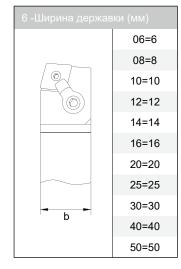
ЭКСПЕРТ В РЕЗАНИИ ТРУДНООБРАБАТЫВАЕМЫХ МАТЕРИАЛОВ



Инструмент для мелкоразмерной обработки

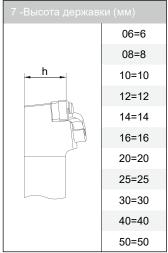
Система обозначения токарных державок для наружной мелкоразмерной обработки

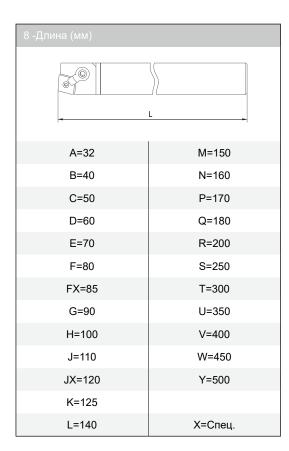
2-Форма пластины										
С	D	Н	К	0	R	s	Т	V	W	
80°	55°	120°	55°	135°	360°	90°	60°	35°	80°	


4 -Задний угол							
В	С	D	E	F	N	Р	0
5°	7°	15°	20°	25°	0°	11°	Спец.

12 ⁶

12 7



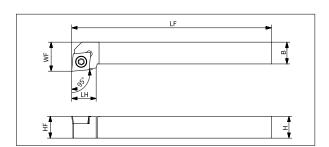




9 -Длина режущей кромки									
C, D, E	Ξ, M, V	Н	0						
	-								
R	S	Т	W						
	L	L							

10 - Спец. обозначение изготовителя							
F	Без выступа/смещения режущей кромки						
J	С подачей СОЖ под высоким давлением						

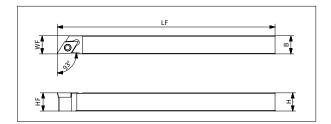
Державки SCLC для наружной обработки - кромка на уровне с державкой



Название		Основные размеры (мм)						ние на аде	Запасные части	
	Н	В	HF	LF	LH	WF	R	L	Винт	Отвёртка
SCLCR/L 0808F-06F	8	8	8	80	-	8	•	•	SP025065	FT-TP08
SCLCR/L 1010JX-06F	10	10	10	120	-	10	•	•		
SCLCR/L 1010JX-09F	10	10	10	120	15	10	•	•		
SCLCR/L 1212F-09F	12	12	12	80	-	12	•	•	CD040000 V	ET TD46
SCLCR/L 1212JX-09F	12	12	12	120	-	12	•	•	SP040090-X	FT-TP15
SCLCR/L 1616JX-09F	16	16	16	120	-	16	•	•		

Державки SCLC для наружной обработки

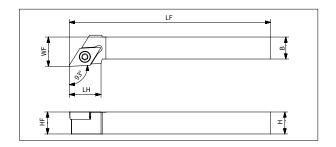
Название	Основные размеры (мм)							ние на аде	Запасные части	
	Н	В	HF	LF	LH	WF	R	L	Винт	Отвёртка
SCLCR/L 1010F-06	10	10	10	80	9	12	•	•	SP025065	FT-TP08
SCLCR/L 1010F-09	10	10	10	80	14	14	•	•		
SCLCR/L 1212H-09	12	12	12	100	14	16	•	•	SP040090-X	FT-TP15
SCLCR/L 1616H-09	16	16	16	100	15	20	•	•		


Подходящие пластины

Тип обработки	Чистовая	Чистовая	Чистовая	Чистовая-Получистовая
Тип пластины Тип державки	F	M	LF	UF
SCLCR/L···-06/06F	CCET 0602	CCET 0602	CCGT 0602	CCGT 0602
SCLCR/L09/09F	CCET 09T3	CCET 09T3	CCGT 09T3	CCGT 09T3
стр. каталога	75	75	72	72

Инструмент для елкоразмерной обработки

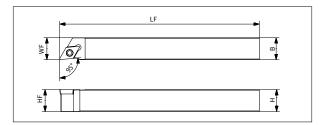
Державки SDJC для наружной обработки - кромка на уровне с державкой



Название		(Основн	ые раз	меры (і	им)			ние на аде	Запаснь	ые части
	Н	В	HF	LF	LH	WF	HBKW	R	L	Винт	Отвёртка
SDJCR/L 0808F-07F	8	8	8	80	14	8	0.5	•	•	SP025065	ET TDOS
SDJCR/L 1010JX-07F	10	10	10	120	-	10	-	•	•	SP025065	FT-TP08
SDJCR/L 1010JX-11F	10	10	10	120	20	10	3	•	•		
SDJCR/L 1212F-11F	12	12	12	80	20	12	1	•	•	CD040000 V	FT-TP15
SDJCR/L 1212JX-11F	12	12	12	120	20	12	1	•	•	SP040090-X	F1-1P15
SDJCR/L 1616JX-11F	16	16	16	120	-	16	-	•	•		

Державки SDJC для наружной обработки

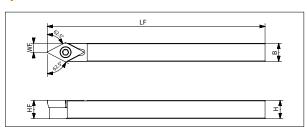
Название		(Основн	ые раз	иеры (і	мм)			ние на аде	Запасные части Винт Отвёрт SP025065 FT-TP0	
	Н	В	HF	LF	LH	WF	HBKW	R	L	Винт	Отвёртка
SDJCR/L 1010F-07	10	10	10	80	12	12	-	•	•	SP025065	FT-TP08
SDJCR/L 1010F-11	10	10	10	80	18	12	3	•	•		
SDJCR/L 1212H-11	12	12	12	100	18	16	1	•	•	SP040090-X	FT-TP15
SDJCR/L 1616H-11	16	16	16	100	18	20	-	•	•		


Подходящие пластины

Тип обработки	Чистовая	Чистовая	Чистовая	Чистовая-Получистовая
Тип пластины	F	M	LF	UF
SDJCR/L07/07F	DCET 0702	DCET 0702	DCGT 0702	DCGT 0702
SDJCR/L···-11/11F	DCET 11T3	DCET 11T3	DCGT 11T3	DCGT 11T3
стр. каталога	78	79	76	76

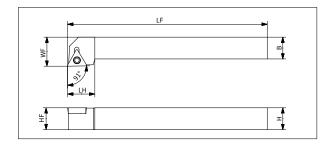
Видео

Державки SDLC для наружной обработки - кромка на уровне с державкой



Название		(Основн	ые разі	иеры (і	им)		Налич скл	ние на аде	Запаснь	іе части
	Н	В	HF	LF	LH	WF	HBKW	R	L	Винт	Отвёртка
SDLCR/L 1010JX-07F	10	10	10	120	-	10	-	•	•		
SDLCR/L 1212F-07F	12	12	12	80	-	12	-	•	•	SP025065	ET TDO
SDLCR/L 1212JX-07F	12	12	12	120	-	12	-	•	•		FT-TP08
SDLCR/L 1616JX-07F	16	16	16	120	-	16	-	•	•		
SDLCR 1010F-11F	10	10	10	80	-	10	4	•	-		
SDLCR/L 1010JX-11F	10	10	10	120	-	10	4	•	•		
SDLCR 1212F-11F	12	12	12	80	-	12	2	•	-	SP040090-X	FT-TP15
SDLCR/L 1212JX-11F	12	12	12	120	-	12	2	•	•	SP040090-X	FI-IFIS
SDLCR 1616H-11F	16	16	16	100	-	16	-	•	-		
SDLCR/L 1616JX-11F	16	16	16	120	-	16	-	•	•		

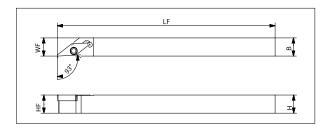
Державки SDJC для наружной обработки - нейтральное исполнение


Название			Основн	ые разм	еры (мм))		Наличие на складе	Запасные	е части
	Н	H B HF LF LH WF HBKW							Винт	Отвёртка
SDNCN 0808F-07	8	8	8	80	-	4	-	•		
SDNCN 1010JX-07	10	10	10	120	-	5	-	•	SP025065	FT-TP08
SDNCN 1212JX-07	12	12	12	120	-	6	-	•		
SDNCN 1010F-11	10	10	10	80	-	5	-	•		
SDNCN 1010JX-11	10	10	10	120	-	5	-	•		
SDNCN 1212F-11	12	12	12	80	-	6	-	•	SP040090-X	FT-TP15
SDNCN 1212JX-11	12	12	12	120	-	6	-	•	3P040090-X	F1-1P15
SDNCN 1616H-11	16	16	16	100	-	8	-	•		
SDNCN 1616JX-11	16	16	16	120	-	8	-	•		

Подходящие пластины

Тип обработки	Чистовая	Чистовая	Чистовая	Чистовая-Получистовая
Тип пластины	F	М	LF	UF
Тип державки				
SDLCR/L···-07F SDNCN ···-07	DCET 0702	DCET 0702	DCGT 0702	DCGT 0702
SDLCR/L···-11F SDNCN ···-11	DCET 11T3	DCET 11T3	DCGT 11T3	DCGT 11T3
стр. каталога	78	79	76	76

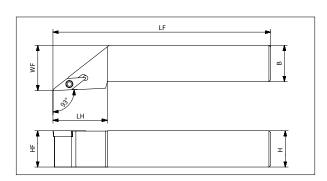
Державки STGC и STGP для наружной обработки



Название		Och	ювные р	азмеры ((мм)	_		ние на аде	Запаснь	ые части
	Н	В	HF	LF	LH	WF	R	L	Винт	Отвёртка
STGCR 0808F-08	8	8	8	80	12	10	•	-	SP020049	FT-TP06
STGCR/L 1010F-11	10	10	10	80	15	14	•	•		
STGCR/L 1212H-11	12	12	12	100	15	16	•	•	SP025065	FT-TP08
STGCR/L 1616H-11	16	16	16	100	15	20	•	•		
STGPR 0808F-08	8	8	8	80	12	10	•	-	SP020049	FT-TP06
STGPR/L 1010F-11	10	10	10	80	15	14	•	•		
STGPR/L 1212H-11	12	12	12	100	15	16	•	•	SP030082	FT-TP09
STGPR/L 1616H-11	16	16	16	100	15	20	•	•		

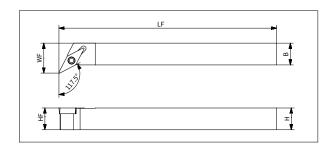
Тип обработки	Чистовая	Чистовая
	F	М
Тип пластины Тип державки		
STGCR 0808F-08	-	TCET 0802
STGPR 0808F-08	TPEH 0802	-
STGC··· -11	-	TCET 1103
STGP··· -11	TPEH 1103	-
стр. каталога	84, 85	85

Державки SVJB для наружной обработки - кромка на уровне с державкой



Название		Осн	овные р	азмеры ((мм)			ние на аде	Запаснь	ые части
	Н	В	HF	LF	LH	WF	R	L	Винт	Отвёртка
SVJBR/L 1010JX-11F	10	10	10	120	-	10	•	•		
SVJBR/L 1212JX-11F	12	12	12	120	-	12	•	•	CD00F00F	ET TDOO
SVJBR/L 1616JX-11F	16	16	16	120	-	16	•	•	SP025065	FT-TP08
SVJBR/L 2020JX-11F	20	20	20	120	20	20	•	•		

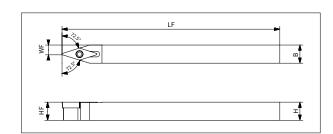
Державки SVJB для наружной обработки


Название		Осн	овные р	азмеры ((мм)			ние на аде	Запаснь	іе части
	Н	В	HF	LF	LH	WF	R	L	Винт	Отвёртка
SVJBR/L 2020K-11	20	20	20	125	30	25	•	•	SP025065	FT-TP08
SVJBR/L 2020K-16	20	20	20	125	30	25	•	•	SP040090-X	FT-TP15
SVJBR/L 2525M-16	25	25	25	150	30	32	•	•	SP040090-X	FI-IPIS

Подходящие пластины

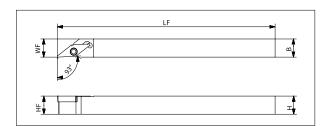
Тип обработки	Чистовая	Чистовая	Чистовая	Чистовая	Чистовая-Получистовая
T	F	М	Y	LF	UF
Тип пластины Тип державки					
SVJBR/L11/11F	VBET 1103	VBET 1103	VBET 1103	VBGT 1103	VBGT 1103
SVJBR/L···-16	VBET 1604	VBET 1604	VBET 1604	VBGT 1604	VBGT 1604
стр. каталога	89	90	90	86	86, 87

Державки SVPB для наружной обработки



Название	Основные размеры (мм)						Наличие на складе Запасные части			
	Н	В	HF	LF	WF	R	L	Винт	Отвёртка	
SVPBR/L 1010JX-11	10	10	10	120	14.5	•	•	SP025065	FT-TP08	
SVPBR/L 1212JX-11	12	12	12	120	16.5	•	•			
SVPBR/L 1616JX-11	16	16	16	120	20.5	•	•			
SVPBR/L 2020K-11	20	20	20	125	25	•	•			
SVPBR/L 2020K-16	20	20	20	125	25	•	•	CD040000 V	FT-TP15	
SVPBR/L 2525M-16	25	25	25	150	32	•	•	SP040090-X		

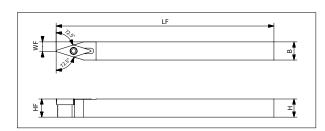
Державки SVVBN для наружной обработки - нейтральное исполнение


Название		Основі	ные размер	ры (мм)		Наличие на складе	Запасные части	
	Н	В	HF	LF	WF	N	Винт	Отвёртка
SVVBN 1010JX-11	10	10	10	120	5	•	SP025065	FT-TP08
SVVBN 1212JX-11	12	12	12	120	6	•		
SVVBN 1616JX-11	16	16	16	120	8	•		
SVVBN 2020K-11	20	20	20	125	10	•		
SVVBN 2020K-16	20	20	20	125	10	•	CD040000 V	FT-TP15
SVVBN 2525M-16	25	25	25	150	12.5	•	SP040090-X	

Подходящие пластины

Тип обработки	Чистовая	Чистовая	Чистовая	Чистовая	Чистовая-Получистовая
Тип пластины	F	М	Y	LF	UF
Тип державки					
SVPBR/L···-11 SVVBN ···-11	VBET 1103	VBET 1103	VBET 1103	VBGT 1103	VBGT 1103
SVPBR/L···-16 SVVBN ···-16	VBET 1604	VBET 1604	VBET 1604	VBGT 1604	VBGT 1604
стр. каталога	89	90	90	86	86, 87

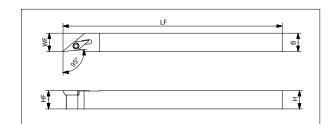
Державки SVJC для наружной обработки - кромка на уровне с державкой



Название		Основн	ые разме	ры (мм)		Наличие на запасные час складе			
	Н	В	HF	LF	WF	R	L	Винт	Отвёртка
SVJCR/L 1010JX-11F	10	10	10	120	10	•	•	SP025065	FT-TP08
SVJCR/L 1212JX-11F	12	12	12	120	12	•	•		
SVJCR/L 1616JX-11F	16	16	16	120	16	•	•		
SVJCR/L 2020JX-11F	20	20	20	120	20	•	•		

Державки SVVCN для наружной обработки - нейтральное исполнение

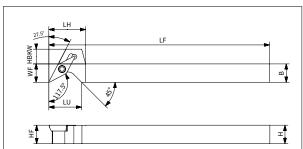
Название		Основн	ые разме	ры (мм)		Наличие на складе Запасные части			
	Н	В	HF	LF	WF	N	Винт	Отвёртка	
SVVCN 1010JX-11	10	10	10	120	5	•		FT-TP08	
SVVCN 1212JX-11	12	12	12	120	6	•	SP025065		
SVVCN 1616JX-11	16	16	16	120	8	•			


Подходящие пластины

Тип обработки	Чистовая	Чистовая	Чистовая
	F	LF	UF
Тип пластины Тип державки			
SVJCR/L···-11F SVVCN ···-11	VCET 1103	VCGT 1103	VCGT 1103
стр. каталога	89	86	86, 87

Инструмент для элкоразмерной обработки

Державки SVLP для наружной обработки - кромка на уровне с державкой



Название	Основные размеры (мм)							Наличие на складе Запасные части			
	Н	В	HF	LF	LH	WF	R	L	Винт	Отвёртка	
SVLPR/L 1010JX-08F	10	10	10	120	16	10	•	•			
SVLPR/L 1212JX-08F	12	12	12	120	16	12	•	•	SP020049	FT-TP06	
SVLPR/L 1616JX-08F	16	16	16	120	20	16	•	•			
SVLPR/L 1212JX-11F	10	10	10	120	20	10	•	•			
SVLPR/L 1616JX-11F	12	12	12	120	20	12	•	•	SP025065	FT-TP08	
SVLPR/L 2020K-11F	16	16	16	120	20	16	•	•			

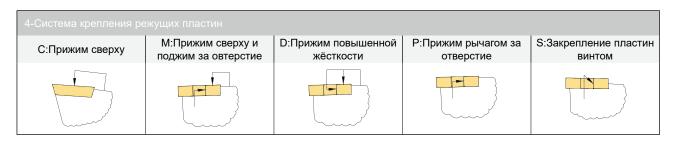
Державки SVPP для наружной обработки - ступенчатое исполнение

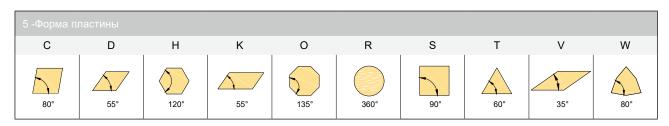
Название	Основные размеры (мм)							Наличие на складе Запасные части			ые части
	Н	В	HF	LF	LH	WF	HBKW	R	L	Винт	Отвёртка
SVPPR/L 1010JX-08F	10	10	10	120	16	10	4	•	•	SP020049	
SVPPR/L 1212JX-08F	12	12	12	120	16	12	2	•	•		FT-TP06
SVPPR/L 1616JX-08F	16	16	16	120	20	16	-	•	•		
SVPPR/L 1010JX-11F	10	10	10	120	20	10	8	•	•		
SVPPR/L 1212JX-11F	12	12	12	120	20	12	6	•	•	SP025065	FT-TP08
SVPPR/L 1616JX-11F	16	16	16	120	20	16	2	•	•		

Подходящие пластины

Тип обработки	Чистовая	Чистовая	Чистовая	Чистовая-Получистовая
Тип пластины	F	М	LF	UF
Тип державки				
SVLPR/L···-08F SVPPR/L···-08F	VPET 0802	VPET 0802	-	-
SVLPR/L···-11F SVPPR/L···-11F	-	VPET 1103	VPGT 1103	VPGT 1103
стр. каталога	89	90	86	86, 87

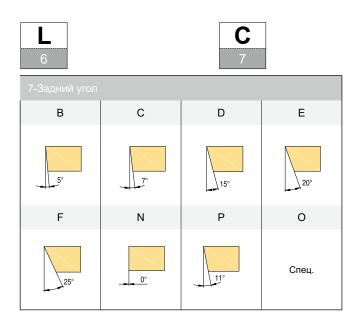
Система обозначения расточных оправок для мелкоразмерной обработки

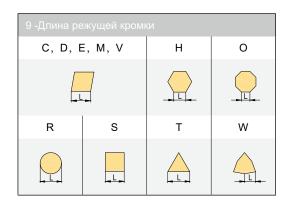




1-Матері	1-Материал хвостовика и подвод СОЖ								
Α	Оправка из стали с каналами для повода СОЖ								
С	Оправка из твёрдого сплава								
Е	Оправка из твёрдого сплава с каналами для подвода СОЖ								
S	Оправка из стали без каналов для СОЖ								

2 - Диаметр оправки (мм)									
_\alpha	06 = 6	20 = 20							
	08 = 8	25 = 25							
	10 = 10	32 = 32							
	12 = 12	40 = 40							
	16 = 16	50 = 50							

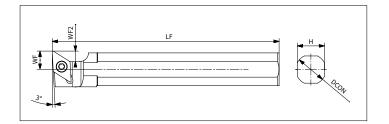

3-Длина оправки		
	E=70	K=125
	F=80	L=140
	FX=85	M=150
L L L	G=90	N=160
	H=100	P=170
	J=110	Q=180
1	JX=120	R=200



6- Уг	6- Угол в плане											
F	90	S	45	K	75°	U	93					
L	95	W	62.5	Y	85	Q	107.5					

09

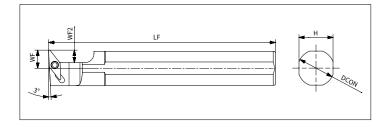
Расточные оправки под пластины СС..



Название	-	Основны	е размер	ы (мм)	Наличие на складе	Запасные части		
	DCON	LF	Н	WF	WF2	L	Винт	Отвёртка
S12F-SCLCL06	12	80	11	6	1	•		FT-TP08
S14H-SCLCL06	14	100	13	6	1	•	SP025065	
S15.0H-SCLCL06	15.875	100	15	6	1	•		
S16H-SCLCL06	16	100	15	6	1	•		
S19.0JX-SCLCL06	19.05	120	17	6	1	•		
S20JX-SCLCL06	20	120	18	6	1	•		
S19.0JX-SCLCL09	19.05	120	17	10	2	•		
S20JX-SCLCL09	20	120	18	10	2	•	SP040090-X	
S22JX-SCLCL09	22	120	20	10	2	•		FT-TP15
S25JX-SCLCL09	25	120	23	10	2	•		
S25.0JX-SCLCL09	25.4	120	23	10	2	•		

Тип обработки	Чистовая	Чистовая	Чистовая	Чистовая-Получистовая
Тип пластины	F	M	L C	S-
S-SCLC06	CCET 0602	CCET 0602	CCGT 0602	CCGT 0602
S-SCLC09	CCET 09T3	CCET 09T3	CCGT 09T3	CCGT 09T3
стр. каталога	75	75	72	72

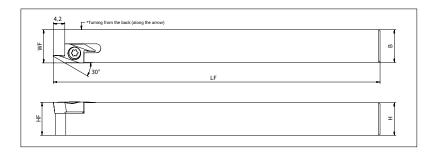
Расточные оправки под пластины DC..



Название		Основнь	е размер	ы (мм)		Наличие на складе	Запасные части		
	DCON	LF	Н	WF	WF2	L	Винт	Отвёртка	
S12F-SDUCL07	12	80	11	6	3.8	•		FT-TP08	
S14H-SDUCL07	14	100	13	6	3.8	•			
S15.0H-SDUCL07	15.875	100	15	6	3.8	•	SP025065		
S16H-SDUCL07	16	100	15	6	3.8	•	35023003		
S19.0JX-SDUCL07	19.05	120	17	6	3.8	•			
S20JX-SDUCL07	20	120	18	6	3.8	•			
S19.0JX-SDUCL11	19.05	120	17	10	5.8	•			
S20JX-SDUCL11	20	120	20	10	5.8	•			
S22JX-SDUCL11	22	120	20	10	5.8	•	SP040090-X	FT-TP15	
S25JX-SDUCL11	25	120	23	10	5.8	•			
S25.0JX-SDUCL11	25.4	120	23	10	5.8	•			

Тип обработки	Чистовая	Чистовая	Чистовая	Чистовая-Получистовая
Тип пластины	F	M	LF	UF
S-SDUCL07	DCET 0702	DCET 0702	DCGT 0702	DCGT 0702
S-SDUCL11	DCET 11T3	DCET 11T3	DCGT 11T3	DCGT 11T3
стр. каталога	78	79	76	76

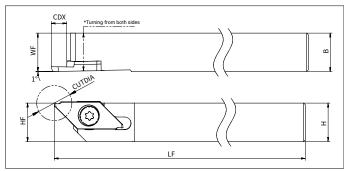
Расточные оправки под пластины VC и VB



Название		Основны	е размер	оы (мм)	Наличие на складе	Запасные части		
	DCON	LF	Н	WF	WF2	L	Винт	Отвёртка
S12F-SVUPL08	12	80	11	7.5	5.5	•		FT-TP06
S14H-SVUPL08	14	100	13	7.5	5.5	•	CD020040	
S15.0H-SVUPL08	15.875	100	15	8	5.5	•	SP020049	
S16H-SVUPL08	16	100	15	8	5.5	•		
S19.0JX-SVUBL11	19.05	120	17	10.5	8	•		
S20JX-SVUBL11	20	120	18	10.5	8	•		
S22JX-SVUBL11	22	120	20	10.5	8	•	SP025065	FT-TP08
S25JX-SVUBL11	25	120	23	10.5	8	•		
S25.0JX-SVUBL11	25.4	120	23	10.5	8	•		

Тип обработки	Тип обработки Чистовая		Чистовая	Чистовая	Чистовая-Получистовая
Тип пластины	F	М	Y	LF	UF
Тип державки					
S-SVUPL08	VPET 0802	VPET 0802	-	-	-
S-SVUBL11	VBET 1103	VBET 1103	VBET 1103	VBGT 1103	VBGT 1103
стр. каталога	89	90	90	86	86, 87

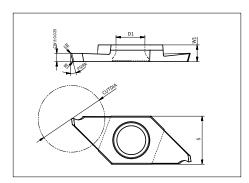
Державки серии АВГ для обратного точения


Название		Основн	ые разме	ры (мм)	Наличие на складе	Запасные части		
	Н	В	HF	LF	WF	R	Винт	Отвёртка
ABFSR 1010-07	10	10	10	120	10.2	•		FT-TP09
ABFSR 1212-07	12	12	12	120	12.2	•	SP030082	
ABFSR 1616-07	16	16	16	120	16.2	•		

Пластины серии АВГ для обратного точения

Пластина	Основные размеры (мм)	Название	Основные размеры (мм)	Сплав
Пластина	Основные размеры (мм)	Пазвание	RE	AP301M
1	70 23	ABF 07R280005-FR	0.05	•
	2 2	ABF 07R280010-FR	0.1	•
		ABF 07R280015-FR	0.15	•
V	2.27	ABF 07R280020-FR	0.2	•

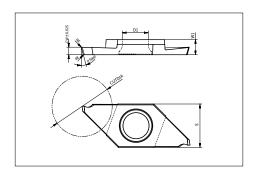
Державки серии ASW для многофункционального точения



Название		(Основнь	ые разме	еры (мм	Наличие на складе		Запасные части			
	Н	HF	В	LF	LH	WF	CDX	R	L	Винт	Отвёртка
ASWSR/L 1010-09	10	10	10	120	15	10	6	•	•		FT-TP10
ASWSR/L 1212-09	12	12	12	120	-	12	6	•	•		
ASWSR/L 1616-09	16	16	16	120	-	16	6	•	•		
ASWSR/L 2020-09	20	20	20	120	-	20	6	•	•	SP04509357	
ASWSR/L 1010-10	10	10	10	120	20	10	8	•	•	3504309337	FI-IFIU
ASWSR/L 1212-10	12	12	12	120	-	12	8	•	•		
ASWSR/L 1616-10	16	16	16	120	-	16	8	•	•		
ASWSR/L 2020-10	20	20	20	120	-	20	8	•	•		

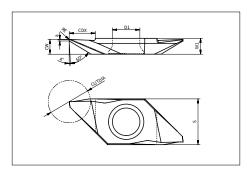
Тип обработки	Отрезка	Обратное точение	Нарезание резьбы
Тип пластины	-	-	-
ASWSR/L···-09	ASWP 09R/L	ASWB 09R/L	ASWT 09R/L
ASWSR/L···-10	ASWP 10R/L	ASWB 10R/L	-
стр. каталога	133, 134	135	135

Режущие пластины серии ASW для отрезки



			Осно	вные разі	меры (ми	1)			Сплав
Название	CW	CUTDIA	RE	PSIRR	GAN	W1	S	D1	AP301M
ASWP 09R/L050D05-F	0.5	5	0.03	0°	15°	3	8.7	5.2	•
ASWP 09R/L070D08-F	0.7	8	0.03	0°	15°	3	8.7	5.2	•
ASWP 09R/L100D12-F	1	12	0.03	0°	15°	3	8.7	5.2	•
ASWP 09R/L120D12-F	1.2	12	0.03	0°	15°	3	8.7	5.2	•
ASWP 09R/L150D12-F	1.5	12	0.03	0°	15°	3	8.7	5.2	•
ASWP 09R/L200D12-F	2	12	0.03	0°	15°	3	8.7	5.2	•
ASWP 09R/L050D05-F16R	0.5	5	0.03	16°	25°	3	8.7	5.2	•
ASWP 09R/L070D08-F16R	0.7	8	0.03	16°	25°	3	8.7	5.2	•
ASWP 09R/L100D12-F16R	1	12	0.03	16°	25°	3	8.7	5.2	•
ASWP 09R/L120D12-F16R	1.2	12	0.03	16°	25°	3	8.7	5.2	•
ASWP 09R/L150D12-F16R	1.5	12	0.03	16°	15°	3	8.7	5.2	•
ASWP 09R/L200D12-F16R	2	12	0.03	16°	15°	3	8.7	5.2	•
ASWP 09R/L100D12-M	1	12	0.08	0°	12°	3	8.7	5.2	•
ASWP 09R/L150D12-M	1.5	12	0.08	0°	12°	3	8.7	5.2	•
ASWP 09R/L200D12-M	2	12	0.08	0°	12°	3	8.7	5.2	•
ASWP 09R/L100D12-M16R	1	12	0.08	16°	12°	3	8.7	5.2	•
ASWP 09R/L150D12-M16R	1.5	12	0.08	16°	12°	3	8.7	5.2	•
ASWP 09R/L200D12-M16R	2	12	0.08	16°	12°	3	8.7	5.2	•

Режущие пластины серии ASW для отрезки



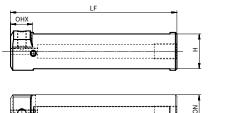
			Осно	вные разі	меры (мм)			Сплав
Название	CW	CUTDIA	RE	PSIRR	GAN	W1	S	D1	AP301M
ASWP 09R/L050D05-T	0.5	5	0	0°	0°	3	8.7	5.2	•
ASWP 09R/L070D08-T	0.7	8	0	0°	0°	3	8.7	5.2	•
ASWP 09R/L100D12-T	1	12	0	0°	0°	3	8.7	5.2	•
ASWP 09R/L120D12-T	1.2	12	0	0°	0°	3	8.7	5.2	•
ASWP 09R/L150D12-T	1.5	12	0	0°	0°	3	8.7	5.2	•
ASWP 09R/L200D12-T	2	12	0	0°	0°	3	8.7	5.2	•
ASWP 09R/L050D05-T20R	0.5	5	0	20°	0°	3	8.7	5.2	•
ASWP 09R/L070D08-T20R	0.7	8	0	20°	0°	3	8.7	5.2	•
ASWP 09R/L100D12-T20R	1	12	0	20°	0°	3	8.7	5.2	•
ASWP 09R/L120D12-T20R	1.2	12	0	20°	0°	3	8.7	5.2	•
ASWP 09R/L150D12-T20R	1.5	12	0	20°	0°	3	8.7	5.2	•
ASWP 09R/L200D12-T20R	2	12	0	20°	0°	3	8.7	5.2	•
ASWP 10R/L150D16-F	1.5	16	0.05	0°	20°	4	9.5	5.2	•
ASWP 10R/L200D16-F	2	16	0.05	0°	20°	4	9.5	5.2	•
ASWP 10R/L150D16-F16R	1.5	16	0.05	16°	20°	4	9.5	5.2	•
ASWP 10R/L200D16-F16R	2	16	0.05	16°	20°	4	9.5	5.2	•
ASWP 10R/L150D16-M	1.5	16	0.08	0°	12°	4	9.5	5.2	•
ASWP 10R/L200D16-M	2	16	0.08	0°	12°	4	9.5	5.2	•
ASWP 10R/L150D16-M16R	1.5	16	0.08	16°	12°	4	9.5	5.2	•
ASWP 10R/L200D16-M16R	2	16	0.08	16°	12°	4	9.5	5.2	•
ASWP 10R/L150D16-T	1.5	16	0	0°	0°	4	9.5	5.2	•
ASWP 10R/L200D16-T	2	16	0	0°	0°	4	9.5	5.2	•
ASWP 10R/L150D16-T20R	1.5	16	0	20°	0°	4	9.5	5.2	•
ASWP 10R/L200D16-T20R	2	16	0	20°	0°	4	9.5	5.2	•

Инструмент для елкоразмерной обработки

Режущие пластины серии ASW для точения

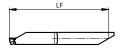
Название			Осно	вные разі	меры (мм)		Сплав
пазвание	CW	а	CDX	W1	S	D1	RE	AP301M
ASWB 09R150005-FR	1.5	0.25	2.6	3	8.7	5.2	0.05	•
ASWB 09R280005-FR	2.8	0.3	4.6	3	8.7	5.2	0.05	•
ASWB 09L280005-FR	2.8	0.3	4.6	3	8.7	5.2	0.05	•
ASWB 09R280010-FR	2.8	0.3	4.6	3	8.7	5.2	0.1	•
ASWB 09L280010-FR	2.8	0.3	4.6	3	8.7	5.2	0.1	•
ASWB 10R380005-FR	3.8	0.3	6.3	4	9.5	5.2	0.05	•
ASWB 10L380005-FR	3.8	0.3	6.3	4	9.5	5.2	0.05	•
ASWB 10R380010-FR	3.8	0.3	6.3	4	9.5	5.2	0.1	•
ASWB 10L380010-FR	3.8	0.3	6.3	4	9.5	5.2	0.1	•

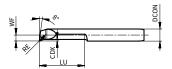
Режущие пластины серии ASW для нарезания резьбы



Homoure	Angle	Шаг	резьбы		Осно	вные ра	азмерь	і (мм)		Сплав
Название	PNA	ММ	вит/дюйм	PDX	RE	CW	W1	S	D1	AP301M
ASWT 09R60000-FR	60	0.2~0.6	64~48	0.4	0.05	2.5	3	8.7	5.2	•
ASWT 09R60000-FL	60	0.2~0.6	64~48	2.1	0.05	2.5	3	8.7	5.2	•
ASWT 09R60005-FR	60	0.5~1.25	48~24	8.0	0.05	2.5	3	8.7	5.2	•
ASWT 09R60005-FL	60	0.5~1.25	48~24	1.7	0.05	2.5	3	8.7	5.2	•
ASWT 09R60010-FN	60	1.0~1.5	24~18	1.25	0.1	2.5	3	8.7	5.2	•
ASWT 09R55005-FR	55	-	40~16	0.8	0.05	2.5	3	8.7	5.2	•
ASWT 09R55005-FL	55	-	40~16	1.7	0.05	2.5	3	8.7	5.2	•
ASWT 09L60000-FR	60	0.2~0.6	64~48	2.1	0.05	2.5	3	8.7	5.2	•
ASWT 09L60000-FL	60	0.2~0.6	64~48	0.4	0.05	2.5	3	8.7	5.2	•

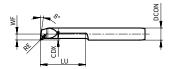
Оправки для цельных твёрдосплавных вставок ASI




Название	DCB	DCON	LF	Н	Наличие на складе
ASI 0010-04	4	10	65	8	•
ASI 0010-05	5	10	05	0	•
ASI 0012-04	4				•
ASI 0012-05	5	12	70	10	•
ASI 0012-06	6				•
ASI 0016-04	4				•
ASI 0016-05	5	16	75	14	•
ASI 0016-06	6	10	73	14	•
ASI 0016-08	8				•
ASI 0020-04	4				•
ASI 0020-05	5	20	90	18	•
ASI 0020-06	6	20	90	10	•
ASI 0020-08	8				•
ASI 0025-04	4				•
ASI 0025-05	5	25	110	23	•
ASI 0025-06	6	25	110	23	•
ASI 0025-08	8				•

Инструмент для пкор<mark>азмерной обр</mark>аботки

Тип ASIB Т - для внутреннего точения

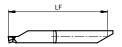


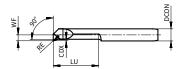
			Основ	ные размер	ры (мм)			AP2	20U
Название	DCON	RE	WF	LF	DMIN	LU	CDX	R	L
ASIBR/L 04T000-0301	4	0	0.1	27.3	0.3	1.2	0.1	•	•
ASIBR/L 04T000-0401	4	0	0.2	27.3	0.4	1.6	0.1	•	•
ASIBR/L 04T000-0502	4	0	0.2	27.3	0.5	2	0.1	•	•
ASIBR/L 04T000-0602	4	0	0.3	27.3	0.6	2.5	0.1	•	•
ASIBR/L 04T000-0703	4	0	0.3	27.3	0.7	3.5	0.1	•	•
ASIBR/L 04T000-0804	4	0	0.4	27.3	0.8	4	0.1	•	•
ASIBR/L 04T000-0905	4	0	0.4	27.3	0.9	5	0.1	•	•
ASIBR/L 04T005-1004	4	0.05	0.5	27.3	1	4	0.1	•	•
ASIBR/L 04T005-1006	4	0.05	0.5	27.3	1	6	0.1	•	•
ASIBR/L 04T010-1004	4	0.1	0.5	27.3	1	4	0.1	•	•
ASIBR/L 04T010-1006	4	0.1	0.5	27.3	1	6	0.1	•	•
ASIBR/L 04T005-1706	4	0.05	0.7	27.3	1.7	6	0.2	•	•
ASIBR/L 04T005-1709	4	0.05	0.7	27.3	1.7	9	0.2	•	•
ASIBR/L 04T010-1706	4	0.1	0.7	27.3	1.7	6	0.2	•	•
ASIBR/L 04T010-1709	4	0.1	0.7	27.3	1.7	9	0.2	•	•
ASIBR/L 04T005-2206	4	0.05	1	27.3	2.2	6	0.2	•	•
ASIBR/L 04T005-2209	4	0.05	1	27.3	2.2	9	0.2	•	•
ASIBR/L 04T010-2206	4	0.1	1	27.3	2.2	6	0.2	•	•
ASIBR/L 04T010-2209	4	0.1	1	27.3	2.2	9	0.2	•	•
ASIBR/L 04T010-2213	4	0.1	1	32.3	2.2	13	0.2	•	•
ASIBR/L 04T003-2710	4	0.03	1.2	27.3	2.7	10	0.2	•	•
ASIBR/L 04T005-2710	4	0.05	1.2	27.3	2.7	10	0.2	•	•
ASIBR/L 04T005-2715	4	0.05	1.2	32.3	2.7	15	0.2	•	•
ASIBR/L 04T015-2710	4	0.15	1.2	27.3	2.7	10	0.2	•	•
ASIBR/L 04T015-2715	4	0.15	1.2	32.3	2.7	15	0.2	•	•
ASIBR/L 04T003-3210	4	0.03	1.5	27.3	3.2	10	0.2	•	•
ASIBR/L 04T005-3215	4	0.05	1.5	32.3	3.2	15	0.2	•	•
ASIBR/L 04T005-3220	4	0.05	1.5	37.3	3.2	20	0.2	•	•
ASIBR/L 04T015-3210	4	0.15	1.5	27.3	3.2	10	0.2	•	•
ASIBR/L 04T015-3215	4	0.15	1.5	32.3	3.2	15	0.2	•	•
ASIBR/L 04T015-3220	4	0.15	1.5	37.3	3.2	20	0.2	•	•
ASIBR/L 04T003-4210	4	0.03	2	27.3	4.2	10	0.3	•	•
ASIBR/L 04T005-4215	4	0.05	2	32.3	4.2	15	0.3	•	•
ASIBR/L 04T005-4220	4	0.05	2	37.3	4.2	20	0.3	•	•
ASIBR/L 04T005-4225	4	0.05	2	42.3	4.2	25	0.3	•	•
ASIBR/L 04T015-4210	4	0.15	2	27.3	4.2	10	0.3	•	•

Тип ASIB Т - для внутреннего точения

Название			Основн	ные размер	ы (мм)			AP2	20U
пазвание	DCON	RE	WF	LF	DMIN	LU	CDX	R	L
ASIBR/L 04T015-4215	4	0.15	2	32.3	4.2	15	0.3	•	•
ASIBR/L 04T015-4220	4	0.15	2	37.3	4.2	20	0.3	•	•
ASIBR/L 04T015-4225	4	0.15	2	42.3	4.2	25	0.3	•	•
ASIBR/L 05T005-5220	5	0.05	2.5	42.3	5.2	20	0.5	•	•
ASIBR/L 05T005-5230	5	0.05	2.5	52.3	5.2	30	0.5	•	•
ASIBR/L 05T020-5210	5	0.2	2.5	32.3	5.2	10	0.5	•	•
ASIBR/L 05T020-5220	5	0.2	2.5	42.3	5.2	20	0.5	•	•
ASIBR/L 05T020-5225	5	0.2	2.5	47.3	5.2	25	0.5	•	•
ASIBR/L 05T020-5230	5	0.2	2.5	52.3	5.2	30	0.5	•	•
ASIBR/L 05T020-5235	5	0.2	2.5	57.3	5.2	35	0.5	•	•
ASIBR/L 05T020-5240	5	0.2	2.5	62.3	5.2	40	0.5	•	•
ASIBR/L 06T005-6220	6	0.05	3	42.3	6.2	20	0.5	•	•
ASIBR/L 06T020-6215	6	0.2	3	37.3	6.2	15	0.5	•	•
ASIBR/L 06T020-6220	6	0.2	3	42.3	6.2	20	0.5	•	•
ASIBR/L 06T020-6225	6	0.2	3	47.3	6.2	25	0.5	•	•
ASIBR/L 06T020-6230	6	0.2	3	52.3	6.2	30	0.5	•	•
ASIBR/L 06T020-6235	6	0.2	3	57.3	6.2	35	0.5	•	•
ASIBR/L 06T020-6240	6	0.2	3	62.3	6.2	40	0.5	•	•

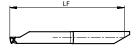
Тип ASIB E - для внутреннего точения, со стружколомающей геометрией





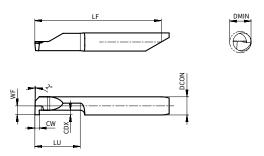
Harrania			Основн	ные размер	ы (мм)			AP2	20U
Название	DCON	RE	WF	LF	DMIN	LU	CDX	R	L
ASIBR 04E008-4230	4	0.08	2	52.3	4.2	30	0.5	•	-
ASIBR/L 04E015-4210	4	0.15	2	27.3	4.2	10.3	0.5	•	•
ASIBR/L 04E015-4220	4	0.15	2	37.3	4.2	20.3	0.5	•	•
ASIBR/L 04E015-4225	4	0.15	2	42.3	4.2	25.3	0.5	•	•
ASIBR/L 04E020-4215	4	0.2	2	32.3	4.2	15.3	0.3	•	•
ASIBR 05E008-5240	5	0.08	2.5	67.3	5.2	40	0.5	•	-
ASIBR/L 05E020-5210	5	0.2	2.5	32.3	5.2	10.2	0.6	•	•
ASIBR/L 05E020-5215	5	0.2	2.5	37.3	5.2	15	0.5	•	•
ASIBR/L 05E020-5220	5	0.2	2.5	42.3	5.2	20.3	0.6	•	•
ASIBR/L 05E020-5225	5	0.2	2.5	47.3	5.2	25.4	0.5	•	•
ASIBR/L 05E020-5230	5	0.2	2.5	52.3	5.2	30.5	0.6	•	•
ASIBR 06E008-6245	6	0.08	3	72.3	6.2	45	0.5	•	-
ASIBR/L 06E020-6215	6	0.2	3	37.3	6.2	15.2	0.8	•	•
ASIBR/L 06E020-6220	6	0.2	3	42.3	6.2	20.3	0.8	•	•
ASIBR/L 06E020-6225	6	0.2	3	47.3	6.2	25.4	0.8	•	•
ASIBR/L 06E020-6230	6	0.2	3	52.3	6.2	30.5	0.5	•	•
ASIBR/L 06E020-6240	6	0.2	3	62.3	6.2	40	0.5	•	•

Тип ASIB E - для внутреннего точения, со стружколомающей геометрией

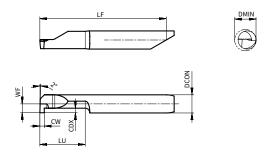


Heapeure			Основ	ные размер	ры (мм)			AP220U		
Название	DCON	RE	WF	LF	DMIN	LU	CDX	R	L	
ASIBR/L 04S015-3212	4	0.15	1.5	29.3	3.2	12	0.2	•	•	
ASIBR/L 04S015-4215	4	0.15	2	32.3	4.2	15	0.3	•	•	
ASIBR/L 05S020-5210	5	0.2	2.5	32.3	5.2	10	0.5	•	•	
ASIBR/L 05S020-5215	5	0.2	2.5	37.3	5.2	15	0.5	•	•	
ASIBR/L 05S020-5220	5	0.2	2.5	42.3	5.2	20	0.5	•	•	

Тип ASIB V - для контурного внутреннего точения



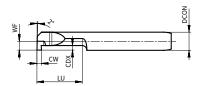
Название			Основн	ные размер	ы (мм)			R •	20U
Пазвание	DCON	RE	WF	LF	DMIN	LU	CDX	R	L
ASIBR/L 04V015-4220	4	0.15	2	37.3	4.2	20	0.8	•	•
ASIBR/L 05V015-5225	5	0.15	2.5	47.3	5.2	25	1	•	•
ASIBR/L 06V015-6230	6	0.15	3	52.3	6.2	30	1.8	•	•


Инструмент для пкор<mark>азмерной обр</mark>аботки

Тип ASIG S - для внутренней обработки канавок

			Основі	ные размер	ры (мм)			AP2	20U
Название	DCON	CW	WF	LF	DMIN	LU	CDX	R	L
ASIGR/L 04S050-2006	4	0.5	2	23.3	2	6	0.4	•	•
ASIGR/L 04S050-2009	4	0.5	2	26.3	2	9	0.4	•	•
ASIGR/L 04S050-2012	4	0.5	2	29.3	2	12	0.4	•	•
ASIGR/L 04S070-3008	4	0.7	1.4	25.3	3	8	0.6	•	•
ASIGR/L 04S070-3012	4	0.7	1.4	29.3	3	12	0.6	•	•
ASIGR/L 04S070-3016	4	0.7	1.4	33.3	3	16	0.6	•	•
ASIGR/L 04S100-4210	4	1	2	27.3	4.2	10	0.8	•	•
ASIGR/L 04S100-4215	4	1	2	32.3	4.2	15	0.8	•	•
ASIGR/L 04S100-4220	4	1	2	37.3	4.2	20	0.8	•	•
ASIGR/L 05S100-5210	5	1	2.5	32.3	5.2	10	1	•	•
ASIGR/L 05S100-5215	5	1	2.5	37.3	5.2	15	1	•	•
ASIGR/L 05S100-5220	5	1	2.5	42.3	5.2	20	1	•	•
ASIGR/L 05S100-5225	5	1	2.5	47.3	5.2	25	1	•	•
ASIGR/L 05S100-5230	5	1	2.5	52.3	5.2	30	1	•	•
ASIGR/L 05S100-5235	5	1	2.5	57.3	5.2	35	1	•	•
ASIGR/L 05S150-5210	5	1.5	2.5	32.3	5.2	10	1	•	•
ASIGR/L 05S150-5215	5	1.5	2.5	37.3	5.2	15	1	•	•
ASIGR/L 05S150-5220	5	1.5	2.5	42.3	5.2	20	1	•	•
ASIGR/L 05S150-5225	5	1.5	2.5	47.3	5.2	25	1	•	•
ASIGR/L 05S150-5230	5	1.5	2.5	52.3	5.2	30	1	•	•
ASIGR/L 05S150-5235	5	1.5	2.5	57.3	5.2	35	1	•	•
ASIGR/L 05S200-5210	5	2	2.5	32.3	5.2	10	1	•	•
ASIGR/L 05S200-5215	5	2	2.5	37.3	5.2	15	1	•	•
ASIGR/L 05S200-5220	5	2	2.5	42.3	5.2	20	1	•	•
ASIGR/L 05S200-5225	5	2	2.5	47.3	5.2	25	1	•	•
ASIGR/L 05S200-5230	5	2	2.5	52.3	5.2	30	1	•	•
ASIGR/L 06S100-6210	6	1	3	32.3	6.2	10	1.8	•	•
ASIGR/L 06S100-6215	6	1	3	37.3	6.2	15	1.8	•	•
ASIGR/L 06S100-6220	6	1	3	42.3	6.2	20	1.8	•	•
ASIGR/L 06S100-6225	6	1	3	47.3	6.2	25	1.8	•	•
ASIGR/L 06S100-6230	6	1	3	52.3	6.2	30	1.8	•	•
ASIGR/L 06S100-6235	6	1	3	57.3	6.2	35	1.8	•	•
ASIGR/L 06S100-6240	6	1	3	62.3	6.2	40	1.8	•	•
ASIGR/L 06S150-6210	6	1.5	3	32.3	6.2	10	1.8	•	•
ASIGR/L 06S150-6215	6	1.5	3	37.3	6.2	15	1.8	•	•
ASIGR/L 06S150-6220	6	1.5	3	42.3	6.2	20	1.8	•	•

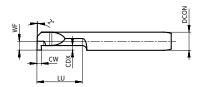
Тип ASIG S - для внутренней обработки канавок под стопорные кольца



Harranna			Основ	ные размер	ры (мм)			AP220U	
Название	DCON	CW	WF	LF	DMIN	LU	CDX	R	L
ASIGR/L 06S150-6225	6	1.5	3	47.3	6.2	25	1.8	•	•
ASIGR/L 06S150-6230	6	1.5	3	52.3	6.2	30	1.8	•	•
ASIGR/L 06S150-6235	6	1.5	3	57.3	6.2	35	1.8	•	•
ASIGR/L 06S200-6210	6	2	3	32.3	6.2	10	1.8	•	•
ASIGR/L 06S200-6215	6	2	3	37.3	6.2	15	1.8	•	•
ASIGR/L 06S200-6220	6	2	3	42.3	6.2	20	1.8	•	•
ASIGR/L 06S200-6225	6	2	3	47.3	6.2	25	1.8	•	•
ASIGR/L 06S200-6230	6	2	3	52.3	6.2	30	1.8	•	•

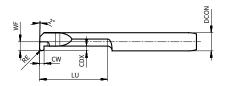
Инструмент для соразмерной обработки

Тип ASIG S - для внутренней обработки канавок под стопорные кольца



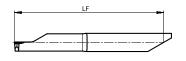
			Основі	ные размер	ры (мм)			AP2	220U
Название	DCON	CW	WF	LF	DMIN	LU	CDX	R	L
ASIGR/L 04S078-4210	4	0.78	2	27.3	4.2	10	0.8	•	•
ASIGR/L 04S078-4215	4	0.78	2	32.3	4.2	15	0.8	•	•
ASIGR/L 04S078-4220	4	0.78	2	37.3	4.2	20	0.8	•	•
ASIGR/L 04S078-4225	4	0.78	2	42.3	4.2	25	0.8	•	•
ASIGR/L 05S078-5210	5	0.78	2.5	32.3	5.2	10	1	•	•
ASIGR/L 05S078-5215	5	0.78	2.5	37.3	5.2	15	1	•	•
ASIGR/L 05S078-5220	5	0.78	2.5	42.3	5.2	20	1	•	•
ASIGR/L 05S078-5225	5	0.78	2.5	47.3	5.2	25	1	•	•
ASIGR/L 05S078-5230	5	0.78	2.5	52.3	5.2	30	1	•	•
ASIGR/L 05S078-5235	5	0.78	2.5	57.3	5.2	35	1	•	•
ASIGR/L 05S117-5210	5	1.17	2.5	32.3	5.2	10	1	•	•
ASIGR/L 05S117-5215	5	1.17	2.5	37.3	5.2	15	1	•	•
ASIGR/L 05S117-5220	5	1.17	2.5	42.3	5.2	20	1	•	•
ASIGR/L 05S117-5225	5	1.17	2.5	47.3	5.2	25	1	•	•
ASIGR/L 05S117-5230	5	1.17	2.5	52.3	5.2	30	1	•	•
ASIGR/L 05S117-5235	5	1.17	2.5	57.3	5.2	35	1	•	•
ASIGR/L 05S157-5210	5	1.57	2.5	32.3	5.2	10	1	•	•
ASIGR/L 05S157-5215	5	1.57	2.5	37.3	5.2	15	1	•	•
ASIGR/L 05S157-5220	5	1.57	2.5	42.3	5.2	20	1	•	•
ASIGR/L 05S157-5225	5	1.57	2.5	47.3	5.2	25	1	•	•
ASIGR/L 05S157-5230	5	1.57	2.5	52.3	5.2	30	1	•	•
ASIGR/L 05S198-5210	5	1.98	2.5	32.3	5.2	10	1	•	•
ASIGR/L 05S198-5215	5	1.98	2.5	37.3	5.2	15	1	•	•
ASIGR/L 05S198-5220	5	1.98	2.5	42.3	5.2	20	1	•	•
ASIGR/L 05S198-5225	5	1.98	2.5	47.3	5.2	25	1	•	•
ASIGR/L 05S198-5230	5	1.98	2.5	52.3	5.2	30	1	•	•
ASIGR/L 06S078-6210	6	0.78	3	32.3	6.2	10	1.8	•	•
ASIGR/L 06S078-6215	6	0.78	3	37.3	6.2	15	1.8	•	•
ASIGR/L 06S078-6220	6	0.78	3	42.3	6.2	20	1.8	•	•
ASIGR/L 06S078-6225	6	0.78	3	47.3	6.2	25	1.8	•	•
ASIGR/L 06S078-6230	6	0.78	3	52.3	6.2	30	1.8	•	•
ASIGR/L 06S078-6235	6	0.78	3	57.3	6.2	35	1.8	•	•
ASIGR/L 06S117-6210	6	1.17	3	32.3	6.2	10	1.8	•	•
ASIGR/L 06S117-6215	6	1.17	3	37.3	6.2	15	1.8	•	•
ASIGR/L 06S117-6220	6	1.17	3	42.3	6.2	20	1.8	•	•
ASIGR/L 06S117-6225	6	1.17	3	47.3	6.2	25	1.8	•	•

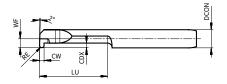
Тип ASIG S - для внутренней обработки канавок под стопорные кольца


			Основ	ные размер	ры (мм)			AP2	20U
Название	DCON	CW	WF	LF	DMIN	LU	CDX	R	L
ASIGR/L 06S117-6230	6	1.17	3	52.3	6.2	30	1.8	•	•
ASIGR/L 06S117-6235	6	1.17	3	57.3	6.2	35	1.8	•	•
ASIGR/L 06S117-6240	6	1.17	3	62.3	6.2	40	1.8	•	•
ASIGR/L 06S157-6210	6	1.57	3	32.3	6.2	10	1.8	•	•
ASIGR/L 06S157-6215	6	1.57	3	37.3	6.2	15	1.8	•	•
ASIGR/L 06S157-6220	6	1.57	3	42.3	6.2	20	1.8	•	•
ASIGR/L 06S157-6225	6	1.57	3	47.3	6.2	25	1.8	•	•
ASIGR/L 06S157-6230	6	1.57	3	52.3	6.2	30	1.8	•	•
ASIGR/L 06S157-6235	6	1.57	3	57.3	6.2	35	1.8	•	•
ASIGR/L 06S157-6240	6	1.57	3	62.3	6.2	40	1.8	•	•
ASIGR/L 06S198-6210	6	1.98	3	32.3	6.2	10	1.8	•	•
ASIGR/L 06S198-6215	6	1.98	3	37.3	6.2	15	1.8	•	•
ASIGR/L 06S198-6225	6	1.98	3	47.3	6.2	25	1.8	•	•
ASIGR/L 06S198-6235	6	1.98	3	57.3	6.2	35	1.8	•	•

Инструмент для соразмерной обработки

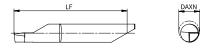
Тип ASIG R - для внутренней обработки радиусных канавок

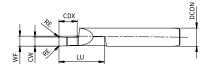


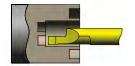


Haanayyya			Основ	ные размер	ы (мм)			AP220U		
Название	DCON	CW	WF	LF	DMIN	LU	CDX	R	L	
ASIGR/L 04R100-4215	4	1	2	32.3	4.2	15	0.8	•	•	
ASIGR/L 05R100-5220	5	1	2.5	42.3	5.2	20	1	•	•	
ASIGR/L 05R150-5220	5	1.5	2.5	42.3	5.2	20	1	•	•	
ASIGR/L 05R200-5220	5	2	2.5	42.3	5.2	20	1	•	•	
ASIGR/L 06R100-6225	6	1	3	47.3	6.2	25	1.8	•	•	
ASIGR/L 06R150-6225	6	1.5	3	47.3	6.2	25	1.8	•	•	
ASIGR/L 06R200-6225	6	2	3	47.3	6.2	25	1.8	•	•	

Тип ASIG R - для внутренней обработки радиусных канавок под стопорные кольца

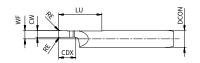


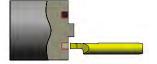




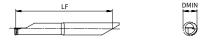
Название			Основ	ные размер	ры (мм)			AP220U		
пазвание	DCON	CW	WF	LF	DMIN	LU	CDX	R	L	
ASIGR/L 04R117-4215	4	1.17	2	32.3	4.2	15	0.8	•	•	
ASIGR/L 05R117-5220	5	1.17	2.5	42.3	5.2	20	1	•	•	
ASIGR/L 05R163-5220	5	1.63	2.5	42.3	5.2	20	1	•	•	
ASIGR/L 05R198-5220	5	1.98	2.5	42.3	5.2	20	1	•	•	
ASIGR/L 06R117-6225	6	1.17	3	47.3	6.2	25	1.8	•	•	
ASIGR/L 06R163-6225	6	1.63	3	47.3	6.2	25	1.8	•	•	
ASIGR/L 06R198-6225	6	1.98	3	47.3	6.2	25	1.8	•	•	

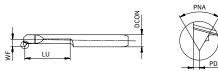
Тип ASIF A - для обработки внутренних торцевых канавок




Название			Oc	новные р	азмеры (м	им)			AP220U	
пазвание	DCON	CW	WF	RE	LF	DAXN	LU	CDX	R	L
ASIFR/L 06A100-6215	6	1	3	0.15	37.3	6.2	15	2	•	•
ASIFR/L 06A150-6215	6	1.5	3	0.15	37.3	6.2	15	3	•	•
ASIFR/L 06A200-6215	6	2	3	0.15	37.3	6.2	15	4	•	•
ASIFR/L 06A250-6215	6	2.5	3	0.15	37.3	6.2	15	5	•	•
ASIFR/L 06A300-6215	6	3	3	0.15	37.3	6.2	15	6	•	•
ASIFR/L 08A200-8015	8	2	3	0.2	44.3	8	15	15	•	•
ASIFR/L 08A250-8010	8	2.5	3	0.2	39.3	8	10	10	•	•
ASIFR/L 08A300-8010	8	3	3	0.2	39.3	8	10	10	•	•
ASIFR/L 08A300-8015	8	3	3	0.2	44.3	8	15	15	•	•
ASIFR/L 08A400-8010	8	4	3	0.2	39.3	8	10	10	•	•
ASIFR/L 08A400-8015	8	4	3	0.2	44.3	8	15	15	•	•

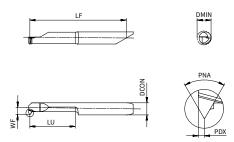
Тип ASIF B - для обработки наружных торцевых канавок

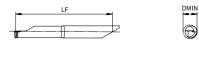


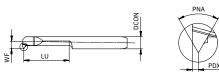


Попроми			Oc	новные р	азмеры (м	им)			AP220U	
Название	DCON	CW	WF	RE	LF	DAXN	LU	CDX	R	L
ASIFR/L 06B100-6215	6	1	3	0.15	37.3	6.2	15	2	•	•
ASIFR/L 06B150-6215	6	1.5	3	0.15	37.3	6.2	15	3	•	•
ASIFR/L 06B200-6215	6	2	3	0.15	37.3	6.2	15	4	•	•
ASIFR/L 06B250-6215	6	2.5	3	0.15	37.3	6.2	15	5	•	•
ASIFR/L 06B300-6215	6	3	3	0.15	37.3	6.2	15	6	•	•

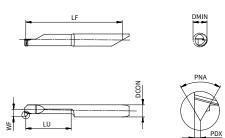
Инструмент для пкор<mark>азмерной об</mark>работки

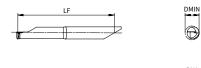

Тип ASIT V - для нарезания внутренней метрической резьбы (неполный профиль)

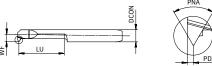

Название			Ос	новные ра	азмеры (м	им)			AP220U		
пазвание	DCON	PDX	PNA	WF	LF	Р	DMIN	LU	R	L	
ASITR/L 04V050-4215	4	0.4	60°	2	32.7	0.5~0.7	4.2	15	•	•	
ASITR 05V050-5215	5	0.4	60°	2.5	37.7	0.5~0.75	5.2	15	•	-	
ASITR 05V070-5115	5	0.5	60°	2.4	37.8	0.7~1	5.1	15	•	-	
ASITR/L 05V100-4815	5	0.6	60°	2.3	37.9	1~1.25	4.8	15	•	•	
ASITR 06V100-6215	6	0.6	60°	3	37.9	1~1.25	6.2	15	•	-	
ASITR/L 06V125-6215	6	0.8	60°	3	38.1	1.25~1.5	6.2	15	•	•	
ASITR/L 06V150-6215	6	1	60°	3	38.3	1.5~1.75	6.2	15	•	•	


Тип ASIT M - для нарезания внутренней метрической резьбы (полный профиль)

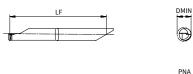
Haanauua			Oc	новные р	азмеры (м	им)			AP220U	
Название	DCON	PDX	PNA	WF	LF	Р	DMIN	LU	R	L
ASITR 04M050-4215	4	0.4	60°	2	32.7	0.5	4.4	15	•	-
ASITR 04M070-4215	4	0.5	60°	1.9	32.8	0.7	4.4	15	•	-
ASITR 04M080-4015	4	0.5	60°	1.9	32.8	0.8	4	15	•	-
ASITR 05M050-5215	5	0.4	60°	2.5	37.7	0.5	5.2	15	•	-
ASITR 05M075-5115	5	0.5	60°	2.4	37.8	0.75	5.1	15	•	-
ASITR 05M100-4815	5	0.6	60°	2.3	37.9	1	4.8	15	•	-
ASITR 06M100-6215	6	0.6	60°	3	37.9	1	6.2	15	•	-
ASITR 06M125-6215	6	0.7	60°	3	38	1.25	6.2	15	•	-
ASITR 06M150-6215	6	8.0	60°	3	38.1	1.5	6.2	15	•	-
ASITR 06M175-6215	6	0.9	60°	3	38.2	1.75	6.2	15	•	-
ASITR 06M200-6215	6	1	60°	3	38.3	2	6.2	15	•	-

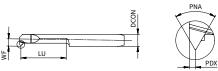

Тип ASIT U - для нарезания внутренней резьбы UN


Название			Oc	новные р	азмеры (м	им)			AP220U		
пазвание	DCON	PDX	PNA	WF	LF	Р	DMIN	LU	R	L	
ASITR 04U032-4015	4	0.6	60°	1.9	32.9	28	4	15	•	-	
ASITR 04U028-4015	4	0.6	60°	1.9	32.9	32	4	15	•	-	
ASITR 04U024-4215	4	0.7	60°	2	33	24	4.2	15	•	-	
ASITR 05U020-5215	5	0.7	60°	2.5	38	20	5.2	15	•	-	
ASITR 06U018-6215	6	0.6	60°	3	38.1	18	6.2	15	•	-	
ASITR 06U016-6215	6	0.9	60°	3	38.2	16	6.2	15	•	-	


Тип ASIT W - для нарезания внутренней резьбы Whitworth

Название			Oc	новные р	азмеры (м	им)			AP220U		
пазвание	DCON	PDX	PNA	WF	LF	Р	DMIN	LU	R	L	
ASITR 05W028-5215	5	0.8	55°	2.5	38.1	28	5.2	15	•	-	
ASITR 05W026-5215	5	0.8	55°	2.5	38.1	26	5.2	15	•	-	
ASITR 05W024-5215	5	0.8	55°	2.5	38.1	24	5.2	15	•	-	
ASITR 06W028-6215	6	0.8	55°	3	38.1	28	6.2	15	•	-	
ASITR 06W026-6215	6	0.8	55°	3	38.1	26	6.2	15	•	-	
ASITR 06W024-6215	6	0.8	55°	3	38.1	24	6.2	15	•	-	
ASITR 06W022-6215	6	1	55°	3	38.3	22	6.2	15	•	-	
ASITR 06W020-6215	6	1	55°	3	38.3	20	6.2	15	•	-	
ASITR/L 06W019-6215	6	1	55°	3	38.3	19	6.2	15	•	•	


Тип ASIT N - для нарезания внутренней резьбы NPT



Название			Ос	новные р	азмеры (м	им)			AP220U	
	DCON	PDX	PNA	WF	LF	Р	DMIN	LU	R	L
ASITR 06N027-6215	6	0.8	60°	3	38.1	27	6.2	15	•	-
ASITR/L 06N018-6215	6	1	60°	3	38.3	18	6.2	15	•	•

Тип ASIT Т - для нарезания внутренней трапецеидальной резьбы (TR)

Название			Oc	новные р	азмеры (м	им)			AP220U	
пазвание	DCON	PDX	PNA	WF	LF	Р	DMIN	LU	R	L
ASITR 06T150-6220	6	0.6	30°	3	38.2	1.5	6.2	20	•	-
ASITR 06T200-6220	6	8.0	30°	3	38.4	2	6.2	20	•	-

Обзор решений для обработки канавок и отрезки

				Обраб	отка наружнь	іх канавок и с	трезка	
	Tı	ип державки	ASGHR/L	S-ASGHL	ATGHR/L	ATSER/L	ATSER/L-D	ATSER/L-SW
Тип	обработки		£0,	•	*	9		
	Страница к	каталога	153	154	155	157	159	160
	Отрезка	1				•	•	•
вок и отрезка	Обработка канавок	Ţ,	•	•	•	•	•	•
Обработка наружных канавок и отрезка	Точение	<u>.</u>				•	•	•
Обработка н	Профильное точение					•	•	
	Подрезка							
торцевых авок	Обработка торцевых канавок							
Обработка торцев канавок	Точение							
Обработка внутренних канавок	Обработка канавок							
Обработка канє	Точение	-17						

● Первый выбор

бработка канавок

Обзор решений для обработки канавок и отрезки

			Обработка наружных канавок и отрезка		Обработ	гка торцевых	канавок	
		Тип державки	AGUER/L	ATSFR/L	ATSFR/L-OB	AGSFR/L	AGPFR/L	ATPFR\L
Тип обработки		Ť	1					
	Страница і	каталога	161	162	163	165	166	167
	Отрезка	\ i						
вок и отрезка	Обработка канавок	Į,				•	•	
Обработка наружных канавок и отрезка	Точение	<u>.</u>				0	0	
Обработка н	Профильное точение							
	Подрезка		•					
Обработка торцевых канавок	Обработка торцевых канавок			•	•	•	•	•
Обработка	Точение			•	•	•	•	•
Обработка внутренних канавок	Обработка канавок							
Обработка	Точение	77						

● Первый выбор

Обзор решений для обработки канавок и отрезки

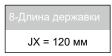
	Тип державки		Обработка внутренних канавок						
		л державки	ATPIR/L	ATGIR/L	ATSIR/L	AGSIR/L	AGUIR/L		
Тип	Тип обработки		*		3				
	Страница к	каталога	168	169	168	170	172		
	Отрезка	\							
вок и отрезка	Обработка канавок	Tt.							
Обработка наружных канавок и отрезка	Точение	<u>.</u>							
Обработка н	Профильное точение								
	Подрезка						•		
Обработка торцевых канавок	Обработка торцевых канавок				•	•			
Обработка	Точение				•	•			
Обработка внутренних канавок	Обработка канавок		•	•					
Обработка кан:	Точение	T	•				■ Первый выбол		

• Первый выбор

Система обозначения державок серии ASG для наружной обработки мелкоразмерных канавок

1-Название бренда АСНТЕСК

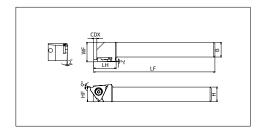
2-T	
s	S: для токарных автоматов швейцарского типа



4-Тип державки				
Н	Цельная державка			

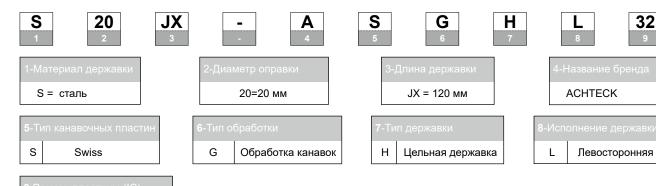
L	Левосторонняя				
R	Правосторонняя				

6-Высота державки 20=20.0 мм



9 -Размер пластины (IC) 32=9.525 мм 10 -Форма рабочей части державки F: без углубления

Державки ASGHR/L для наружной обработки мелкоразмерных канавок


Название			Основн	Запасные части				
			_				Винт	Отвёртка
		Н Н	В	LF	LH	CDX		
	1010JX-32F	10	10	120	18.5	2.5		
	1212FX-32F	12	12	85	18.5	2.5	SP040070	FT-TP08
	1212JX-32F	12	12	120	18.5	2.5		
	1616JX-32F	16	16	120	18.5	2.5		
ASGHR/L	2020JX-32F	16	16	120	18.5	2.5		
	1010F-32	10	10	80	18.5	2.5		
	1212H-32	12	12	100	18.5	2.5		
	1616H-32	16	16	100	18.5	2.5		
	2020K-32	20	20	125	20	2.5		
	2525M-32	25	25	150	20	2.5		

Тип обработки	Обработка канавок
Тип пластины	
ASGHR/L**	ASG 32
стр. каталога	178

32 = 9.525 мм

32

Система обозначения оправок серии ASG для внутренней обработки мелкоразмерных канавок

Оправки S....ASGHR/L для внутренней обработки мелкоразмерных канавок

		Запасные части							
Название	50011				DMIN	Винт	Отвёртка		
	DCON	LF	WF	HDD		T			
S12F-ASGHL32	12	80		11					
S14H-ASGHL32	14			13					
S15.0H-ASGHL32	15.875	100	- 6	15.875	27				
S16H-ASGHL32	16			15.675					
S19.0JX-ASGHL32	19.05	120	0	17.6		21	SP040070	SP040070	FT-TP08
S20JX-ASGHL32	20	120		18.6					
S22JX-ASGHL32	22	120		10.0					
S25JX-ASGHL32	25	120		23.6					
S25.0JX-ASGHL32	25.4	120	10	23.6	37				

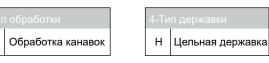
Тип обработки	Обработка канавок
Тип пластины Название	0
SASGHL**	ASG 32
стр. каталога	178

Система обозначения державок серии АТС для наружной обработки канавок небольшого размера

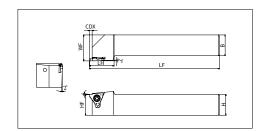
20=20.0 мм

25=25.0 мм

ACHTECK



R



Державки ATGHR/L для наружной обработки канавок небольшого размера

Название			Oc	Запасные части						
								Винт	Отвёртка	
		H B LF LH WF	CDX							
	2020K32-T25	20	20	20	125	24	2.5	SP040085	FT-TP15	
	2525M32-T25	25	25	25	150	24	2.5	SP040065	F1-1P15	
ATGHR/L	2020K43-10T40	20	20	20	125	25.5	4.0	SP05008550		
	2525M43-10T40	25	25	25	150	25.5	4.0			
	2020K43-20T45	20	20	20	125	25.5	4.5			
	2525M43-20T45	25	25	25	150	25.5	4.5		FT-TP20	
	2020K43-20T55	20	20	20	125	25.5	5.5		F1-1P20	
	2525M43-20T55	25	25	25	150	25.5	5.5			
	2020K43-30T55	20	20	20	125	25.5	5.5			
	2525M43-30T55	25	25	25	150	25.5	5.5			

Тип обработки	Обработка канавок	Профильное точение
Тип пластины Название	0	0
ATGHR/L** 32	ATG 32	ATG 32
ATGHR/L** 43	ATG 43	ATG 43
стр. каталога	179	180

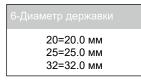
Система обозначения державок для обработки канавок и отрезки серии ATS, AGU, AGS, AGP, ATP

25 8

-

1-Название бренда АСНТЕСК

2-Тип обработки					
G	Обработка канавок				
Т	Точение				


Форма рабочей части державки S: Прямая U: Наклонная

Р: Г-образная

4-Вид обработки

Е: Наружная обработка
І: Внутренняя обработка
F: Обработка торцевых канавок

5-Испо	
L	Левосторонняя
R	Правосторонняя

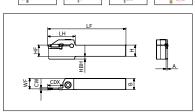
8-Ширина державки	
20=20.0 мм 25=25.0 мм 32=32.0 мм	

9-Ширина пластины
2=2.0 мм
3=3.0 мм
4=4.0 мм

12-Максимальный диаметр канавки	
80=80.0 мм	

13-Спец. обозначение

SW: для станков-автоматов швейцарского типа


ОВ: с выпуклой наружной частью C: с внутренним подводом СОЖ D: усиленная конструкция

бработка канавок

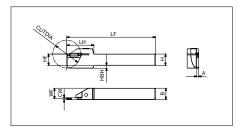
Державки ATSER/L для наружной обработки канавок

Основные размеры (мм) Запасні												
				(Основнь	ые разме	еры (мм)			Запаснь	е части
Наз	вание	Н	В	HF	НВН	А	LF	LH	WF	CDX	Винт	Отвёртка
	1616-2T08	16	16	16	4	1.8	110	33	15.1	8		U
	1616-2T12	16	16	16	4	1.8	110	32	15.1	12	SH050160	
	1616-2T17	16	16	16	4	1.8	110	37	15.1	17	011030100	
	2020-2T08	20	20	20	0	1.8	125	33	19.1	8		
	2020-2T12	20	20	20	0	1.8	125	32	19.1	12	SH050200	
	2020-2T17	20	20	20	0	1.8	125	37	19.1	17		
	2525-2T08	25	25	25	0	1.8	150	33	24.1	8		
	2525-2T12	25	25	25	0	1.8	150	32	24.1	12	SH050250	
	2525-2T17	25	25	25	0	1.8	150	37	24.1	17		
	1616-3T09	16	16	16	4	2.4	110	32	14.8	9		LT-H4
	1616-3T12	16	16	16	4	2.4	110	32	14.8	12	SH050160	
	1616-3T20	16	16	16	4	2.4	110	38	14.8	20		
	2020-3T09	20	20	20	0	2.4	125	32	18.8	9	01105000	
	2020-3T12	20	20	20	0	2.4	125	32	18.8	12	SH050200	
	2020-3T20	20	20	20	0	2.4	125	38	18.8	20		
	2525-3T09 2525-3T12	25 25	25 25	25 25	0	2.4 2.4	150 150	32 32	23.8	9	SH050250	
	2525-3112 2525-3T20	25	25	25	0	2.4	150	38	23.8	20	011030230	
	2525-3120 2525-3T25	25	25	25	0	2.4	150	45	23.8	25		
	1616-4T10	16	16	16	4	3.35	110	32	14.3	10		
	1616-4T15	16	16	16	4	3.35	110	33	14.3	15	SH060160	
	1616-4T25	16	16	16	4	3.35	110	45	14.3	25		
	2020-4T10 20 20 20 0 3.35	125	32	18.3	10							
	2020-4T15	20	20	20	0	3.35	125	33	18.3	15	SH060200 SH060250	
	2020-4T25	20	20	20	0	3.35	125	45	18.3	25		
ATSER/L	2525-4T10	25	25	25	0	3.35	150	32	23.3	10		
71102102	2525-4T15	25	25	25	0	3.35	150	33	23.3	15		
	2525-4T20	25	25	25	0	3.35	150	40	23.3	20		
	2525-4T25	25	25	25	0	3.35	150	45	23.3	25		LT-H5
	2020-5T12 2020-5T20	20 20	20 20	20 20	0	4.35 4.35	125 125	37 37	17.8 17.8	12 20	SH060200	
	2525-5T12	25	25	25	0	4.35	150	37	22.8	12		
	2525-5T20	25	25	25	0	4.35	150	37	22.8	20		
	2525-5T32	25	25	25	0	4.35	150	56	22.8	32		
	3232-5T12	32	32	32	0	4.35	170	37	29.8	12	SH060250	
	3232-5T20	32	32	32	0	4.35	170	39	29.8	20		
	3232-5T25	32	32	32	0	4.35	170	46	29.8	25		
	3232-5T32	32	32	32	0	4.35	170	56	29.8	32		
	2020-6T12	20	20	20	0	5.35	125	37	17.3	12	SH080200	
	2020-6T20	20	20	20	0	5.35	125	41	17.3	20	31.030200	
	2525-6T12	25	25	25	7	5.35	150	37	22.3	12		
	2525-6T20	25	25	25	7	5.35	150	41	22.3	20		
	2525-6T32 3232-6T12	25 32	25 32	25 32	7	5.35 5.35	150 170	56 37	22.3	32 12		
	3232-6112 3232-6T20	32	32	32	0	5.35	170	41	29.3	20		
	3232-6T25	32	32	32	0	5.35	170	46	29.3	25		LT-H6
	3232-6T32	32	32	32	0	5.35	170	56	29.3	32	SH080250	
	2525-8T16	25	25	25	7	7.35	150	47	21.3	16		
	2525-8T25	25	25	25	7	7.35	150	47	21.3	25		
	2525-8T36	25	25	25	7	7.35	150	60	21.3	36		
	3232-8T25	32	32	32	0	7.35	170	47	28.3	25		
	3232-8T36	32	32	32	0	7.35	170	60	28.3	36		

Подходящие пластины

Тип обработки	Низкие подачи	Низкие и средние подачи	Средние подачи	Чистовая обработка	Низкие силы резания	Средние подачи	Профильная обработка	Проф. обр. алюминия	Повыш. точность
Тип пластины	cs	СМ	СН	GS	TS	TM	RM	RA	G
Название			3	The state of the s		4	9		P.
ATSER/L**	ACD 202 ACD 302	ACD/ACS 202 ACD/ACS 603		ATD 300E ATD 714E	ATD 203 ATD 808	ATD 304 ATD 812	ATD 210 ATD 840	ATD 315 ATD 840	ATD 100E ATD 800E
стр. каталога	181	182	183	184	185	185	186	186	188

Пластины серии ACD/ACS не подходят для операций продольного точения


Vodeney extoned

Державки ATSER/L-D усиленной конструкции для наружной обработки канавок

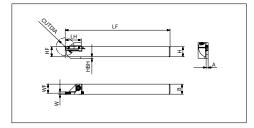
				C	сновнь	е разм	еры (мі	м)				Запаснь	е части
Название		Н	_						\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ODV.	CUITOIA	Винт	Отвёртка
			В	HF	HBH	А	LF	LH	WF	CDX	CUTDIA		
	1010-2T15-D40	10	10	10	6	1.8	125	32	9.1	15	40		
	1212-2T15-D40	12	12	12	4	1.8	125	32	11.1	15	40	SH050160	
	1616-2T20-D45	16	16	16	4	1.8	125	38	15.1	20	45		
	2020-2T20-D45	20	20	20	0	1.8	125	38	19.1	20	45	SH050200	
ATSER/L	2525-2T20-D45	25	25	25	0	1.8	150	38	24.1	20	45	SH050250	
AISER/L	1212-3T15-D40	12	12	12	4	2.4	125	32	10.8	15	40	SH050160	LT-H4
	1616-3T20-D45	16	16	16	4	2.4	125	38	14.8	20	45	SH050200	
	2020-3T20-D45	20	20	20	0	2.4	125	38	18.8	20	45	311030200	
	2525-3T20-D45	25	25	25	0	2.4	150	38	23.8	20	45	SH050250	
	2525-3T25-D60	25	25	25	7	2.4	150	43	23.8	25	60	30000200	

Подходящие пластины

Тип обработки	Низкие подачи	Низкие и средние подачи	Средние подачи	Чистовая обработка	Низкие силы резания	Средние подачи	Профильная обработка	Проф. обр. алюминия	Повыш. точность
Тип пластины Название	CS	СМ	СН	GS	TS	TM	RM	RA	G
ATSER/L** -D	ACD 202 ACD 302	ACD/ACS 202 ACD/ACS 302		ATD 300E ATD 318E	ATD 203 ATD 303	ATD 304	ATD 210 ATD 315	ATD 315	ATD 100E ATD 300E
стр. каталога	181	182	183	184	185	185	186	186	188

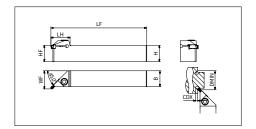
Пластины серии ACD/ACS не подходят для операций продольного точения

Максимальный диаметр заготовки и глубина канавки


		Максимальный								CI	ΟX								
П	азвание	диаметр заготовки	≤8	9	10	11	12	13	14	15	17	18	19	20	21	22	23	24	25
	1010-2T15-D40		∞	∞	∞	269	120	79	59	40	-	-	-	-	-	-	-	-	-
	1212-2T15-D40		∞	∞	∞	269	120	79	59	40	-	-	-	-	-	-	-	-	-
	1616-2T20-D45		∞	∞	∞	∞	∞	432	193	125	76	64	57	45	-	-	-	-	-
	2020-2T20-D45		∞	∞	∞	∞	∞	432	193	125	76	64	57	45	-	-	-	-	-
ATSER/L	2525-2T20-D45	CUTDIA	∞	1468	339	193	136	106	87	75	60	56	52	45	-	-	-	-	-
AISEN/L	1212-3T15-D40	COTDIA	∞	∞	∞	269	120	79	59	40	-	-	-	-	-	-	-	-	-
	1616-3T20-D45		∞	∞	∞	∞	∞	432	193	125	76	64	57	45	-	-	-	-	-
	2020-3T20-D45		∞	∞	∞	∞	∞	432	193	125	76	64	57	45	-	-	-	-	-
	2525-3T20-D45		∞	1468	339	193	136	106	87	75	60	56	52	45	-	-	-	-	-
	2525-3T25-D60		8	∞	8	∞	∞	8	8	∞	418	237	167	130	107	91	81	73	60

[&]quot;∞": нет ограничения на диаметр

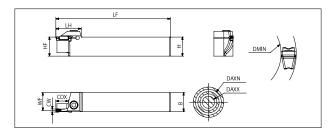
Державки ATSER/L-SW для наружной обработки канавок на токарных автоматах швейцарского типа


					Основны	ые разм	еры (ми	и)			Запасные части	
Назв	Название									0117014	Винт	Отвёртка
			В	HF	HBH	A	LF	LH	WF	CUTDIA		
	1010-2D20-SW	10	10	10	2	1.8	125	19	9.1	20		
	1212-2D24-SW	12	12	12	2	1.8	125	19	11.1	24	SP040125	
	1414-2D24-SW	14	14	14	0	1.8	125	19	13.1	24		
ATSER/L	1616-2D32-SW	16	16	16	0	1.8	125	24	15.1	32		LT-TP15
AISENL	1212-3D24-SW	12	12	12	2	2.4	125	19	10.8	24	35040123	LI-IF IS
	1616-3D32-SW	16	16	16	0	2.4	125	24	14.8	32		
	1616-3D38-SW	16	16	16	0	2.4	125	27	14.8	38		
	2020-3D45-SW	20	20	20	0	2.4	125	31	18.8	45		

Тип обработки	Низкие подачи	Низкие и средние подачи	Средние подачи	Чистовая обработка	Низкие силы резания	Средние подачи	Профильная обработка	Проф. обр. алюминия	Повыш. точность
Тип пластины Название	CS	СМ	СН	GS	TS	TM	RM	RA	G
ATSER/L**SW	ACD 202 ACD 302		ACD/ACS 202 ACD/ACS 302	ATD 300E ATD 318E	ATD 203 ATD 303	ATD 304	ATD 210 ATD 315	ATD 315	ATD 100E ATD 300E
стр. каталога	181	182	183	184	185	185	186	186	188

Державки AGUER/L для обработки наружных наклонных канавок

		Ширина			Осн		Запасные части					
Назв	Название			_					051/		Винт	Отвёртка
		(MM)	Н	В	HF	LF	LH	WF	CDX	DMIN		
	1616-3	2, 3	16	16	16	110	30.2	19.6	3	60	SH050160	
	1616-4	4	16	16	16	110	30.2	19.8	3	55	SH060160	LT-H4
	2020-3	2, 3	20	20	20	125	30.2	23.6	3	60	SH050200	
AGUER/L	2020-4	4	20	20	20	125	30.2	23.8	3	55	SH060200	LT-H5
	2525-3	2, 3	25	25	25	150	30.2	28.6	3	60	SH050250	LT-H4
	2525-4	4	25	25	25	150	30.2	28.8	3	55	CLIOCOSEO	LT-H5
	2525-6	5, 6	25	25	25	150	33.6	29.2	3.5	55	SH060250	LI-H5

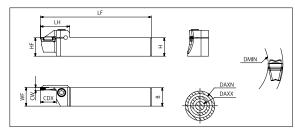

Тип обработки	Профильная обработка	Проф. обр. алюминия	Повыш. точность
Тип пластины	RM	RA	G
Название			
400504	ATD 210	ATD 315	ATD 100E
AGUER/L**	ATD 630	ATD 630	ATD 600E
стр. каталога	186	186	190

Державки ATSFR/L для обработки торцевых канавок

					Основ	ные р	азмеры	(мм)			Запасные части	
	Название										Винт	Отвёртка
		Н	В	HF	LF	LH	WF	CDX	DAXX	DAXN		
	2525-3T10-35-45	25	25	25	150	32	23.95	10	35	45		
	2525-3T10-40-55	25	25	25	150	32	23.95	10	40	55	SH050250	LT-H4
	2525-3T15-45-65	25	25	25	150	32	23.95	15	45	65	30000200	LI-N4
	2525-3T15-55-85	25	25	25	150	32	23.95	15	55	85		
	2525-4T15-35-50	25	25	25	150	32	23.55	15	35	50		
	2525-4T15-45-65	25	25	25	150	32	23.55	15	45	65	SH060250	LT-H5
	2525-4T15-55-85	25	25	25	150	32	23.55	15	55	85		
ATSFR/L	2525-5T20-50-80	25	25	25	150	40	23.05	20	50	80		
	2525-5T20-70-110	25	25	25	150	40	23.05	20	70	110		
	2525-5T20-100-150	25	25	25	150	40	23.05	20	100	150		
	2525-5T20-140-200	25	25	25	150	40	23.05	20	140	200	SH080250	LT-H6
	2525-6T20-50-85	25	25	25	150	40	22.55	20	50	85	311000230	LI-NO
	2525-6T20-75-150	25	25	25	150	40	22.55	20	75	150		
2525-6T20-140	2525-6T20-140-250	25	25	25	150	40	22.55	20	140	250		
	2525-6T20-200-000	25	25	25	150	40	22.55	20	200	8		

Подходящие пластины

Тип обработки	Низкие и средние подачи	Средние подачи	Чистовая обработка	Низкие силы резания	Средние подачи	Профильная обработка	Повыш. точность
Тип пластины	СМ	СН	GS	TS	TM	RM	G
Минимальный Название диаметр обработки DMIN (мм)	C. C.		Ci.	P. 1	4	9	R. C.
ATSFR/L 2525-3T	79	79	59	35	35	59	59
ATSFR/L 2525-4T	42	42	42	35	35	42	42
ATSFR/L 2525-5T	50	50	50	50	50	50	50
ATSFR/L 2525-6T	50	50	50	50	50	50	50
стр. каталога	182	183	184	185	185	186	188

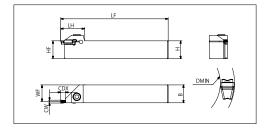

Пластины серии ACD/ACS не подходят для операций продольного точения При обработке торцевых канавок требуется проверить значение минимального диаметра не только для державки, но и для геометрии пластины

бработка канавс

Державки ATSFR/L-OB с опорной поверхностью наружу для обработки торцевых канавок

		Основные размеры (мм)									1 -	
					Основн	ые раз	меры (м	ім)			Запаснь	е части
	Название		_								Винт	Отвёртка
		Н	В	HF	LF	LH	WF	CDX	DAXX	DAXN		
	2020-3T10-30-40-OB	20	20	20	140	31	18.95	10	30	40		Ц
	2020-3T10-35-50-OB	20	20	20	140	31	18.95	10	35	50		
	2020-3T15-45-70-OB	20	20	20	140	35	18.95	15	45	70		
	2020-3T15-65-100-OB	20	20	20	140	35	18.95	15	65	100		
	2020-4T10-20-30-OB	20	20	20	140	31	18.55	10	20	30		
	2020-4T10-25-35-OB	20	20	20	140	31	18.55	10	25	35	SH060200	LT-H5
	2020-4T16-30-45-OB	20	20	20	140	36	18.55	16	30	45		
	2020-4T16-35-50-OB	20	20	20	140	36	18.55	16	35	50		
	2020-4T16-45-70-OB	20	20	20	140	36	18.55	16	45	70		
	2020-4T16-65-120-OB	20	20	20	140	36	18.55	16	65	120		
	2020-4T16-115-200-OB	20	20	20	140	36	18.55	16	115	200		
	2525-3T10-35-50-OB	25	25	25	150	38	23.95	10	35	50		
	2525-3T15-45-70-OB	25	25	25	150	38	23.95	15	45	70		
	2525-3T15-65-100-OB	25	25	25	150	38	23.95	15	65	100	SH060250	
	2525-4T10-25-35-OB	25	25	25	150	39	23.55	10	25	35		
	2525-4T20-30-45-OB	25	25	25	150	39	23.55	20	30	45		17 45
ATSFR/L	2525-4T20-35-50-OB	25	25	25	150	39	23.55	20	35	50	30000230	LT-H5
	2525-4T20-45-70-OB	25	25	25	150	39	23.55	20	45	70		
	2525-4T20-65-125-OB	25	25	25	150	39	23.55	20	65	125		
	2525-4T20-115-200-OB	25	25	25	150	39	23.55	20	115	200		
	2525-4T20-190-000-OB	25	25	25	150	39	23.55	20	190	∞		
	2525-5T25-50-80-OB	25	25	25	150	49	23.05	25	50	80		
	2525-5T15-50-80-OB	25	25	25	150	41	23.05	15	50	80		
	2525-5T25-70-110-OB	25	25	25	150	49	23.05	25	70	110		
	2525-5T15-70-110-OB	25	25	25	150	49	23.05	15	70	110		
	2525-5T25-100-150-OB	25	25	25	150	49	23.05	25	100	150		
	2525-5T25-140-200-OB	25	25	25	150	49	23.05	25	140	200	SH080250	LT-H6
	2525-5T25-190-000-OB	25	25	25	150	49	23.05	25	190	∞	3550250	
	2525-6T25-50-70-OB	25	25	25	150	49	22.55	25	50	70		
	2525-6T25-60-100-OB	25	25	25	150	49	22.55	25	60	100		
	2525-6T25-90-180-OB	25	25	25	150	49	22.55	25	90	180		
	2525-6T25-170-400-OB	25	25	25	150	49	22.55	25	170	400		
	2525-6T25-390-000-OB	25	25	25	150	49	22.55	25	390	∞		

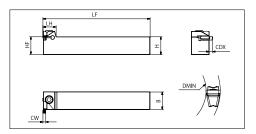
Тип обработки	Низкие и средние подачи	Средние подачи	Чистовая обработка	Низкие силы резания	Средние подачи	Профильная обработка	Повыш. точность
Тип пластины	СМ	СН	GS	TS	TM	RM	G
Минимальный Название диаметр обработки DMIN (мм)		3	CH.	3	4	9	P
ATSFR/L 2020-3TOB	79	79	59	30	30	59	59
ATSFR/L 2020-4TOB	42	42	42	22	22	42	42
ATSFR/L 2525-3TOB	79	79	59	35	35	59	59
ATSFR/L 2525-4TOB	42	42	42	25	25	42	42
ATSFR/L 2525-5TOB	50	50	50	50	50	50	50
ATSFR/L 2525-6TOB	50	50	50	50	50	50	50
стр. каталога	182	183	184	185	185	186	188


^{1.} Пластины серии ACD/ACS не подходят для операций продольного точения
2. При обработке торцевых канавок требуется проверить значение минимального диаметра не только для державки, но и для геометрии пластины

Державки AGSFR/L для обработки наружных и торцевых канавок

		Ширина			Основн	ые разме	ры (мм)			Запасны	е части
Назв	зание	пластины).A/E	000	Винт	Отвёртка
		(MM)	Н	В	HF	LF	LH	WF	CDX		
	1616-4	2, 3, 4	16	16	16	110	33	14.30	4.6	SH060160	
AGSFR/L	2020-4	2, 3, 4	20	20	20	125	33	18.30	4.6	SH060200	
AGSFR/L	2020-6	5, 6	20	20	20	125	37	17.30	4.6	SH000200	LT-H5
	2525-4	2, 3, 4	25	25	25	150	33	23.30	4.6	SH060250	
	2525-6	5, 6	25	25	25	150	37	22.30	4.6	30000230	

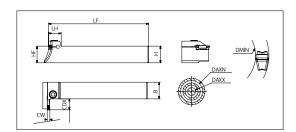
Тип обработки		Низкие подачи	Низкие и средние подачи	Средние подачи	Чистовая обработка	Низкие силы резания	Средние подачи	Профильная обработка	Повыш. точность
Тип пластины Минимальный диаметр обработки Название DMIN (мм)	Ширина пластины (мм)	CS	СМ	CH	GS	TS	TM	RM	G
	2	196	196	196	100	196	-	196	100
	3	79	79	79	59	24	24	59	59
AGSFR/L**	4	-	42	42	42	22	22	42	42
	5	-	50	50	40	20	20	40	40
	6	-	48	48	38	18	18	38	38
стр. каталога		181	182	183	184	185	185	186	188


^{1.} Пластины серии ACD/ACS не подходят для операций продольного точения
2. "-" - нет пластин данной ширины в этой геометрии
3. При обработке торцевых канавок требуется проверить значение минимального диаметра не только для державки, но и для геометрии пластины

Державки AGPFR/L Г-образной формы для обработки торцевых канавок

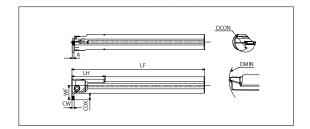
		Ширина		(Основные ра	азмеры (ми	1)		Запасны	е части
Назва	ание	пластины	Н	,				0DV	Винт	Отвёртка
		(мм)		В	HF	LF	LH	CDX		
	2020-4	2, 3, 4	20	20	20	125	18	4.6	SH060200	LT-H5
AGPFR/L	2525-4	2, 3, 4	25	25	25	150	18	4.6	CLIOCOOFO	1.7.115
	2525-6	5, 6	25	25	25	150	22	4.6	SH060250	LT-H5

Тип обработки		Низкие подачи	Низкие и средние подачи	Средние подачи	Чистовая обработка	Низкие силы резания	Средние подачи	Профильная обработка	Повыш. точность
Тип пластины Минимальный диаметр обработки DMIN (мм)	Ширина пластины (мм)	CS	СМ	CH	GS	TS	TM	RM	G
	2	196	196	196	100	196	-	196	100
	3	79	79	79	59	24	24	59	59
AGPFR/L**	4	-	42	42	42	22	22	42	42
	5	-	50	50	40	20	20	40	40
	6	-	48	48	38	18	18	38	38
стр. каталога		181	182	183	184	185	185	186	188


^{1.} Пластины серии ACD/ACS не подходят для операций продольного точения
2. "-" - нет пластин данной ширины в этой геометрии
3. При обработке торцевых канавок требуется проверить значение минимального диаметра не только для державки, но и для геометрии пластины

Державки ATPFR/L Г-образной формы для обработки торцевых канавок

		Ширина		(Основнь	ые разм	еры (ми	и)		Запасные части	
	Название	пластины		_	LF		ODY	DAYY	DAVAL	Винт	Отвёртка
		(мм)	Н	В	LF	LH	CDX	DAXX	DAXN		
	2525-3T10-30-40	3	25	25	150	18	10	30	40		
	2525-3T10-35-50	3	25	25	150	18	10	35	50	SH050250	LT-H4
	2525-3T15-45-60	3	25	25	150	18	15	45	60	SH030230	L1-∏4
	2525-3T15-55-85	3	25	25	150	18	15	55	85		
	2525-4T12-25-40	4	25	25	150	18.5	12	25	40		
	2525-4T15-35-50	4	25	25	150	18.5	15	35	50	SH060250	LT-H5
	2525-4T15-45-60	4	25	25	150	18.5	15	45	60	SH060250	LI-HS
	2525-4T15-55-85	4	25	25	150	18.5	15	55	85		
ATPFR/L	2525-5T20-50-80	5	25	25	150	22	20	50	80		
	2525-5T20-70-110	5	25	25	150	22	20	70	110		
	2525-5T20-100-150	5	25	25	150	22	20	100	150		
	2525-5T20-140-200	5	25	25	150	22	20	140	200		
	2525-5T20-190-000	5	25	25	150	22	20	190	∞	SH080250	LT-H6
	2525-6T20-50-85	6	25	25	150	22	20	50	85		
	2525-6T20-75-150	6	25	25	150	22	20	75	150		
	2525-6T20-140-250	6	25	25	150	22	20	140	250		
	2525-6T20-240-000	6	25	25	150	22	20	240	∞		


Тип обработки	Низкие и средние подачи	Средние подачи	Чистовая обработка	Низкие силы резания	Средние подачи	Профильная обработка	Повыш. точность
Тип пластины	СМ	СН	GS	TS	ТМ	RM	G
Минимальный диаметр обработки DMIN (мм)		3	H	(A)	4	9	P. T.
ATPFR/L 2525-3T	79	79	59	35	35	59	59
ATPFR/L 2525-4T	42	42	42	35	35	42	42
ATPFR/L 2525-5T	50	50	50	50	50	50	50
ATPFR/L 2525-6T	50	50	50	50	50	50	50
стр. каталога	182	183	184	185	185	186	188

^{1.} Пластины серии ACD/ACS не подходят для операций продольного точения
2. При обработке торцевых канавок требуется проверить значение минимального диаметра не только для державки, но и для геометрии пластины

Державки ATPIR/L для обработки внутренних канавок

				Основн	ые разме	ры (мм)			Запасны	е части
	Название								Винт	Отвёртка
		DCON	LF	LH	WF	А	CDX	DMIN		
	20-2T6-25-C	20	160	40	15.8	1.8	6	25	SH050120	
	25-2T5-25-C	25	200	40	17.5	1.8	5	25	SH050160	
	32-2T5-30-C	32	250	40	19.8	1.8	5	30	30000100	
	20-3T6-25-C	20	160	40	15.8	2.4	6	25	SH050120	
	25-3T5-25-C	25	200	40	17.5	2.4	5	25		
	25-3T8-32-C	25	200	40	21.5	2.4	8	32		LT-H4
	32-3T5-30-C	32	250	60	19.8	2.4	5	30	SH050160	LI-04
	32-3T10-40-C	32	200	60	27	2.4	10	40		
	40-3T12-50-C	40	300	65	33	2.4	12	50		
	20-4T6-25-C	20	160	40	15.8	3.35	6	25	SH050120	
	25-4T5-25-C	25	200	40	17.5	3.35	5	25	SH050160	
	25-4T8-32-C	25	200	40	21.5	3.35	8	32		
	32-4T5-30-C	32	250	60	20.8	3.35	5	30	SH060160	
ATPIR/L	32-4T10-40-C	32	250	60	27	3.35	10	40		
	40-4T12-50-C	40	300	65	33	3.35	12	50		
	50-4T14-60-C	50	350	70	40	3.35	14	60	SH060200	
	25-5T5-31-C	25	200	40	17.3	4.35	5	31	SH060160	
	32-5T5-31-C	32	250	60	20.8	4.35	5	31	SH060200	
	32-5T10-40-C	32	250	60	27	4.35	10	40		
	40-5T12-50-C	40	300	65	33	4.35	12	50	SH060250	LT-H5
	50-5T14-60-C	50	350	70	40	4.35	14	60		
	32-6T5-31-C	32	250	60	20.8	5.35	5	31	SH060200	
	32-6T10-40-C	32	250	60	27	5.35	10	40		
	40-6T12-50-C	40	300	65	33	5.35	12	50	SH060250	
	50-6T14-60-C	50	350	70	40	5.35	14	60		
	32-8T6-38-C	32	250	60	21.3	7.35	6	38	SH060200	
	40-8T6-42-C	40	300	65	25.8	7.35	6	42	SH060250	

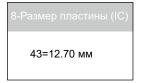
Тип обработки	Низкие и средние подачи	Средние подачи	Чистовая обработка	Низкие силы резания	Средние подачи	Профильная обработка	Повыш. точность
Тип пластины	СМ	СН	GS	TS	TM	RM	G
Минимальный диаметр обработки DMIN (мм)	0	1	China China	P. S. C.	4	9	R.
ATPIR/L **-2T	-	-	25	25	25	-	25
ATPIR/L **-3T	50	50	25	25	25	25	25
ATPIR/L **-4T	50	50	25	25	25	25	25
ATPIR/L **-5T	50	50	31	31	31	31	31
ATPIR/L **-6T	50	50	31	31	31	31	31
ATPIR/L **-8T	-	-	-	38	38	38	38
стр. каталога	182	183	184	185	185	186	188

^{1.} Пластины серии ACD/ACS не подходят для операций продольного точения
2. "-" - нет пластин данной ширины в этой геометрии
3. При обработке торцевых канавок требуется проверить значение минимального диаметра не только для державки, но и для геометрии пластины

Система обозначения державок серии ATG для наружной обработки канавок небольшого размера

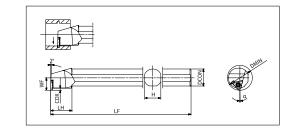


1-Название бренда АСНТЕСК

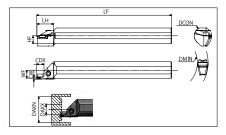


L	Левостороннее исполнение							
R	Правосторонее исполнение							

6-Диаметр оправки 25=25.0 мм 32=32.0 мм



Оправки серии АТС для обработки внутренних канавок малого размера

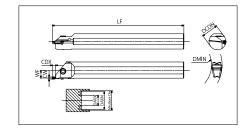

		Осн	новные ра	Основные размеры (мм)						
Название			50011				051/	Винт	Отвёртка	
	DMIN	DCON	LF	LH	WF	CDX				
ATCID/I	25R32-35T28	35	25	220	30	17.5	2.8	SP040085	FT-TP15	
ATGIR/L	32S43-40T30	40	32	250	30	23.0	3.0	SP05008550	FT-TP20	

Тип обработки	Обработка канавок	Профильная обработка
Тип пластины Название	0	0
ATGIR/L** 32	ATG 32	ATG 32
ATGIR/L** 43	ATG 43	ATG 43
стр. каталога	179	180

Оправки серии ATS для внутренней обработки торцевых канавок

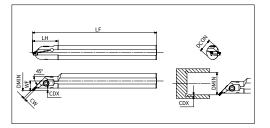
				Осн	овные р	азмеры (мм)			Запасны	е части
Название										Винт	Отвёртка
		DCON	LF	LH	WF	А	CDX	DMIN	DMAX		
	25-3T12-35-45-C	25	200	31	11.5	11.5	12	35	45		
	25-3T12-40-60-C 25 2	200	31	11.5	11.5	12	40	60			
	25-3T12-55-90-C	25	200	31	11.5	11.5	12	55	90	SH050160	
	25-3T12-80-150-C	25	200	31	11.5	11.5	12	80	150		
ATSIR/L	25-4T12-20-35-C	25	200	31	11	11.5	12	20	35		LT-H4
AI SIR/L	25-4T12-28-45-C	25	200	31	11	11.5	12	28	45	30000100	LI-N4
	25-4T12-35-55-C	25	200	31	11	11.5	12	35	55		
	32-4T12-45-70-C	32	250	31	14.5	15	12	45	70		
	32-4T12-60-100-C	32	250	31	14.5	15	12	60	100		
	32-4T12-90-180-C	32	250	31	14.5	15	12	90	180		

Тип обработки	Низкие и средние подачи	Средние подачи	Чистовая обработка	Низкие силы резания	Средние подачи	Профильная обработка	Повыш. точность
Тип пластины	СМ	СН	GS	TS	ТМ	RM	G
Минимальный диаметр обработки DMIN (мм)		3	CH.	-	4	9	P
ATSIR/L **3T	80	80	59	35	35	59	59
ATSIR/L **4T	42	42	42	22	22	42	42
стр. каталога	182	183	184	185	185	186	188


^{1.} Пластины серии ACD/ACS не подходят для операций продольного точения
2. При обработке торцевых канавок требуется проверить значение минимального диаметра не только для державки, но и для геометрии пластины

Оправки серии AGS для обработки внутренних торцевых канавок

		Ширина		Основ	Запасные части				
Назва	ние	пластины	D. 0.011				051/	Винт	Отвёртка
		(мм)	DCON	LF	LH	WF	CDX		
	25-4T5-C	2, 3, 4	25	200	12.3	10.9	5.8		
A COLD/I	25-6T5-C	5, 6	25	200	12.3	10.3	5.8	011000400	1.7.115
AGSIR/L	32-4T5-C	2, 3, 4	32	250	15.8	14.5	5.8	SH060160	LT-H5
	32-6T5-C	5, 6	32	250	15.8	13.79	5.8		


Тип обработки		Низкие подачи	Низкие и средние подачи	Средние подачи	Чистовая обработка	Низкие силы резания	Средние подачи	Профильная обработка	Повыш. точность
Тип пластины Минимальный диаметр обработки DMIN (мм)	Ширина пластины (мм)	CS	СМ	CH	GS	TS	TM	RM	G
	2	196	196	196	100	196	-	196	100
	3	79	79	79	59	24	24	59	59
AGSIR/L**	4,	-	42	42	42	22	22	42	42
	5	-	50	50	40	20	20	40	40
	6	-	48	48	38	18	18	38	38
стр. каталога		181	182	183	184	185	185	186	188

- 1. Пластины серии ACD/ACS не подходят для операций продольного точения
 2. "-" нет пластин данной ширины в этой геометрии
 3. При обработке торцевых канавок требуется проверить значение минимального диаметра не только для державки, но и для геометрии пластины

Оправки сери AGU для обработки внутренних наклонных канавок

				Основные размеры (мм)						
Название		DCON				051/	5	Винт	Отвёртка	
			LF	LH	WF	CDX	DIMN			
	20-3T3-45	20	160	40	12.3	3	45	SH050120		
	20-4T3-45	20	160	40	12.3	3	45	SHU30120	LT-H4	
AGUIR/L	25-3T3-45	25	200	40	14.4	3	45	SH050160	LI-∏4	
	25-4T3-45	25	200	40	14.4	3	45	SHU30160		
	25-6T3-45	25	200	40	14.4	3	45	SH060160	LT-H5	

Тип обработки	Профильная обработка	Проф. обр. алюминия	Повыш. точность
Тип пластины	RM	RA	G
ТИППЛАСТИНЫ			
Название	9		5
	ATD 315	ATD 315	ATD 300E
AGUER/L**	ATD 630	ATD 630	ATD 600E
стр. каталога	186	186	190

Описание марок сплавов режущих пластин для обработки канавок и отрезки

Сплавы для токарной обработки канавок и отрезки

Низкоуглеродистые, углеродистые, легированные и инструментальные стали.

Основные сплавы

AP301U P25(P15-P35)

Универсальный сплав с субмикронной основой повышенной прочности и наноструктурным PVD покрытием. Рекомендуется для обработки сталей, нержавеющих сталей и жаропрочных сплавов. Обеспечивается высокая надёжность режущей кромки и хорошая адгезия покрытия к основе.

AC230P P20(P10-P30)

Сплав с основой средней твёрдости и многослойным покрытием CVD высокой износостойкости. Первый выбор для продольного и профильного точения заготовок из стали, серого и высокопрочного чугуна при повышенных скоростях резания.

Дополнительные сплавы

AP330M P35(P25-P45)

Новая разработка. Первый выбор для обработки нержавеющей стали. Также может применяться для обработки углеродистых и легированных сталей. Сплав обладает высокой термической стабильностью, износостойкостью и сопротивляемостью к термотрещинам. Особомелкозернистая основа с повышенным содержанием кобальта отлично противостоит ударным нагрузкам, возникновению выкрашивания и, при этом, обладает высокой твёрдостью.

Аустенитные, супераустенитные и дуплексные нержавеющие стали.

Основные сплавы

AP330M M35(M25-M45)

Новая разработка. Первый выбор для обработки нержавеющей стали. Также может применяться для обработки углеродистых и легированных сталей. Сплав обладает высокой термической стабильностью, износостойкостью и сопротивляемостью к термотрещинам. Особомелкозернистая основа с повышенным содержанием кобальта отлично противостоит ударным нагрузкам, возникновению выкрашивания и, при этом, обладает высокой твёрдостью.

Дополнительные сплавы

AP301U M20(M15-M35)

Универсальный сплав с субмикронной основой повышенной прочности и наноструктурным PVD покрытием. Рекомендуется для обработки сталей, нержавеющих сталей и жаропрочных сплавов. Обеспечивается высокая надёжность режущей кромки и хорошая адгезия покрытия к основе.

Цветные сплавы

Основные сплавы

AW100K N15 (N05-N25)

Первый выбор для обработки цветных сплавов. Ультрамелкозернистый сплав без покрытия. Пластины с полированной передней поверхностью, обеспечивающей снижение вероятности налипания материала на режущую кромку.

ACHTECK

www.achtecktool.com/ru

ЭКСПЕРТ В РЕЗАНИИ ТРУДНООБРАБАТЫВАЕМЫХ МАТЕРИАЛОВ

Пластины для обработки канавок и отрезки

Геометрии режущих пластин для отрезки и обработки канавок

						Ш	ирина	пласт	ины (и	им)		
				Обра	ботка і	наруж	ных ка	навок	Обра торц			ботка енних
							1		кана	вок		авок
Геометрия	Форма профиля главной режущей кромки		Описание	Обработка канавок	Отрезка	Точение	Профильное точение	Обработка наклонных канавок	Обработка канавок	Точение	Обработка канавок	Точение
ATG	0		 Пластины повышенной точности Позитивное исполнение снижает вероятность возникновения вибраций 3 режущие кромки, большой диапазон ширин. 	0.33 4.8	-	-	0.5 1.0 1.5 2.0 3.0 4.0	-	-	-	0.33 4.8	-
ASG	0	25	Пластины повышенной точности Большой передний угол и острое исполнение позволяет получить очень высокое качество обработанной поверхности 3 режущие кромки	0.8 2.5	-	-	-	-	-	-	0.8 2.5	
cs		10°	 Рекомендуется для обработки канавок и отрезки в заготовках из нержавеющих сталей, жаропрочных сплавов и низкоуглеродистых сталей Для работы на низких подачах на оборот 	2.0 3.0	2.0 3.0	-	-	-	3.0	-	3.0	-
СМ	9	8*	 Рекомендуется для обработки канавок и отрезки в заготовках из низкоуглеродистых и нержавеющих сталей Для вязких материалов, трубопроводной арматуры, фиттингов, отрезки тонкостенных деталей, генерирует низкие усилия резания Для работы на низких и средних подачах на оборот 	2.0 3.0 4.0 5.0 6.0	2.0 3.0 4.0 5.0 6.0	-	-	-	3.0 4.0 5.0 6.0	-	3.0 4.0 5.0 6.0	-
СН		0.05	 Рекомендуется для обработки канавок и отрезки в заготовках из углеродистых и легированных сталей, нержавеющих сталей повышенной прочности и твёрдости. Упрочнённая режущая кромка Для работы на средних и больших подачах на оборот 	2.0 3.0 4.0 5.0 6.0 8.0	2.0 3.0 4.0 5.0 6.0 8.0	-	-	-	3.0 4.0 5.0 6.0	-	3.0 4.0 5.0 6.0	-
GS		23*	 Отличные стружколомающие свойства, подходит для обработки канавок и чистового продольного точения Применяется для чистовой обработки, генерирует низкие усилия резания, работает на низких подачах и позволяет получить отличное качество обработанной поверхности Пластина шлифована по периферии, отличная повторяемость позиционирования, высокая точность 	2.0 7.14	2.0 7.14	2.0 7.14	-	-	3.0 6.0	3.0 6.0	2.0 7.14	2.0 7.14
TS		14'	Многофункциональная геометрия. Применяется для обработки наружных, торцевых и внутренних канавок, отрезки и продольного точения Отличные стружколомающие свойства Для работы на низких и средних подачах на оборот	2.0 3.0 4.0 5.0 6.0 8.0	2.0 3.0 4.0 5.0 6.0 8.0	2.0 3.0 4.0 5.0 6.0 8.0	-	-	3.0 4.0 5.0 6.0	3.0 4.0 5.0 6.0	2.0 3.0 4.0 5.0 6.0 8.0	2.0 3.0 4.0 5.0 6.0 8.0
тм		0°	 Многофункциональная геометрия. Применяется для обработки наружных, торцевых и внутренних канавок, отрезки и продольного точения Режущая кромка повышенной прочности Для работы на средних подачах на оборот 	2.0 3.0 4.0 5.0 6.0 8.0	2.0 3.0 4.0 5.0 6.0 8.0	2.0 3.0 4.0 5.0 6.0 8.0	-	-	3.0 4.0 5.0 6.0	3.0 4.0 5.0 6.0	2.0 3.0 4.0 5.0 6.0 8.0	2.0 3.0 4.0 5.0 6.0 8.0
RM		0° 0.1	Геометрия для профильного точения и обработки фасонных канавок Для работы на средних подачах на оборот	2.0 3.0 4.0 5.0 6.0 8.0	-	2.0 3.0 4.0 5.0 6.0 8.0	2.0 3.0 4.0 5.0 6.0 8.0	2.0 3.0 4.0 5.0 6.0 8.0	3.0 4.0 5.0 6.0	3.0 4.0 5.0 6.0	2.0 3.0 4.0 5.0 6.0 8.0	2.0 3.0 4.0 5.0 6.0 8.0
RA		15°	 Геометрия для профильного точения и обработки фасонных канавок в алюминиевых сплавах Большой передний угол и острое исполнение режущей кромки Пластины шлифованы по периферии, повышенная точность 	3.0 4.0 5.0 6.0 8.0	-	3.0 4.0 5.0 6.0 8.0	3.0 4.0 5.0 6.0 8.0	3.0 4.0 5.0 6.0 8.0	3.0 4.0 5.0 6.0	3.0 4.0 5.0 6.0	3.0 4.0 5.0 6.0 8.0	3.0 4.0 5.0 6.0 8.0
Шлиф. G	9	***	Пластины шлифованы по периферии, повышенная точность Большой диапазон ширин пластин Обеспечивает хорошее качество обработанной поверхности	1.0 8.0	-	2.22 8.0	3.0 4.0 4.8 5.0 6.0 8.0	3.0 4.0 4.8 5.0 6.0 8.0	3.0 4.0 4.8 5.0 6.0	3.0 4.0 4.8 5.0 6.0	2.22 8.0	2.22 8.0

По запросу доступны пластины серии ATD с геометрией PL для обработки канавок и точения в алюминиевых сплавах.

Рекомендации по выбору сплавов для обработки канавок и отрезки

					Применен	ие сплавов	
	Обрабатывае	мые материалы		C PVD no	окрытием	С CVD покрытием	Без покрытия
ISO	Описание обрабатываемых материалов	Предел прочности (H/мм²)	Твёрдость (НВ)	AP301U	AP330M	AC230P	AW100K
	Низкоуглеродистые стали	<600	<180	•	•	•	-
	пизкоутперодистые стали	<950	<280	•	•	•	-
P		700-950	200-280	•	•	•	-
	Легированные стали	950-1200	280-355	•	•	•	-
		1200-1400	355-415	•	•	•	-
	Дуплексные нержавеющие стали	778	230	•	•	-	-
M	Аустенитные нержавеющие стали	675	200	•	•	-	-
	Закалённые аустенитные стали	1013	300	•	•	-	-
	Серые чугуны	700	220	•	-	•	-
K	Чугуны с шаровидным графитом	880	260	•	-	•	-
	Ковкие чугуны	800	250	•	-	•	-
N	Чистый алюминий	260	75	-	-	-	•
N	Алюминиевые сплавы	447	130	•	-	-	•
	Жаропрочные сплавы на основе Fe	943	280	-	-	-	-
s	Жаропрочные сплавы на основе Со	1076	320	-	-	-	-
	Жаропрочные сплавы на основе Ni	1177	350	-	-	-	-
	Жаропрочные сплавы на основе Ті	1262	370	-	-	-	-
Н	Закалённые стали	-	50-60HRC	-	-	-	-
	Отбеленные чугуны	-	55HRC	-	-	-	-

- Первый выборАльтернативный вариантНе рекомендуется

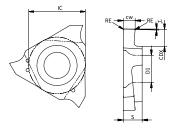
Система обозначение 3-кромочных пластин ATG и ASG для обработки канавок малого размера

2-Тип	пластины
Т	Треугольной формы
S	Для токарных автоматов швейцарского типа

3-Тип обработки						
G	Обработка канавок					

4-Размер пластины
32=9.525 мм
43=12.70 мм

5-Ис	полнение пластины
L	Левостороннее
R	Правостороннее



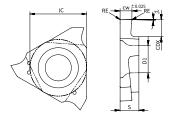
8-Радиус на уголках R005=0.05 мм

Пластины для обработки канавок малого размера

Серия ASG: для обработки мелкоразмерных канавок на станкахавтоматах швейцарского типа

Форморазмер	IC	S	D1
ASG 32-	9.525	3.18	4.6

На эскизе показано правое исполнение пластины


Видео		V					● Xopo	ошие	♦ Средние ♦ Плохие				
		Условия обработки			+	•	*	•	*	+	•	•	
	Обозначение пластины	Режимы резания		Размеры			Р		М		K		N
Вид пластины		Обработка канавок	CDX	CW	RE	٩	⊇	AP330M	AP301U	MC	ЭP	10	9K
		f (мм/об)				AC230P	AP301U			AP330M	AC230P	AP301U	AW100K
	ASG 32R/L033T08-R005	0.01-0.05	8.0	0.33	0.05		•		•			•	
	ASG 32R/L050T12-R005	0.01-0.05	1.2	0.50	0.05		•		•			•	
	ASG 32R/L075T20-R010	0.02-0.07	2.0	0.75	0.10		•		•			•	
	ASG 32R/L095T20-R010	0.02-0.07	2.0	0.95	0.10		•		•			•	
	ASG 32R/L100T20-R010	0.03-0.08	2.0	1.00	0.10		•		•			•	
	ASG 32R/L120T20-R010	0.03-0.08	2.0	1.20	0.10		•		•			•	
	ASG 32R/L125T20-R010	0.03-0.08	2.0	1.25	0.10		•		•			•	
	ASG 32R/L140T20-R010	0.03-0.08	2.0	1.40	0.10		•		•			•	
	ASG 32R/L145T20-R010	0.03-0.08	2.0	1.45	0.10		•		•			•	
	ASG 32R/L150T20-R010	0.03-0.08	2.0	1.50	0.10		•		•			•	
	ASG 32R/L175T20-R010	0.03-0.08	2.0	1.75	0.10		•		•			•	
	ASG 32R/L200T25-R010	0.03-0.08	2.5	2.00	0.10		•		•			•	
	ASG 32R/L250T25-R010	0.03-0.08	2.5	2.50	0.10		•		•			•	

●: На складе ▲: На складе, но скоро выйдет замена.

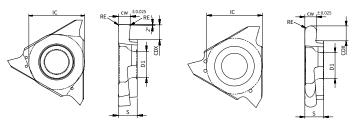
Пластины для обработки канавок малого размера

Серия ATG: для обработки наружных и внутренних канавок малого размера

Форморазмер	IC	S	D1
ATG 32-	9.525	3.18	4.4
ATG 43-	12.7	4.76	5.5
ATG 43R/L480	12.7	5.0	5.5

На эскизе показано правое исполнение пластины

						● Хорошие 🙌 Средние 🗱 Плохие								
		Усло	вия обр	оаботки							T TITION			
						#	•	*	• #		#	•	•	
Вид пластины	Обозначение пластины	Режимы резания		Размеры		Р			М		K		N	
		Обработка канавок	CDX	CW	RE	30P)1U	NOS)1U	NOM	30P	110	90K	
		f (мм/об)				AC230P	AP301U	AP330M	AP301U	AP330M	AC230P	AP301U	AW100K	
	*ATG 32R/L033T08-R005	0.03-0.08	0.8	0.33	0.05		•		•			•		
	ATG 32R/L050T12-R005	0.03-0.08	1.2	0.50	0.05		•		•			•		
	ATG 32R/L075T20-R005	0.03-0.08	2.0	0.75	0.05		•		•			•		
	ATG 32R/L095T20-R005	0.03-0.08	2.0	0.95	0.05		•		•			•		
	ATG 32R/L100T20-R005	0.03-0.08	2.0	1.00	0.05		•		•			•		
	ATG 32R/L110T20-R005	0.03-0.08	2.0	1.10	0.05		•		•			•		
	ATG 32R/L120T20-R005	0.03-0.08	2.0	1.20	0.05		•		•			•		
	ATG 32R/L125T20-R020	0.04-0.09	2.0	1.25	0.20		•		•			•		
	ATG 32R/L130T20-R020	0.04-0.09	2.0	1.30	0.20		•		•			•		
	ATG 32R/L140T25-R020	0.04-0.09	2.5	1.40	0.20		•		•			•		
	ATG 32R/L145T25-R020	0.04-0.09	2.5	1.45	0.20		•		•			•		
	ATG 32R/L150T25-R020	0.04-0.09	2.5	1.50	0.20		•		•			•		
	ATG 32R/L160T25-R020	0.04-0.09	2.5	1.60	0.20		•		•			•		
An.	ATG 32R/L170T25-R020	0.04-0.09	2.5	1.70	0.20		•		•			•		
0	ATG 32R/L175T25-R020	0.04-0.09	2.5	1.75	0.20		•		•			•		
4	ATG 32R/L200T25-R020	0.04-0.09	2.5	2.00	0.20		•		•			•		
	ATG 32R/L225T25-R020	0.04-0.09	2.5	2.25	0.20		•		•			•		
	ATG 32R/L250T25-R020	0.05-0.10	2.5	2.50	0.20		•		•			•		
	ATG 32R/L300T25-R020	0.05-0.10	2.5	3.00	0.20		•		•			•		
	ATG 43R/L100T20-R010	0.03-0.08	2.0	1.00	0.10		•		•			•		
	ATG 43R/L125T20-R010	0.04-0.09	2.0	1.25	0.10		•		•			•		
	ATG 43R/L125T20-R020	0.04-0.09	2.0	1.25	0.20		•		•			•		
	ATG 43R/L130T30-R010	0.04-0.09	3.0	1.30	0.10		•		•			•		
	ATG 43R/L130T30-R020	0.04-0.09	3.0	1.30	0.20		•		•			•		
	ATG 43R/L140T35-R020	0.04-0.09	3.5	1.40	0.20		•		•			•		
	ATG 43R/L145T35-R020	0.04-0.09	3.5	1.45	0.20		•		•			•		
	ATG 43R/L150T35-R010	0.04-0.09	3.5	1.50	0.10		•		•			•		
	ATG 43R/L150T35-R020	0.04-0.09	3.5	1.50	0.20		•		•			•		
	ATG 43R/L170T35-R020	0.04-0.09	3.5	1.70	0.20		•		•			•		
	ATG 43R/L175T35-R020	0.04-0.09	3.5	1.75	0.20		•		•			•		
	ATG 43R/L185T35-R020	0.04-0.09	3.5	1.85	0.20		•		•			•		
	ATG 43R/L195T35-R020	0.04-0.09	3.5	1.95	0.20		•		•			•		

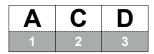

^{*} пластины ATG 32R/L033 - жёлтого цвета

●: На складе ▲: На складе, но скоро выйдет замена.

Пластины для обработки канавок малого размера

Серия ATG: для обработки наружных и внутренних канавок малого размера

Форморазмер	IC	S	D1
ATG 32-	9.525	3.18	4.4
ATG 43-	12.7	4.76	5.5
ATG 43R/L480	12.7	5.0	5.5

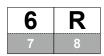


На эскизе показано правое исполнение пластины На эскизе показано правое исполнение пластины

							● Хоро	ошие	⊕ C _l	редние	*	Плохи	e
		Усло	вия обр	оаботки		#	•	*	•	#	+	•	•
		Режимы ре	зания	Разм	перы		Р		ı	И	ŀ	<	N
Вид пластины	Обозначение пластины	Обработка канавок	CDX	CW	RE	0P	10	Mo	Ę	Mo	0P	10)0K
		f (мм/об)	ODX	OW	2	AC230P	AP301U	AP330M	AP301U	AP330M	AC230P	AP301U	AW100K
	ATG 43R/L200T35-R010	0.04-0.09	3.5	2.00	0.10		•		•			•	
	ATG 43R/L200T35-R020	0.04-0.09	3.5	2.00	0.20		•		•			•	
	ATG 43R/L225T35-R020	0.04-0.09	3.5	2.25	0.20		•		•			•	
	ATG 43R/L230T35-R020	0.05-0.10	3.5	2.30	0.20		•		•			•	
	ATG 43R/L250T50-R010	0.05-0.10	5.0	2.50	0.10		•		•			•	
	ATG 43R/L250T50-R030	0.05-0.10	5.0	2.50	0.30		•		•			•	
	ATG 43R/L265T50-R030	0.05-0.10	5.0	2.65	0.30		•		•			•	
An	ATG 43R/L280T50-R030	0.05-0.10	5.0	2.80	0.30		•		•			•	
0	ATG 43R/L300T50-R010	0.05-0.10	5.0	3.00	0.10		•		•			•	
	ATG 43R/L300T50-R030	0.05-0.10	5.0	3.00	0.30		•		•			•	
	ATG 43R/L325T50-R030	0.05-0.10	5.0	3.50	0.30		•		•			•	
	ATG 43R/L330T50-R030	0.05-0.12	5.0	3.30	0.30		•		•			•	
	ATG 43R/L350T50-R010	0.05-0.12	5.0	3.50	0.10		•		•			•	
	ATG 43R/L350T50-R030	0.05-0.12	5.0	3.50	0.30		•		•			•	
	ATG 43R/L400T50-R010	0.05-0.12	5.0	4.00	0.10		•		•			•	
	ATG 43R/L400T50-R040	0.05-0.12	5.0	4.00	0.40		•		•			•	
	ATG 43R/L430T50-R040	0.05-0.12	5.0	4.30	0.40		•		•			•	
	ATG 43R/L450T50-R040	0.05-0.12	5.0	4.50	0.40		•		•			•	
	ATG 43R/L480T50-R040	0.05-0.12	5.0	4.80	0.40		•		•			•	
	ATG 32R/L050T20-R025	0.03-0.08	1.2	0.50	0.25		•		•			•	
	ATG 32R/L100T20-R050	0.03-0.08	2.0	1.00	0.50		•		•			•	
	ATG 32R/L150T25-R075	0.04-0.09	2.5	1.50	0.75		•		•			•	
	ATG 32R/L200T25-R100	0.04-0.09	2.5	2.00	1.00		•		•			•	
	ATG 32R/L300T25-R150	0.05-0.10	2.5	3.00	1.50		•		•			•	
	ATG 43R/L100T20-R050	0.03-0.08	2.0	1.00	0.50		•		•			•	
	ATG 43R/L150T35-R075	0.04-0.09	3.5	1.50	0.75		•		•			•	
	ATG 43R/L200T35-R100	0.04-0.09	3.5	2.00	1.00		•		•			•	
	ATG 43R/L250T40-R125	0.05-0.10	5.0	2.50	1.25		•		•			•	
	ATG 43R/L300T40-R150	0.05-0.10	5.0	3.00	1.50		•		•			•	
	ATG 43R/L400T50-R200	0.05-0.12	5.0	4.00	2.00		•		•			•	

Cacilon Curcognos

Обозначение пластин серий ACD, ACS и ATD для обработки канавок и отрезки



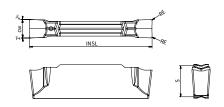
1-Бренд АСНТЕСК

2-Ти	п обработки
С	Обработка канавок / Отрезка
Т	Точение / Обработка канавок

3-Ти									
S	S Однокромочная								
D	Двукромочная								

4-Ц	
	2=2.0 мм 3=3.0 мм 4=4.0 мм

5-Радиус на уголках 02=0.2 мм 03=0.3 мм 04=0.4 мм



Пластины для отрезки

CS: Острая стружколомающая геометрия пластин для отрезки

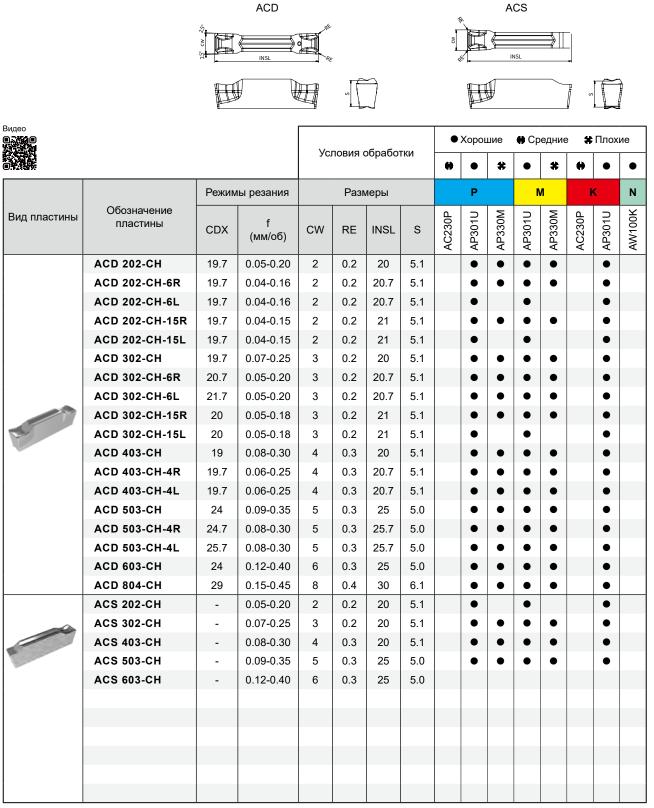
				Voi	TODIAG (обрабо	TIZIA	•	Хороц	шие	(†) Ср	едниє	*	Плох	ие
				y C.	повия (Јораоо	ΙΚVΙ	+	•	*	•	*	+	•	•
		Режимы	резания		Разм	иеры			Р		N	Л	P	(N
Вид пластины	Обозначение пластины	CDX	f (мм/об)	CW	RE	INSL	S	AC230P	AP301U	AP330M	AP301U	AP330M	AC230P	AP301U	AW100K
	ACD 202-CS	19.7	0.04-0.13	2	0.2	20	5.1		•	•	•	•		•	
	ACD 302-CS	19.7	0.05-0.15	3	0.2	20	5.1		•	•	•	•		•	

●: На складе ▲:

▲: На складе, но скоро выйдет замена.

Пластины для отрезки

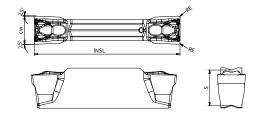
СМ: Первый выбор для отрезки



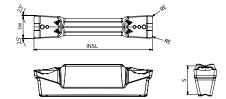
Замечание: 1. При выборе пластин с наклонной режущей кромкой подачу на оборот необходимо снизить на 20-40%

2. Размер Ттах для пластин ACS определяется соответствующим размером у державки

Пластины для отрезки

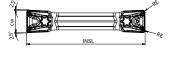

СН: Упрочнённая стружколомающая геометрия пластин для отрезки

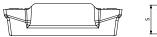
Замечание: 1. При выборе пластин с наклонной режущей кромкой подачу на оборот необходимо снизить на 20-40%


^{2.} Размер Ттах для пластин ACS определяется соответствующим размером у державки

GS: Острая геометрия для обработки наружных, внутренних и торцевых канавок, а также для чистового продольного точения

					.,				• X	орош	ие	() Cp	едни	= 1	• Пло	хие
					Усл	овия	обрабо	тки	#	•	*	•	*	+	•	•
		Реж	кимы резан	РИЯ		Разі	меры			Р		ı	И	ŀ	(N
Вид пластины	Обозначение пластины	f кан (мм/об)	f точ (мм/об)	Ар (мм)	CW	RE	INSL	w	AC230P	AP301U	AP330M	AP301U	AP330M	AC230P	AP301U	AW100K
	ATD 300E020-GS	0.04-0.20	0.05-0.20	0.30-2.0	3.00	0.20	20.70	5.1		•		•			•	
	ATD 300E040-GS	0.04-0.20	0.05-0.20	0.45-2.0	3.00	0.40	20.70	5.1		•		•			•	
	ATD 310E020-GS	0.04-0.20	0.05-0.20	0.25-2.0	3.15	0.20	20.70	5.1		•		•			•	
	ATD 318E020-GS	0.04-0.20	0.05-0.20	0.25-2.0	3.18	0.20	20.70	5.1		•		•			•	
	ATD 318E040-GS	0.04-0.20	0.05-0.20	0.45-2.0	3.18	0.40	20.70	5.1		•		•			•	
	ATD 318E080-GS	0.04-0.20	0.05-0.20	0.85-2.0	3.18	0.80	20.70	5.1		•		•			•	
	ATD 361E030-GS	0.04-0.20	0.06-0.23	0.35-2.0	3.61	0.30	20.70	5.1		•		•			•	
	ATD 396E020-GS	0.05-0.25	0.07-0.25	0.25-2.50	3.96	0.20	20.70	5.1		•		•			•	
	ATD 396E040-GS	0.05-0.25	0.07-0.25	0.45-2.50	3.96	0.40	20.70	5.1		•		•			•	
	ATD 396E080-GS	0.05-0.25	0.07-0.25	0.85-2.50	3.96	0.80	20.70	5.1		•		•			•	
	ATD 400E020-GS	0.05-0.25	0.07-0.25	0.25-2.50	4.00	0.20	20.70	5.1		•		•			•	
	ATD 400E040-GS	0.05-0.25	0.07-0.25	0.45-2.50	4.00	0.40	20.70	5.1		•		•			•	
150	ATD 452E020-GS	0.06-0.28	0.10-0.30	0.25-3.0	4.52	0.20	25.70	5.0								
200	ATD 470E050-GS	0.06-0.28	0.10-0.30	0.55-3.0	4.70	0.50	25.70	5.0								
and the same of th	ATD 475E040-GS	0.06-0.28	0.10-0.30	0.45-3.0	4.75	0.40	25.70	5.0								
	ATD 475E080-GS	0.06-0.28	0.10-0.30	0.85-3.0	4.75	0.80	25.70	5.0								
	ATD 480E050-GS	0.06-0.28	0.10-0.30	0.55-3.0	4.80	0.50	25.70	5.0								
	ATD 500E020-GS	0.06-0.28	0.10-0.30	0.25-3.0	5.00	0.20	25.70	5.0								
	ATD 500E040-GS	0.06-0.28	0.10-0.30	0.45-3.0	5.00	0.40	25.70	5.0								
	ATD 600E020-GS	0.09-0.35	0.15-0.35	0.25-3.50	6.00	0.20	25.70	5.0								
	ATD 600E040-GS	0.09-0.35	0.15-0.35	0.45-3.50	6.00	0.40	25.70	5.0								
	ATD 635E040-GS	0.09-0.35	0.15-0.35	0.45-3.50	6.35	0.40	25.70	5.0								
	ATD 635E050-GS	0.09-0.35	0.15-0.35	0.55-3.50	6.35	0.50	25.70	5.0								
	ATD 635E080-GS	0.09-0.35	0.15-0.35	0.85-3.50	6.35	0.80	25.70	5.0								
	ATD 714E080-GS	0.09-0.35	0.18-0.40	0.85-3.50	7.14	0.80	25.70	5.0								

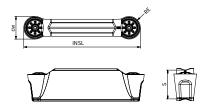

TS: Геометрия повышенной остроты для обработки наружных, внутренних и торцевых канавок, а также для чистового продольного точения



Видео Видео Видео	\/		-55		• X	орош	ие	(†) Средние			# Плохие						
0.7.1.									отки	#	•	*	•	#	+	•	•
		F	Режим	ы резания			Разі	меры			Р		N	И	ŀ	(N
Вид пластины	Обозначение пластины	Обработка канавок	CDX	Точе	ение	CW	RE	INSL	S	ЭP	n	M	D	Σ	٦.	U	X
		f (мм/об)	CDX	f (мм/об)	Ар (мм)	Cvv	KE	INOL	3	AC230P	AP301U	AP330M	AP301U	AP330M	AC230P	AP301U	AW100K
	ATD 203-TS	0.04-0.20	19.7	0.12-0.19	0.40-1.50	2	0.3	20.7	5.1	•	•		•		•	•	
	ATD 303-TS	0.05-0.25	19.7	0.15-0.23	0.45-2.00	3	0.3	20.7	5.1		•	•	•	•		•	
	ATD 404-TS	0.06-0.27	19.7	0.18-0.25	0.50-2.50	4	0.4	20.7	5.1		•	•	•	•		•	
34	ATD 408-TS	0.06-0.27	19.7	0.18-0.25	1.00-2.50	4	0.8	20.7	5.1	•	•		•		•	•	
	ATD 504-TS	0.07-0.30	24.7	0.20-0.30	0.55-3.50	5	0.4	25.7	5.0		•	•	•	•		•	
	ATD 508-TS	0.07-0.30	24.7	0.20-0.30	1.00-3.50	5	0.8	25.7	5.0		•	•	•	•		•	
	ATD 604-TS	0.10-0.40	24.7	0.22-0.45	0.65-3.80	6	0.4	25.7	5.0		•		•			•	
	ATD 608-TS	0.10-0.40	24.7	0.22-0.45	1.0-3.80	6	0.8	25.7	5.0	•	•	•	•	•	•	•	
	ATD 808-TS	0.12-0.45	30.5	0.28-0.50	1.0-4.50	8	8.0	31.5	6.1		•		•			•	

Пластины для обработки канавок и точения

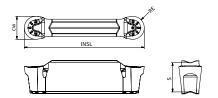
ТМ: Упрочнённая геометрия для обработки наружных, внутренних и торцевых канавок, а также для чистового продольного точения



видео • 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							овия (● Xc	роші	ие	🙌 Ср	едни	іе #Плохие			
©.42.01									ЭТКИ	#	•	*	•	#	#	•	•
		Режимы резания					Рази	иеры		P			N	1	К		N
Вид пластины	Обозначение пластины	Обработка канавок	CDX	Точе	ение	CW	RE	INSL	s	JP	n	M	n	M	Д	D	X
		f (мм/об)	CDX	f (мм/об)	Ар (мм)	Cvv	KE	IINOL	3	AC230P	AP301U	AP330M	AP301U	AP330M	AC230P	AP301U	AW100K
	ATD 304-TM	0.1-0.25	19.7	0.15-0.22	0.5-2.0	3	0.4	20.7	5.1		•		•				
	ATD 404-TM	0.15-0.30	19.7	0.18-0.27	0.5-2.50	4	0.4	20.7	5.1	•	•	•	•	•	•	•	
	ATD 408-TM	0.15-0.30	19.7	0.18-0.27	1.0-2.50	4	8.0	20.7	5.1	•	•	•	•	•	•	•	
	ATD 504-TM	0.18-0.35	24.7	0.20-0.35	0.55-3.50	5	0.4	25.7	5.0	•	•	•	•	•	•	•	
	ATD 508-TM	0.18-0.35	24.7	0.20-0.35	1.0-3.50	5	8.0	25.7	5.0		•	•	•	•		•	
	ATD 604-TM	0.20-0.45	24.7	0.22-0.45	0.65-4.0	6	0.4	25.7	5.0	•	•	•	•	•	•	•	
	ATD 608-TM	0.20-0.45	24.7	0.22-0.45	1.0-4.0	6	8.0	25.7	5.0	•	•	•	•	•	•	•	
	ATD 808-TM	0.22-0.50	30.5	0.28-0.5	1.0-5.0	8	8.0	31.5	6.1								
	ATD 812-TM	0.22-0.50	30.5	0.28-0.5	1.5-5.0	8	1.2	31.5	6.1		•		•				

●: На складе

▲: На складе, но скоро выйдет замена.


RM: Геометрия для профильного точения и обработки фасонных канавок

									• :	Хороц	шие	(†) Ср	едние	*	Плох	ие
		Усл	овия	обрабо	отки	#	•	*	•	#	+	•	•			
Режимы резания						Разг	иеры			Р		N	Л	К		N
Вид пластины	Обозначение пластины	f кан (мм/об)	f точ (мм/об)	Ар (мм)	CW	RE	INSL	s	AC230P	AP301U	AP330M	AP301U	AP330M	AC230P	AP301U	AW100K
	ATD 210-RM	0.06-0.15	0.12-0.25	0.4-1.0	2	1	20.7	5.1		•	•	•	•		•	
	ATD 315-RM	0.08-0.18	0.15-0.30	0.5-1.5	3	1.5	20.7	5.1	•	•	•	•	•	•	•	
The state of the s	ATD 420-RM	0.10-0.20	0.18-0.35	0.6-2.0	4	2	20.7	5.1	•	•	•	•	•	•	•	
1	ATD 525-RM	0.12-0.25	0.20-0.40	0.7-2.5	5	2.5	25.7	5.0	•	•	•	•	•	•	•	
	ATD 630-RM	0.15-0.30	0.25-0.50	0.9-3.0	6	3	25.7	5.0		•	•	•	•		•	
	ATD 840-RM	0.18-0.35	0.30-0.60	1.0-4.0	8	4	31.5	6.1		•		•			•	

Пластины для обработки канавок и точения

RA: Геометрия для профильного точения и обработки фасонных канавок в алюминиевых сплавах

						Усл	овия		● Хорошие									
						обра	аботки		#	•	#	•	*	#	•	•		
		Режи	Режимы резания			Раз	меры			Р		ı	1	К		N		
Вид пластины	Обозначение пластины	Обработка канавок	Точен	ние	CW	DE	INIGI	Q	ЭC	⊇	M	2	M	Ъ	2	송		
		f (мм/об)	f (мм/об)	Ар (мм)	CVV	CW RE INSL S		AC230P	AP301U	AP330M	AP301U	AP330M	AC230P	AP301U	AW100K			
	ATD 315-RA	0.08-0.18	0.15-0.30	0.5-1.5	3	1.5	20.7	5.1								•		
	ATD 420-RA	0.10-0.25	0.2-0.45	0.6-2.0	4	2	20.7	5.1								$ \bullet $		
	ATD 525-RA	0.11-0.28	0.2-0.50	0.7-2.5	5	2.5	25.7	5.0								•		
3.00	ATD 630-RA	0.12-0.30	0.22-0.60	0.9-3.0	6	3	25.7	5.0								•		
	ATD 840-RA	0.15-0.40	0.25-0.65	1.0-4.0	8	4	31.5	6.1								•		

уоденей ситовод

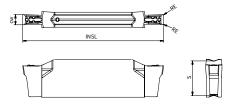
Система обозначения шлифованных пластин для обработки канавок

1-Бренд АСНТЕСК

2-Ти	п обработки
С	Обработка канавок / Отрезка
Т	Точение / Обработка канавок

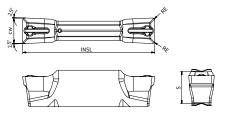
3-Ти	п пластины
S	Однокромочная
D	Двукромочная

4-Ширина пластины
215=2.15 мм
145=1.45 мм

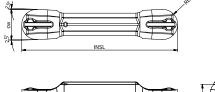

5-тип канавки

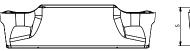
Е: наружная F: торцевая I: внутренняя 6-Радиус на уголках 010=0.10 мм 020=0.20 мм 200=2.00 мм 7-Ограничения

Пластина применима только для обработки канавок


Шлифованные пластины для обработки канавок и точения

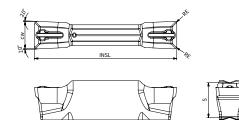
									• x	орош	ие	⇔ Cp	едни	e 1	——— Пло	хие
					Услов	ия об	работ	ГКИ	+	•	*	•	#	+	•	•
			Режимы резания		F	Разме	ры			Р		ı	И	ŀ	<	N
Вид пластины	Обозначение пластины	Ширина посадочного места	Обработка канавок f (мм/об)	CW	RE	CDX	S	INSL	AC230P	AP301U	AP330M	AP301U	AP330M	AC230P	AP301U	AW100K
	ATD 100E000G	2 мм	0.02-0.05	1.00	0.00	2.00	5.1	20.700		•		•			•	
	ATD 104E000G	2 мм	0.02-0.05	1.04	0.00	2.00	5.1	20.700		•		•			•	
	ATD 115E000G	2 мм	0.02-0.05	1.15	0.00	2.00	5.1	20.700		•		•			•	
	ATD 120E000G	2 мм	0.03-0.05	1.20	0.00	2.00	5.1	20.700		•		•			•	
	ATD 125E010G	2 мм	0.03-0.05	1.25	0.10	2.00	5.1	20.700		•		•			•	
	ATD 130E000G	2 мм	0.03-0.05	1.30	0.00	2.00	5.1	20.700		•		•			•	
	ATD 135E000G	2 мм	0.03-0.05	1.35	0.00	2.00	5.1	20.700		•		•			•	
	ATD 140E000G	2 мм	0.03-0.06	1.40	0.00	2.00	5.1	20.700		•		•			•	
	ATD 145E010G	2 мм	0.03-0.06	1.45	0.10	2.00	5.1	20.700		•		•			•	
	ATD 147E000G	2 мм	0.03-0.06	1.47	0.00	2.50	5.1	20.700		•		•			•	
	ATD 150E010G	2 мм	0.03-0.06	1.50	0.10	2.50	5.1	20.700		•		•			•	
	ATD 157E015G	2 мм	0.03-0.07	1.57	0.15	2.70	5.1	20.700		•		•			•	
	ATD 165E010G	2 мм	0.03-0.07	1.65	0.10	2.70	5.1	20.700		•		•			•	
	ATD 170E010G	2 мм	0.03-0.07	1.70	0.10	3.00	5.1	20.700		•		•			•	
(Marie	ATD 178E018G	2 мм	0.03-0.07	1.78	0.18	3.00	5.1	20.700		•		•			•	
	ATD 190E010G	2 мм	0.04-0.09	1.90	0.10	3.00	5.1	20.700		•		•			•	
	ATD 196E015G	2 мм	0.04-0.09	1.96	0.15	3.00	5.1	20.700		•		•			•	
	ATD 200E020G	2 мм	0.04-0.09	2.00	0.20	3.00	5.1	20.700		•		•			•	
	ATD 215E010G	2 мм	0.04-0.10	2.15	0.10	3.00	5.1	20.700		•		•			•	
	ATD 222E015G	2 мм	0.04-0.10	2.22	0.15	-	5.1	20.700		•		•			•	
	ATD 230E020G	2 мм	0.04-0.10	2.30	0.20	-	5.1	20.700		•		•			•	
	ATD 100E050G	2 мм	0.03-0.06	1.00	0.50	2.00	5.1	20.700		•		•			•	
	ATD 140E070G	2 мм	0.04-0.07	1.40	0.70	2.00	5.1	20.700		•		•			•	
	ATD 157E079G	2 мм	0.04-0.08	1.57	0.78	2.70	5.1	20.700		•		•			•	
	ATD 200E100G	2 мм	0.05-0.11	2.00	1.00	3.00	5.1	20.700		•		•			•	
	ATD 239E120G	2 мм	0.06-0.12	2.39	1.19	-	5.1	20.700		•		•			•	


^{1.} Для пластины шириной менее 1.78 мм выбирайте державку с размером А под пластину


Шлифованные пластины для обработки канавок и точения

																		\neg
						V	слови	ıa ofin	allo	TVIA	● X	орог	шие	H Cp	едн	ие #	Плс	хие
							5310671	и оор	aoo	IKVI	#	•	*	•	#	#	•	•
			Pe	жимы рез	ания		Pa	азмер	ы			Р		N	Л	K	(N
Вид пластины	Обозначение пластины	Ширина посадочного места	Точе	ение	Обработка канавок	CW	DE	CDX	s	INSL	ЭP	10	MC	10	MC	PC	2	OK
		Mecia	f (мм/об)	Ар (мм)	f (мм/об)	CVV	KE	CDX	3	INOL	AC230P	AP301U	AP330M	AP301U	AP330M	AC230P	AP301U	AW100K
	ATD 265E015	3 мм	0.10-0.18	0.20-1.80	0.04-0.12	2.65	0.15	-	5.1	20.70		•		•			•	
	ATD 300E020	3 мм	0.11-0.20	0.30-2.00	0.06-0.14	3.00	0.20	-	5.1	20.70		•		•			•	
	ATD 300E040	3 мм	0.15-0.23	0.50-2.20	0.06-0.15	3.00	0.40	-	5.1	20.70		•		•			•	
	ATD 400E040	4 мм	0.16-0.30	0.50-2.50	0.08-0.19	4.00	0.40	-	5.1	20.70		•		•			•	
	ATD 400E080	4 мм	0.16-0.30	1.00-2.50	0.08-0.19	4.00	0.80	-	5.1	20.70		•		•			•	
	ATD 415E015	4 мм	0.16-0.30	0.20-2.50	0.08-0.19	4.15	0.15	-	5.1	20.70		•		•			•	
	ATD 478E055	5 мм	0.20-0.35	0.60-2.60	0.10-0.20	4.78	0.55	-	5.0	25.70		•		•			•	
	ATD 500E040	5 мм	0.20-0.35	0.50-2.60	0.10-0.20	5.00	0.40	-	5.0	25.70		•		•			•	
	ATD 500E080	5 мм	0.22-0.35	1.00-3.00	0.10-0.20	5.00	0.80	-	5.0	25.70		•		•			•	
	ATD 515E015	5 мм	0.22-0.35	0.20-3.00	0.10-0.22	5.15	0.15	-	5.0	25.70		•		•			•	
	ATD 555E055	6 мм	0.23-0.40	0.60-3.00	0.12-0.28	5.55	0.55	-	5.0	25.70		•		•			•	
	ATD 600E080	6 мм	0.25-0.45	1.00-3.50	0.12-0.30	6.00	0.80	-	5.0	25.70		•		•			•	
	ATD 600E120	6 мм	0.25-0.45	1.30-3.50	0.12-0.30	6.00	1.20	-	5.0	25.70		•		•			•	
	ATD 635E080	6 мм	0.25-0.45	1.00-3.50	0.13-0.30	6.35	0.80	-	5.0	25.70		•		•			•	
	ATD 800E080	8 мм	0.30-0.55	1.00-4.80	0.15-0.40	8.00	0.80	-	6.1	31.50		•		•			•	
	ATD 800E120	8 мм	0.30-0.55	1.20-4.80	0.15-0.40	8.00	1.20	-	6.1	31.50		•		•			•	

Шлифованные пластины для обработки канавок и точения



											• X	ороц	шие (H Cp	едн	ие 🕯	Пло	охие		
						У	слові	ия обр	oabo ⁻	ГКИ	#	•	#	•	*	#	•	•		
			Реж	Режимы реза		Режимы резания			Размеры					Р			/	K		N
Вид пластины	Обозначение пластины	Ширина посадочного	Точен	ние	Обработка канавок	CW	DE	CDY	S	INICI	ЭР	U	M	Ω	M	Д	ı D	X		
		места	f (мм/об)	Ар (мм)	f (мм/об)	CW	RE	CDX	5	INSL	AC230P	AP301U	AP330M	AP301U	AP330M	AC230P	AP301U	AW100K		
	ATD 300E150	3 мм	0.15-0.30	0-1.50	0.08-0.19	3.00	1.50	-	5.1	20.70		•		•			•			
	ATD 400E200	4 мм	0.18-0.35	0-2.00	0.10-0.20	4.00	2.00	-	5.1	20.70		•		•			•			
-5	ATD 478E239	5 мм	0.22-0.45	0-2.40	0.12-0.24	4.78	2.39	-	5.0	25.70		•		•			•			
(d)	ATD 500E250	5 мм	0.22-0.45	0-2.50	0.12-0.24	5.00	2.50	-	5.0	25.70		•		•			•			
	ATD 600E300	6 мм	0.25-0.50	0-3.00	0.15-0.30	6.00	3.00	-	5.0	25.70		•		•			•			
	ATD 800E400	8 мм	0.30-0.65	0-4.00	0.18-0.35	8.00	4.00	-	6.1	31.50		•		•			•			

Заготовки пластин ATBD

Dun nnoonuu	Обозначение	Ширина		Разм	перы		P	М	К	N	S	н
Вид пластины	пластины	посадочного места	CW	RE	INSL	S	P	IVI	,	N	3	П
	ATBD 2.6 M200	2 мм	2.60	0.10	21.2	5.1	•	•	•	•	•	
	ATBD 3.5 M200	3 мм	3.50	0.10	21.2	5.1	•	•	•	•	•	
	ATBD 4.5 M200	4 мм	4.50	0.10	21.2	5.1	•	•	•	•	•	
0	ATBD 5.5 M200	5 мм	5.50	0.10	26.2	5.0	•	•	•	•	•	
	ATBD 6.5 M200	6 мм	6.50	0.10	26.2	5.0	•	•	•	•	•	
	ATBD 8.5 M200	8 мм	8.74	0.12	32.0	6.1	•	•	•	•	•	

Готовые пластины устанавливаются только в державки Achteck

Режимы резания для обработки канавок и отрезки

	N	Латериалы обрабаты	ваемых деталей	Твёрдость по	Предел	V		мин) для		рабо	отки	ая ск кана С230	авок	и о		ки
ISO	Обр	рабатываемые материа	лы	Бринеллю (НВ)	прочности (Н/мм²)	_	(мм/о	_		(мм/о	_	-	(мм/о	ŕ	-	(мм/о	ŕ
		C≤0.25%	Отожжённые	125	428	0.1	0.3	0.5 130	0.1 160	0.3	0.5 100	0.1	0.3	0.5	0.1	0.2	0.4
		0.25 <c≤0.55%< td=""><td>Отожжённые</td><td>190</td><td>639</td><td>145</td><td>130</td><td>115</td><td>120</td><td>100</td><td>90</td><td>160</td><td>130</td><td>115</td><td></td><td></td><td></td></c≤0.55%<>	Отожжённые	190	639	145	130	115	120	100	90	160	130	115			
																_	-
	Низкоуглеродистые	0.25 <c≤0.55%< td=""><td>Термообработанные</td><td>210</td><td>708</td><td>130</td><td>115</td><td>100</td><td>120</td><td>100</td><td>90</td><td>130</td><td>115</td><td>100</td><td>-</td><td>-</td><td>-</td></c≤0.55%<>	Термообработанные	210	708	130	115	100	120	100	90	130	115	100	-	-	-
	стали	C>0.55%	Отожжённые	190	639	145	130	115	145	130	80	160	130	115	-	-	-
		C>0.55%	Термообработанные	300	1013	115	100	80	115	100	80	115	100	80	-	-	-
		Хорошо обрабатываемые стали (короткая стружка)	Отожжённые	220	745	130	115	100	130	115	100	130	115	100	-	-	-
P		Отожжён	іные	175	591	180	145	130	-	-	-	-	_	-	-	-	-
	Низколегированные	Термообраб	Термообработанные		1013	115	100	80	-	-	-	-	-	-	-	-	-
	стали	Термообрабо	отанные	380	1282	170	90	105	-	-	-	-	-	-	-	-	-
		Термообрабо	отанные	430	1477	-	-	-	-	-	-	-	-	-	-	-	-
	_	Отожжён	ные	200	675	-	-	-	-	-	-	-	-	_	-	-	-
	Высоколегированные и инструментальные	Закалённые и о		300	1013	-	-	-	-	-	-	-	_	_	-	-	-
	стали	Закалённые и о		400	1361	-	_	-		_		_		_	-	_	-
		Ферритные и мартенси		200	675	165	135	105	_	_	_	_	_		-		
	Нержавеющие стали	Мартенситные, терм		330	1114	150	115	70							-		
		Аустенит		200	675	165	135	105	_	_	-	_	_	_	_	_	-
М	Неругароводине стали	Аустенитные, закалённые (Р		300	1013	155	120	80		_	-	_	_	_	-		_
IVI	Пержавеющие стали			230	778	_		85	-			_	_	-			_
		Аустенитно-ферритн				135	110			-	-				-	-	
	Ковкие чугуны	Феррит		200	400	115	90	65	-	-	-	115	90	65	-	-	-
		Перлитн		260 180	700	115	90	65	-	-	-	115	90	65	-	_	-
	Серые чугуны		С низким пределом прочности		200	185	140	95	-	-	-	200	160	120	-	-	-
K		С высоким пределом прочности, аустенитный		245	350	185	140	95	-	-	-	200	160	120	-	-	-
	Чугуны с шаровидным	Ферритн	ные	155	400	145	110	80	-	-	-	160	130	100	-	-	-
	графитом	Перлить	ные	265	700	145	110	80	-	-	-	160	130	100	-	-	-
	Чугуны	с вермикулярным графитог	м (CGI)	230	400	-	-	-	-	-	-	-	-	-	-	-	-
	Деформируемые	Алюминиевые сплавы, не п	одвергнутые старению	30	-	-	-	-	-	-	-	-	-	-	-	-	-
	алюминиевые сплавы	Алюминиевые сплавы, по,	двергнутые старению	100	340	-	-	-	-	-	-	-	-	-	-	-	-
		≤ 12% Si, не подверг	нутые старению	75	260	-	-	-	-	-	-	-	-	-	850	500	200
	Литые алюминиевые сплавы	400/ 0:														-	-
N	CHICEBI	≤ 12% Si, подвергну	утые старению	90	310	-	-	-	-	- 1	-	-	-	-	-		
						-	-		-	-		-	-	-	450	250	40
	Marijiyani ja angani j	> 12% Si, подвергну > 12% Si, не подверг		130	450	-	-	-	-	-	-	-	-	-	450	250	40
	Магниевые сплавы	> 12% Si, не подвері	гнутые старению	130 70	450 250	-	-		-	-		-	-	-	-	250	40
		> 12% Si, не подвері Нелегированная электро	пнутые старению	130 70 100	450 250 340	-	-	-	-	-	-			-	-	250	40 - -
	Медь и сплавы на её основе (бронза,	> 12% Si, не подвері Нелегированная электро Латунь, бронза, кр	опитическая бронза расная латунь	130 70 100 90	450 250 340 310	-	-	- - -	-	-	-	-	-	-	-	250 - - -	- - -
	Медь и сплавы на	> 12% Si, не подвері Нелегированная электро Латунь, бронза, кр Медные сплавы, ко	тнутые старению олитическая бронза расная латунь роткая стружка	130 70 100 90 110	450 250 340 310 380	-	-	-	-	-			-	-	-	250	40 - - -
	Медь и сплавы на её основе (бронза,	> 12% Si, не подвері Нелегированная электро Латунь, бронза, кр	олитическая бронза расная латунь роткая стружка плавы Атрсо	130 70 100 90 110 300	450 250 340 310 380 1010		-	-	-			-	-	-	-	250 - - - -	- - - -
	Медь и сплавы на её основе (бронза,	> 12% Si, не подвері Нелегированная электро Латунь, бронза, кр Медные сплавы, ко	опитическая бронза расная латунь роткая стружка плавы Атрсо Отожжённые	130 70 100 90 110 300 200	450 250 340 310 380 1010 680		-		-	-			-	-	-	250	40 - - - - -
	Медь и сплавы на её основе (бронза, латунь)	> 12% Si, не подвери Нелегированная электро Латунь, бронза, кр Медные сплавы, ко Высокопрочные с На основе железа (Fe)	олитическая бронза расная латунь роткая стружка плавы Атрсо Отоженные Состаренные	130 70 100 90 110 300 200 280	450 250 340 310 380 1010 680 940		-		-				-	-	-	250 - - - - - -	40 - - - - -
	Медь и сплавы на её основе (бронза,	> 12% Si, не подвери Нелегированная электро Латунь, бронза, кр Медные сплавы, ко Высокопрочные с На основе железа (Fe)	олитическая бронза оасная латунь роткая стружка плавы Атрсо Отожжённые Состаренные Отожжённые	130 70 100 90 110 300 200 280 250	450 250 340 310 380 1010 680 940 840		- - -					-	-	-		250 - - - - - -	40 - - - - - -
	Медь и сплавы на её основе (бронза, латунь)	> 12% Si, не подвери Нелегированная электро Латунь, бронза, кр Медные сплавы, ко Высокопрочные с На основе железа (Fe)	олитическая бронза расная латунь роткая стружка плавы Атрсо Отожжённые Состаренные Отожжённые Состаренные	130 70 100 90 110 300 200 280 250 350	450 250 340 310 380 1010 680 940 840 1180		-					- - - - -	-	-		250 - - - - - -	40 - - - - - - -
	Медь и сплавы на её основе (бронза, латунь)	> 12% Si, не подвери Нелегированная электри Латунь, бронза, кр Медные сплавы, ко Высокопрочные с На основе железа (Fe) На основе никеля (Ni) и кобальта (Co)	олитическая бронза расная латунь роткая стружка плавы Атрсо Отожжённые Состаренные Состаренные Литые	130 70 100 90 110 300 200 280 250 350 320	450 250 340 310 380 1010 680 940 840 1180		- - -					-	-			250 - - - - - - -	40 - - - - - - - -
S	Медь и сплавы на её основе (бронза, латунь) Жаропрочные сплавы	> 12% Si, не подвери Нелегированная электро Латунь, бронза, кр Медные сплавы, ко Высокопрочные с На основе железа (Fe) На основе никеля (Ni) и кобальта (Co)	пнутые старению олитическая бронза расная латунь роткая стружка плавы Атрсо Отожжённые Состаренные Отожжённые Состаренные Литые	130 70 100 90 110 300 200 280 250 350 320 200	450 250 340 310 380 1010 680 940 840 1180 1080 680		-					- - - - -	-			250 - - - - - - - -	40 - - - - - - - -
s	Медь и сплавы на её основе (бронза, латунь)	> 12% Si, не подвери Нелегированная электро Латунь, бронза, кр Медные сплавы, ко Высокопрочные с На основе железа (Fe) На основе никеля (Ni) и кобальта (Co) Чистый т α, β сплавы, со	опитическая бронза расная латунь роткая стружка плавы Атрсо Отожжённые Состаренные Отожжённые Ситаренные итан	130 70 100 90 110 300 200 280 250 350 320 200 375	450 250 340 310 380 1010 680 940 840 1180 1080 680 1260		-					- - - - - - -	-			250	40 - - - - - - - -
S	Медь и сплавы на её основе (бронза, латунь) Жаропрочные сплавы Титановые сплавы	> 12% Si, не подвери Нелегированная электро Латунь, бронза, кр Медные сплавы, ко Высокопрочные с На основе железа (Fe) На основе никеля (Ni) и кобальта (Co)	опитическая бронза расная латунь роткая стружка плавы Атрсо Отожжённые Состаренные Отожжённые Ситаренные итан	130 70 100 90 110 300 200 280 250 350 320 200	450 250 340 310 380 1010 680 940 840 1180 1080 680								-			250	40 - - - - - - - - - - - - -
S	Медь и сплавы на её основе (бронза, латунь) Жаропрочные сплавы Титановые сплавы Вольфрамовые	> 12% Si, не подвери Нелегированная электро Латунь, бронза, кр Медные сплавы, ко Высокопрочные с На основе железа (Fe) На основе никеля (Ni) и кобальта (Co) Чистый т α, β сплавы, со	опитическая бронза расная латунь роткая стружка плавы Атрсо Отожжённые Состаренные Отожжённые Ситаренные итан	130 70 100 90 110 300 200 280 250 350 320 200 375	450 250 340 310 380 1010 680 940 840 1180 1080 680 1260		- - - - -						-			250	40 - - - - - - - - - - - - - -
S	Медь и сплавы на её основе (бронза, латунь) Жаропрочные сплавы Титановые сплавы	> 12% Si, не подвери Нелегированная электро Латунь, бронза, кр Медные сплавы, ко Высокопрочные с На основе железа (Fe) На основе никеля (Ni) и кобальта (Co) Чистый т α, β сплавы, со	опитическая бронза расная латунь роткая стружка плавы Атрсо Отожжённые Состаренные Отожжённые Ситаренные итан	130 70 100 90 110 300 200 280 250 350 320 200 375 410 300	450 250 340 310 380 1010 680 940 840 1180 1080 680 1260 1400 1010		- - - - -						-			250	40 - - - - - - - - - - - - -
s	Медь и сплавы на её основе (бронза, латунь) Жаропрочные сплавы Титановые сплавы Вольфрамовые сплавы	> 12% Si, не подвери Нелегированная электро Латунь, бронза, кр Медные сплавы, ко Высокопрочные с На основе железа (Fe) На основе никеля (Ni) и кобальта (Co) Чистый т α, β сплавы, со	опитическая бронза расная латунь роткая стружка плавы Атрсо Отожжённые Состаренные Отожжённые Ситаренные итан	130 70 100 90 110 300 200 280 250 350 320 200 375 410 300 300	450 250 340 310 380 1010 680 940 840 1180 1080 680 1260 1400		- - - - -						-			250	40 - - - - - - - - - - - - - - - - - - -
s	Медь и сплавы на её основе (бронза, латунь) Жаропрочные сплавы Титановые сплавы Вольфрамовые сплавы Молибденовые	> 12% Si, не подвери Нелегированная электро Латунь, бронза, кр Медные сплавы, ко Высокопрочные с На основе железа (Fe) На основе никеля (Ni) и кобальта (Co) Чистый т α, β сплавы, со	пнутые старению олитическая бронза оасная латунь роткая стружка плавы Атрсо Отожжённые Состаренные Отожжённые Состаренные Литые итан остаренные	130 70 100 90 110 300 200 280 250 350 320 200 375 410 300 300 50HRC	450 250 340 310 380 1010 680 940 840 1180 1080 680 1260 1400 1010		- - - - -						-			250	40
	Медь и сплавы на её основе (бронза, латунь) Жаропрочные сплавы Титановые сплавы Вольфрамовые сплавы Молибденовые	> 12% Si, не подвери Нелегированная электри Латунь, бронза, кр Медные сплавы, ко Высокопрочные с На основе железа (Fe) На основе никеля (Ni) и кобальта (Co) Чистый т α, β сплавы, со β сплаг	пнутые старению олитическая бронза оасная латунь роткая стружка плавы Атрсо Отожжённые Состаренные Литые итан остаренные вы	130 70 100 90 110 300 200 280 250 350 320 200 375 410 300 300	450 250 340 310 380 1010 680 940 840 1180 1080 680 1260 1400 1010		- - - - -									250 	40 - - - - - - - - - - - - - - - - - - -
S	Медь и сплавы на её основе (бронза, латунь) Жаропрочные сплавы Титановые сплавы Вольфрамовые сплавы Молибденовые сплавы	> 12% Si, не подвери Нелегированная электри Латунь, бронза, кр Медные сплавы, ко Высокопрочные с На основе железа (Fe) На основе никеля (Ni) и кобальта (Co) Чистый т α, β сплавы, со β сплаг	пнутые старению олитическая бронза оасная латунь роткая стружка плавы Атрсо Отожжённые Состаренные Литые итан остаренные вы отоженные литые итан остаренные отоженные литые итан остаренные потаренные потаренные вы	130 70 100 90 110 300 200 280 250 350 320 200 375 410 300 300 50HRC	450 250 340 310 380 1010 680 940 840 1180 1080 680 1260 1400 1010											250 	40 - - - - - - - - - - - - - - - - - - -

Рекомендованные режимы резания являются начальными для средних условий обработки. Требуется вводить корректировку при плохой жёсткости системы СПИД и нестандартной конфигурации заготовки.

ACHTECK

www.achtecktool.com/ru

ЭКСПЕРТ В РЕЗАНИИ ТРУЛНООБРАБАТЫВАЕМЫХ МАТЕРИАЛОВ

ОСНОВНОЙ КАТАЛОГ

Фрезы со сменными режущими пластинами	192	Фрезерные пластины	266
Обозначение фрез со сменными режущими пластинами	194	Обозначение фрезерных пластин	266
Обзор фрез со сменными режущими пластинами	197	Рекомендации по выбору геометрий фрезерных пластин	269
Фрезы для обработки плоскостей	204	Описание фрезерных геометрий пластин	270
Фрезы AFM42-OD06	204	Область применения фрезерных марок сплавов	271
Фрезы AFM40-ON05	206	Рекомендации по выбору фрезерных марок сплавов	272
Фрезы AFM45-SD09	208	Описание марок сплавов для фрезерования	273
Фрезы AFM90-SD09	210	Пластины OD06	275
Фрезы AFM45-SD12	212	Пластины ON05	276
Фрезы AFM90-SD12	214	Пластины SD09/12	277
Фрезы AFM45-SN12	216	Пластины SE12	278
Фрезы AFM45-SN19	216	Пластины SN12/19	279
Фрезы AFM75-SN12	218	Пластины XN07/09	283
Фрезы AFM88-SN12	220	Пластины LNET12	285
Фрезы AFM45-XN07	222	Пластины ONHF/LNHQ	286
Фрезы AFM45-XN09	224	Пластины LNHU09	287
Фрезы AFM45-XN09 (W)	224	Пластины LNHU13	288
Фрезы AFM40-LN12/LN15 для чистовой обработки чугуна	226	Пластины LNHU16	289
Фрезы для обработки прямоугольных уступов	228	Пластины TDMT15	290
Фрезы ASM90-LN12	228	Пластины WNGU08	291
Фрезы ASM90-LN09	230	Пластины WNMU08	292
Фрезы ASM90-LN13	232	Пластины АРКТ17	293
Фрезы ASM90-LN16	234	Пластины АРКТ10	294
Фрезы ASM90-WN08	236	Пластины AOMT12	295
Фрезы ASM90-WN08-N	238	Пластины ADMT11	296
Фрезы ASM90-AP17	240	Пластины АРМТ11/16	297
Фрезы ASM90-TD15	242	Пластины XD09/12	298
Фрезы ASM90-AO12	244	Пластины RPM080/100	299
Длиннокромочные фрезы APE90 LN09	246	Пластины RD/RP	300
Длиннокромочные фрезы APE90 LN13	248	Пластины RO	301
Фрезы для работы на высоких подачах	250	Режимы резания для фрезерных пластин	302
Фрезы AHM15-XD09	250		
Фрезы AHM15-XD12	252	Цельные твёрдосплавные концевые фрезы	304
Фрезы с круглыми пластинами и со сферическим концом	254	Обзор цельных твёрдосплавных концевых фрез	305
Фрезы АРМ00-RP080/100	254	Указатель по информационным обозначениям	306
Фрезы APM00-RO08	256	Система обозначения цельных твёрдосплавных концевых фрез	306
Фрезы APM00-RO10	258	Универсальные фрезы серии M200 семейства ECO	307
Фрезы APM00-RO12	260	Фрезы серии М205 для чистовой обработки семейства ЕСО	316
Фрезы APM00-RO16	262	Серия М245 семейства ЕСО для обработки цветных сплавов	317
Фрезы АРМ00-RO20	264	Режимы резания для фрез семейства ЕСО	320

Система обозначения фрез со сменными режущими пластинами

080

2-Тип фрезерования	
Обработка плоскостей	FM
Обработка прямоугольных уступов	SM
Профильное фрезерование	PM
Фрезерование на высоких подачах	НМ
Обработка пазов и стенок	DM
Резьбофрезерование	TM
Обработка фасок	СМ
Чистовое фрезерование плоскостей	FF

3-Угол в плане (К	r)
Значение	Угол
90	90°
88	88°
75	75°
60	60°
45	45°
42	42°
*	*
15	15°
0	Пластины круглой формы

4-Диаметр фрезь	1
025	25 мм
063	63 мм
080	80 мм
*	*
250	250 мм

5-Количество зуб	ьев
Z02	2 зуба
Z04	4 зуба
Z05	5 зуба
*	*
Z30	30 зуба

6-Исполне	ние крепёжной части фрезы
Α	с отверстием под оправку
W	с хвостовиком Weldon
С	с цилиндрическим хвостовиком
N	с хвостовиком Whistle Notch
М	в виде сменной модульной головки на резьбе

22 - диаметр крепёжной части 22 мм

8-Исполнение фр	езы
R	Правостороннее
L	Левостороннее
N	Нейтральное

SN12 - режущие пластины форморазмера SN12

10-Дополн	ительная информация
С	С каналами для внутреннего подвода СОЖ
М	Исполнение с креплением режущих пластин клином
S	Исполнение с подкладными твёрдосплавными пластинами
Без обозначения	Без каналов для внутреннего подвода СОЖ

рр<mark>езы со сменн</mark>ыми жущими пластинами

Система обозначения длиннокромочных фрез со сменными режущими пластинами

Α	PE	90	063	Z 04	Α	27	R		LN13	-	L56		F		С
1	2	3	4	5	6	7	8	-	9		10	-	11	-	12

1 A--ACHTECK

2-Тип фрезерования	
Обработка длиннокромочными фрезами	PE

3-Угол в плане (К	r)
90	90°
88	88°
75	75°
60	60°
45	45°
42	42°
*	*

4-Диаметр фрезь	
025	25 мм
063	63 мм
080	80 мм
*	*
250	250 мм

5-Количество зуб	ьев
Z02	2 зуба
Z04	4 зуба
Z05	5 зуба
*	*
Z30	30 зуба

6-Исполне	ние крепёжной части фрезы
Α	С отверстием под оправку
W	С хвостовиком Weldon
С	с цилиндрическим хвостовиком
N	с хвостовиком Whistle Notch
М	в виде сменной модульной головки на резьбе

7-Размер крепёжной части	
27 - диаметр крепёжной части 27 мм	

8-Исполнение фр	езы
R	Правостороннее
L	Левостороннее
N	Нейтральное

9-Форморазмер режущей пластины
LN12 novembre programs dentioned
LN13 - режущие пластины форморазмера

10-Длина режущей части					
L30	30 мм				
L45	45 мм				
L56	56 мм				

11-Тиг	т длиннокромочной фрезы
F	С полным количеством зубьев (Zэфф = Z)
Н	С половинным количеством зубьев (Zэфф = Z/2)

12-Дополнительная информация						
С	С каналами для внутреннего подвода СОЖ					
Без обозначения	Без каналов для внутреннего подвода СОЖ					

www.achtecktool.com/ru

ЭКСПЕРТ В РЕЗАНИИ ТРУДНООБРАБАТЫВАЕМЫХ МАТЕРИАЛОВ

режущими пластинами

Фрезы со сменными эжущими пластинами

			AFM42-OD06	AFM40-ON05	AFM45-SD09	AFM90-SD09	AFM45-SD12
	Серия фрезы				1	62	
	Страни	ца	204	206	208	210	212
	Угол в пл	ане	42°	40°	45°	90°	45°
	Макс. глубина р	езания (мм)	4.5	3.5	5	6	7
	Диапазон диам	етров (мм)	ф50-160	ф50-160	ф16-125	ф25-100	ф50-125
	Форморазмер	пластины	OD0605	ON0504	SD09T3	SD09T3	SD1204
	Обработка плоскостей		•	•	•	•	•
	Обработка прямоугольных уступов						
	Обработка пазов						
Тип фрезерования	Фрезерование с врезанием под углом		•		•		•
Тип фрез	Фрезерование по винтовой интерполяции		•				
	Плунжерное фрезерование						
	Профильное фрезерование						
	Обработка фасок		•		•		•
	Обработка карманов		•				

[•] Рекомендуемое применение

	Серия фр	оезы	AFM90-SD12	AFM45-SN12	AFM45-SN19	AFM75-SN12	AFM88-SN12
	Страни	ца	214	216	216	218	220
	Угол в пл	ане	90°	45°	45°	75°	88°
	Макс. глубина р	езания (мм)	9	6.5	11	8	10
	Диапазон диам	етров (мм)	ф50-125	ф50-315	ф160-250	ф50-250	ф50-315
	Форморазмер	пластины	SD1204	SN1206	SN1909	SN1206	SN1206
	Обработка плоскостей		•	•	•	•	•
	Обработка прямоугольных уступов						
	Обработка пазов						
Тип фрезерования	Фрезерование с врезанием под углом						
Тип фрез	Фрезерование по винтовой интерполяции						
	Плунжерное фрезерование						
	Профильное фрезерование						
	Обработка фасок						
	Обработка карманов						

[•] Рекомендуемое применение

Фрезы со сменными эжущими пластинами

			AFM45-XN07	AFM45-XN09	AFM45-XN09(W)	AFF40-LN12	AFF40-LN15
	Серия ф	резы				0	0
	Страни	іца	222	224	224	226	226
	Угол в пл	пане	45°	45°	45°	40°	40°
	Макс. глубина р	езания (мм)	4.4	6	6	0.5	0.5
	Диапазон диам	етров (мм)	ф40-250	ф63-315	ф80-315	ф80-100	ф125-250
	Форморазмер	пластины	XN0705	XN0906	XN0906	0N0504 LN1204	0N0504 LN1506
	Обработка плоскостей		•	•	•	•	•
	Обработка прямоугольных уступов						
	Обработка пазов						
Тип фрезерования	Фрезерование с врезанием под углом						
Тип фрез	Фрезерование по винтовой интерполяции						
	Плунжерное фрезерование						
	Профильное фрезерование						
	Обработка фасок						
	Обработка карманов						

[•] Рекомендуемое применение

	Серия фן	резы	ASM90-LN12	ASM90-LN09	ASM90-LN13	ASM90-LN16	ASM90-WN08
	Страни	ца	228	230	232	234	236
	Угол в пл	пане	90°	90°	90°	90°	90°
	Макс. глубина р	езания (мм)	5	8	12	15	7
	Диапазон диам	етров (мм)	ф63-250	ф20-80	ф40-315	ф63-160	ф40-250
	Форморазмер	пластины	LN1206	LNHU 0904	LNHU 1306	LNHU 160708	WNGU 0806
	Обработка плоскостей		•	•	•	•	•
	Обработка прямоугольных уступов		•	•	•	•	•
	Обработка пазов			•	•	•	
Тип фрезерования	Фрезерование с врезанием под углом						
Тип фрез	Фрезерование по винтовой интерполяции						
	Плунжерное фрезерование						
	Профильное фрезерование						
	Обработка фасок						
	Обработка карманов						

[●] Рекомендуемое применение

Фрезы со сменными эжущими пластинами

			ASM90-WN08-N	ASM90-AP17	ASM90-TD15	ASM90-AO12	APE90-LN09
	Серия ф	резы					
	Страни	іца	238	240	242	244	246
	Угол в пл	пане	90°	90°	90°	90°	90°
	Макс. глубина р	езания (мм)	7	16	11	11	48
	Диапазон диам	етров (мм)	ф40-250	ф25-100	ф32-250	ф20-80	ф25-50
	Форморазмер	пластины	WNMU 0806	APKT 1705	TD.T 1505	AOMT 1204	LNHU 0904
	Обработка плоскостей		•	•	•	•	•
	Обработка прямоугольных уступов		•	•	•	•	•
	Обработка пазов		•	•	•	•	
Тип фрезерования	Фрезерование с врезанием под углом			•	•	•	
Тип фрез	Фрезерование по винтовой интерполяции			•	•	•	
	Плунжерное фрезерование						
	Профильное фрезерование						
	Обработка фасок						
	Обработка карманов			•	•	•	

[•] Рекомендуемое применение

Рекомендации по выбору серии фрез со сменными режущими пластинами

			APE90-LN13	AHM15-XD09	AHM15-XD12	APM00-RP	APM00-RO08
	Серия фрезы						
	Страни	ца	248	250	252	254	256
	Угол в пл	пане 1	90°	15°	15°	-	-
	Макс. глубина р	езания (мм)	56	1.5	2.5	-	4
	Диапазон диам	етров (мм)	ф40-80	ф25-50	ф32-125	ф16-20	ф16-25
	Форморазмер	пластины	LNHU 1306	XD0904	XD1205	RPM 080/100	RO 0803
	Обработка плоскостей		•	•	•		•
	Обработка прямоугольных уступов		•				
	Обработка пазов			•	•		
Тип фрезерования	Фрезерование с врезанием под углом			•	•	•	•
Тип фрез	Фрезерование по винтовой интерполяции			•	•		•
	Плунжерное фрезерование			•	•		
	Профильное фрезерование					•	•
	Обработка фасок						
	Обработка карманов			•	•		•

● Рекомендуемое применение

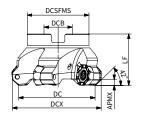
Фрезы со сменными эжущими пластинами

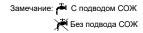
	Серия ф	резы	APM00-RO10	APM00-RO12	APM00-RO16	APM00-RO20
	Страни	ща	258	260	262	264
	Угол в пл		-	-	-	-
	Макс. глубина р	езания (мм)	5	6	8	10
	Диапазон диам	етров (мм)	ф25-50	ф32-80	ф63-100	ф100-160
	Форморазмер	пластины	RO10T3	RO1204	RO1605	RO2006
	Обработка плоскостей		•	•	•	•
	Обработка прямоугольных уступов					
	Обработка пазов					
Тип фрезерования	Фрезерование с врезанием под углом		•	•	•	•
Тип фрез	Фрезерование по винтовой интерполяции		•	•	•	•
	Плунжерное фрезерование					
	Профильное фрезерование		•	•	•	•
	Обработка фасок					
	Обработка карманов		•	•	•	•

[•] Рекомендуемое применение

AFM42-OD06

Фреза с углом в плане 42° для обработки плоскостей Пластины OD06 с 8-ю режущими кромками

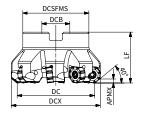




Номер по каталогу	DC	DCX	DCB	DCSFMS	LF	APMX	Внутр. СОЖ	Z	Пластины
AFM42-050-Z04-A16R-OD06-C	50	60.4	16	40	40	4.5	/ =-	4	
AFM42-063-Z05-A22R-OD06-C	63	73.4	22	48	40	4.5	-	5	
AFM42-080-Z05-A27R-OD06-C	80	90.4	27	62	50	4.5	/ =4	5	
AFM42-080-Z06-A27R-OD06-C	80	90.4	27	62	50	4.5	/ =4	6	
AFM42-100-Z06-A32R-OD06-C	100	110.4	32	80	50	4.5	/ =-	6	OD0605
AFM42-100-Z07-A32R-OD06-C	100	110.4	32	80	50	4.5	/ =4	7	
AFM42-125-Z07-A40R-OD06-C	125	135.4	40	87	63	4.5	/ =4	7	
AFM42-125-Z08-A40R-OD06-C	125	135.4	40	87	63	4.5	/ =4	8	
AFM42-160-Z10-A40R-OD06	160	170.4	40	107	63	4.5	×	10	

Размеры (мм)	Запасные части						
Диаметр фрезы	Винт	Момент					
ф50-160			5.0 Нм				
	SP04512043	DT-TP20					

	Размер	ры (мм)		Р		M	ŀ	(N
Номер по каталогу	Радиус при вершине	Ширина зачистной фаски	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AW100K
ODET 0605APFN-FM2	0.8	1.6							•
ODMT 060508EN-MM3	0.8	-	•	•	•		•	•	
ODMT 060512EN-MM3	1.2	-	•						
ODHT 0605APEN-MM3	-	1.6	•	•			•	•	
ODEW 0605APSR-HR2	-	1.6					A	•	
ODMW 060512EN-HR2	1.2	-					•	•	


	Материалы обрабатываем	ых деталей		Глубина резания и подача									
							OD(0605					
		_						Геом	етрия				
ISO	Описание обрабатываемых	Предел прочности	Твёрдость	а	ıp	Н	R2		M3	FN	/12		
	материалов	(H/мм²)	(HB)						Z				
				мин.	макс.		(мм) мин. макс. мин. макс. мин. макс.						
		<600	<180	мин.	макс.	мин.	макс.	мин.	макс.	мин.	макс.		
	Низкоуглеродистые стали	<950	<280			0.15	0.40	0.12	0.35	-	-		
P		700-950	200-280										
	Decimenation of exercise	950-1200	280-355			0.12	0.35	0.10	0.30				
	Легированные стали					0.12	0.33	0.10	0.30	-	-		
		1200-1400	355-415										
	Дуплексные нержавеющие стали	778	230										
M	Аустенитные нержавеющие стали Закалённые аустенитные стали	675	200			-	-	0.08	0.28	-	-		
		1013	300										
	Серые чугуны	700	220										
K	Чугуны с шаровидным графитом	880	260	0.20	4.50	0.15	0.40	0.12	0.35	-	-		
	Ковкие чугуны	800	250										
	Чистый алюминий	260	75							0.10	0.35		
N	Алюминиевые сплавы	447	130			-	-	-	-	0.10	0.35		
	Жаропрочные сплавы на основе Fe	943	280										
	Жаропрочные сплавы на основе Со	1076	320										
S	Жаропрочные сплавы на основе Ni	1177	350			-	-	-	-	-	-		
	Жаропрочные сплавы на основе Ті	1262	370										
Н	Закалённые стали	-	50-60HRC			0.10	0.25						
П	Отбеленные чугуны	-	55HRC			0.10	0.23	-	-	-	-		

^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr

AFM40-ON05

Фреза с углом в плане 40° для обработки плоскостей Пластины ON05 с 16-ю режущими кромками. Экономичность

Номер по каталогу	DC	DCX	DCB	DCSFMS	LF	APMX	Внутр. СОЖ	Z	Пластины
AFM40-050-Z04-A22R-ON05-N-C	50	58.8	22	47	40	3.5	 -	4	
AFM40-050-Z06-A22R-ON05-N-C	50	58.8	22	47	40	3.5	ٿ م	6	
AFM40-063-Z05-A22R-ON05-N-C	63	71.8	22	52	40	3.5	-	5	
AFM40-063-Z06-A22R-ON05-N-C	63	71.8	22	52	40	3.5	-	6	
AFM40-063-Z08-A22R-ON05-N-C	63	71.8	22	52	40	3.5	- -	8	
AFM40-080-Z06-A27R-ON05-N-C	80	88.8	27	62	50	3.5	-	6	
AFM40-080-Z08-A27R-ON05-N-C	80	88.8	27	62	50	3.5	ٿ م	8	
AFM40-080-Z09-A27R-ON05-N-C	80	88.8	27	62	50	3.5	- -	9	ON0504
AFM40-100-Z07-A32R-ON05-N-C	100	108.8	32	77	50	3.5	/ =1	7	
AFM40-100-Z09-A32R-ON05-N-C	100	108.8	32	77	50	3.5	ٿ م	9	
AFM40-100-Z11-A32R-ON05-N-C	100	108.8	32	77	50	3.5	-	11	
AFM40-125-Z07-A40R-ON05-N-C	125	133.8	40	90	63	3.5	-	7	
AFM40-125-Z09-A40R-ON05-N-C	125	133.8	40	90	63	3.5	-	9	
AFM40-125-Z14-A40R-ON05-N-C	125	133.8	40	90	63	3.5	-	14	
AFM40-160-Z10-A40R-ON05-N	160	168.8	40	107	63	3.5	×	10	

Размеры (мм)		Запасные части								
Диаметр фрезы	Винт	Момент								
ф50-160	ф50-160		4.0 Нм							
	SP040090	DT-TP15								

Замечание: С подводом СОЖ Без подвода СОЖ

	Размер	ы (мм)		Р		M	ŀ	(N
Номер по каталогу	Радиус при вершине	Ширина зачистной фаски	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AW100K
ONHU 050408-MM3	0.8	-	•						
ONMU 050408-MM4	0.8	-	•	•			•	•	
ONHU 0504ZNR-MM3	0.8	1.4	•						

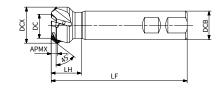
Доступны также пластины ONMU -MM4 из сплава AC151K для скоростной обработки чугуна.

●: На складе

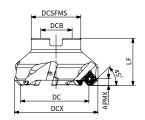
▲: На складе, но скоро выйдет замена.

	Материалы обрабатываем	ых деталей		Глубина резания и подача							
						ON0	504				
		Предел						етрия			
ISO	Описание обрабатываемых материалов	прочности	Твёрдость (НВ)	á	ар	MI	IM3 MM4		M4		
	материалов	(H/mm ²)	(110)			(1040	fz (MM)				
				мин.	макс.	мин.	макс.	мин.	макс.		
		<600	<180								
	Низкоуглеродистые стали	<950	<280								
P		700-950	200-280			0.10	0.25	0.15	0.35		
	Легированные стали	950-1200	280-355								
		1200-1400	355-415								
	Дуплексные нержавеющие стали Аустенитные нержавеющие стали	778	230								
M		675	200			0.08	0.20	0.10	0.25		
	Закалённые аустенитные стали	1013	300								
	Серые чугуны	700	220								
K	Чугуны с шаровидным графитом	880	260	0.20	3.50	0.10	0.25	0.15	0.35		
	Ковкие чугуны	800	250								
N	Чистый алюминий	260	75			_					
IN	Алюминиевые сплавы	447	130			_	_	-	-		
	Жаропрочные сплавы на основе Fe	943	280								
S	Жаропрочные сплавы на основе Со	1076	320								
	Жаропрочные сплавы на основе Ni	1177	350			_	_	_			
	Жаропрочные сплавы на основе Ті	1262	370								
Н	Закалённые стали	-	50-60HRC			_	_	_	_		
	Отбеленные чугуны	-	55HRC			_			_		

^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr


AFM45-SD09

Фреза с углом в плане 45° для обработки плоскостей Пластины SD09 с 4-мя режущими кромками



Номер по каталогу	DC	DCX	DCB	LF	LH	APMX	Внутр. СОЖ	Z	Пластины
AFM45-016-Z02-W16R-SD09-C	16	25.2	16	90	25	5	ا ق ام	2	
AFM45-020-Z02-W20R-SD09-C	20	29.2	20	110	27	5	(= 1	2	SD09T3
AFM45-025-Z03-W25R-SD09-C	25	34	25	120	27	5	الثار	3	3D0913
AFM45-032-Z03-W32R-SD09-C	32	41	32	120	31	5	, ±1	3	

Номер по каталогу	DC	DCX	DCB	DCSFMS	LF	APMX	Внутр. СОЖ	Z	Пластины
AFM45-032-Z04-A16R-SD09-C	32	41.6	16	30	40	5	7	4	
AFM45-040-Z05-A16R-SD09-C	40	49.6	16	35	40	5	 -	5	
AFM45-050-Z05-A22R-SD09-C	50	59.6	22	42	40	5	/= -	5	
AFM45-050-Z06-A22R-SD09-C	50	59.6	22	42	40	5	F =1	6	
AFM45-063-Z05-A22R-SD09-C	63	72.6	22	42	40	5	₽	5	
AFM45-063-Z07-A22R-SD09-C	63	72.6	22	42	40	5	/= 4	7	SD09T3
AFM45-080-Z06-A27R-SD09-C	80	89.6	27	42	50	5	-	6	
AFM45-080-Z09-A27R-SD09-C	80	89.6	27	42	50	5	F =4	9	
AFM45-100-Z07-A32R-SD09-C	100	109.6	32	80	50	5	F =4	7	
AFM45-100-Z11-A32R-SD09-C	100	109.6	32	80	50	5	F =-	11	
AFM45-125-Z08-A40R-SD09-C	125	134.6	40	87	63	5	-	8	

Размеры (мм)		Запасные части								
Диаметр фрезы	Винт	Винт Отвёртка Момент								
ф16-32			3.5 Нм							
	ST040075									
ф40-125	SP040090	DT-TP15								

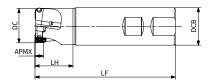
Замечание: С подводом СОЖ Без подвода СОЖ

	Размер	ры (мм)		Р		М	ı	<	N
Номер по каталогу	Радиус при вершине	Ширина зачистной фаски	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AW100K
SDMT 09T304EN-MM3	0.4	-	•	•	•		•		
SDMT 09T308EN-MM3	0.8	-	•	A			•		
SDGT 09T3PDER-MR6	0.8	1.2	•	A				•	

Доступны также пластины из сплавов AC151K для скоростной обработки чугуна и AC251P для обработки стали.

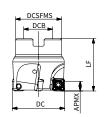
●: На складе

▲: На складе, но скоро выйдет замена.


	Материалы обрабатываем	ых деталей		Глубина резания и подача					
ISO	Описание обрабатываемых материалов	Предел прочности (Н/мм²)	Твёрдость (НВ)	á	SD0		ИЗ		
		(1 1/111111)			(м	м)			
				мин.	макс.	мин.	макс.		
	Низкоуглеродистые стали	<600	<180			0.08	0.30		
	тизкоутперодистые стали	<950	<280			0.00	0.50		
P		700-950	200-280						
	Легированные стали	950-1200	280-355			0.05	0.28		
		1200-1400	355-415						
	Дуплексные нержавеющие стали	778	230						
M	Аустенитные нержавеющие стали	675	200			0.05	0.25		
	Закалённые аустенитные стали	1013	300						
	Серые чугуны	700	220						
K	Чугуны с шаровидным графитом	880	260	0.20	5.00	0.08	0.30		
	Ковкие чугуны	800	250						
N	Чистый алюминий	260	75			_	_		
	Алюминиевые сплавы	447	130				_		
	Жаропрочные сплавы на основе Fe	943	280						
S	Жаропрочные сплавы на основе Со	1076	320			_	_		
	Жаропрочные сплавы на основе Ni	1177	350			_	-		
	Жаропрочные сплавы на основе Ті	1262	370						
Н	Закалённые стали	-	50-60HRC			_	_		
	Отбеленные чугуны	-	55HRC				-		

^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr

AFM90-SD09


Фреза с углом в плане 90° для обработки плоскостей Пластины SD09 с 4-мя режущими кромками

Номер по каталогу	DC	DCB	LF	LH	APMX	Внутр. СОЖ	Z	Пластины
AFM90-025-Z02-W25R-SD09-C	25	25	120	27.7	6	-	2	SD09T3
AFM90-032-Z03-W32R-SD09-C	32	32	120	32.5	6	-	3	JD0913

Номер по каталогу	DC	DCB	DCSFMS	LF	APMX	Внутр. СОЖ	Z	Пластины
AFM90-040-Z04-A16R-SD09-C	40	16	35	40	6	–	4	
AFM90-050-Z05-A22R-SD09-C	50	22	42	40	6	–	5	
AFM90-063-Z06-A22R-SD09-C	63	22	48	40	6	-	6	SD09T3
AFM90-080-Z08-A27R-SD09-C	80	27	52	50	6	–	8	
AFM90-100-Z10-A32R-SD09-C	100	32	80	50	6	-	10	

Размеры (мм)		Запасные части							
Диаметр фрезы	Винт	Момент							
ф25-32			3.5 Нм						
	ST040075 DT-T15								
ф40-100	SP040090								

Замечание: С подводом СОЖ Без подвода СОЖ

	Размер	ры (мм)		Р		M	ı	(N
Номер по каталогу	Радиус при вершине	Ширина зачистной фаски	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AW100K
SDMT 09T304EN-MM3	0.4	-	•	A	A		A		
SDMT 09T308EN-MM3	0.8	-	•	•			•		
SDGT 09T3PDER-MR6	0.8	1.2	•	•				•	

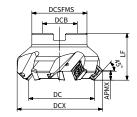
Доступны также пластины из сплавов AC151K для скоростной обработки чугуна и AC251P для обработки стали.

●: На складе

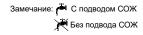
▲: На складе, но скоро выйдет замена.

	Материалы обрабатываем	ых деталей			Глу	бина резан	ния и пода	ча				
						SD09	9T3					
		-						етрия				
ISO	Описание обрабатываемых	Предел прочности	Твёрдость	a	ар	M	R6		M3			
	материалов	(H/мм²)	(HB)		-	fz						
				мин. макс. мин. макс. мин.								
		<600	<180	WIVITI.	макс.	мин.	макс.	мип.	макс.			
	Низкоуглеродистые стали	<950				0.10	0.35	0.08	0.30			
			<280									
Р		700-950	200-280									
	Легированные стали	950-1200	280-355			0.08	0.30	0.05	0.28			
		1200-1400	355-415									
	Дуплексные нержавеющие стали	778	230									
M	Аустенитные нержавеющие стали	675	200			-	-	0.05	0.25			
	Закалённые аустенитные стали	1013	300									
	Серые чугуны	700	220									
K	Чугуны с шаровидным графитом	880	260	0.20	6.00	0.10	0.35	0.08	0.30			
	Ковкие чугуны	800	250									
N	Чистый алюминий	260	75			_						
N	Алюминиевые сплавы	447	130			_	_	-	-			
	Жаропрочные сплавы на основе Fe	943	280									
S	Жаропрочные сплавы на основе Со	1076	320			_	_	_	_			
	Жаропрочные сплавы на основе Ni	1177	350				_	_	_			
	Жаропрочные сплавы на основе Ті	1262	370									
Н	Закалённые стали	-	50-60HRC			0.06	0.20	_	_			
	Отбеленные чугуны	-	55HRC			0.00	0.20	_	_			

^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr


AFM45-SD12

Фреза с углом в плане 45° для обработки плоскостей Пластины SD12 с 4-мя режущими кромками



Номер по каталогу	DC	DCX	DCB	DCSFMS	LF	APMX	Внутр. СОЖ	Z	Пластины
AFM45-050-Z04-A22R-SD12-C	50	62.7	22	42	40	7	-	4	
AFM45-063-Z05-A22R-SD12-C	63	75.7	22	48	40	7	, = 1	5	
AFM45-080-Z06-A27R-SD12-C	80	92.7	27	52	50	7	اٿم	6	SD1204
AFM45-100-Z07-A32R-SD12-C	100	112.7	32	80	50	7	الله	7	
AFM45-125-Z08-A40R-SD12-C	125	137.7	40	87	63	7	(* -1	8	

Размеры (мм)		Запасные части								
Диаметр фрезы	Винт	Момент								
ф50-125			5.0 Нм							
	SP04511555	DT-TP20								

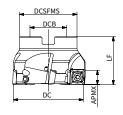
	Размер	ры (мм)		Р		M	ı	(N
Номер по каталогу	Радиус при вершине	Ширина зачистной фаски	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AW100K
SDMT 120408EN-MM4	0.8	-	•	•			•		
SDMT 120412EN-MM3	1.2	-	•		•		•		
SDKT 1204AEEN-MR2	-	1.5		•				•	

Доступны также пластины из сплавов AC151K для скоростной обработки чугуна и AC251P для обработки стали.

●: На складе ▲:

▲: На складе, но скоро выйдет замена.

	Материалы обрабатываем	ых деталей				Глуби	іна реза	ния и п	одача		
							SD1	204			
ISO	Описание обрабатываемых материалов	Предел прочности (Н/мм²)	Твёрдость (НВ)	а	ıp	M	R2	M	M4	M	M3
		(1 1/WIWI)					(м	м)			
				мин.	макс.	мин.	макс.	мин.	макс.	мин.	макс.
	Низкоуглеродистые стали	<600	<180			0.15	0.30	0.15	0.30	0.12	0.28
	тизкоутпередистые стали	<950	<280			0.10	0.00	0.10	0.00	0.12	0.20
P		700-950	200-280								
	Легированные стали	950-1200	280-355			0.15	0.25	0.15	0.25	0.10	0.25
		1200-1400	355-415								
	Дуплексные нержавеющие стали	778	230								
M	Аустенитные нержавеющие стали	675	200			0.12	0.25	0.10	0.25	0.08	0.20
	Закалённые аустенитные стали	1013	300								
	Серые чугуны	700	220								
K	Чугуны с шаровидным графитом	880	260	0.20	7.00	0.10	0.22	0.10	0.25	0.12	0.28
	Ковкие чугуны	800	250								
	Чистый алюминий	260	75								
N	Алюминиевые сплавы	447	130			-	-	-	-	-	-
	Жаропрочные сплавы на основе Fe	943	280								
S	Жаропрочные сплавы на основе Со	1076	320							0.08	0.20
	Жаропрочные сплавы на основе Ni	1177	350		_	_	-	_	0.06	0.20	
	Жаропрочные сплавы на основе Ті	1262	370								
Н	Закалённые стали	-	50-60HRC								_
	Отбеленные чугуны	-	55HRC				_	,	_		_


^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr

AFM90-SD12

Фреза с углом в плане 90° для обработки плоскостей Пластины SD12 с 4-мя режущими кромками

Номер по каталогу	DC	DCB	DCSFMS	LF	APMX	Внутр. СОЖ	Z	Пластины
AFM90-050-Z04-A22R-SD12-C	50	22	42	40	9	(= 1	4	
AFM90-063-Z05-A22R-SD12-C	63	22	48	40	9	-	5	
AFM90-080-Z06-A27R-SD12-C	80	27	52	50	9	ا#م	6	SD1204
AFM90-100-Z08-A32R-SD12-C	100	32	80	50	9		8	
AFM90-125-Z10-A40R-SD12-C	125	40	87	63	9	-	10	

Размеры (мм)		Запасные части	
Диаметр фрезы	Винт	Момент	
ф50-125			5.0 Нм
	SP04511555	DT-TP20	

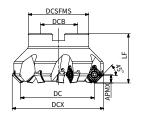
Замечание: С подводом СОЖ Без подвода СОЖ

	Размер	ы (мм)		Р		M	ŀ	(N
Номер по каталогу	Радиус при вершине	Ширина зачистной фаски	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AW100K
SDMT 120408EN-MM4	0.8	-	•	A		•	A		
SDMT 120412EN-MM3	1.2	-	•		•		•		
SDKT 1204AEEN-MR2	-	1.5		A				•	

Доступны также пластины из сплавов AC151K для скоростной обработки чугуна и AC251P для обработки стали.

●: На складе ▲

▲: На складе, но скоро выйдет замена.


	Материалы обрабатываем	ых деталей			Гл	убина реза	ния и пода	ача		
						SD1	1204			
		Предел					Геом			
ISO	Описание обрабатываемых материалов	прочности	Твёрдость (НВ)	a	ар	MI	M4	M	И3	
	материалов	(H/mm ²)	(115)	(MM)						
				мин.	макс.	мин.	макс.	мин.	макс.	
		<600	<180			0.45	0.20	0.40	0.20	
	Низкоуглеродистые стали	<950	<280			0.15	0.30	0.12	0.30	
P		700-950	200-280							
	Легированные стали	950-1200	280-355			0.15	0.25	0.10	0.25	
		1200-1400	355-415							
	Дуплексные нержавеющие стали	778	230							
M	Аустенитные нержавеющие стали	675	200			0.10	0.25	0.10	0.22	
	Закалённые аустенитные стали	1013	300							
	Серые чугуны	700	220							
K	Чугуны с шаровидным графитом	880	260	0.20	9.00	0.10	0.25	0.12	0.30	
	Ковкие чугуны	800	250							
N	Чистый алюминий	260	75				_	-		
N	Алюминиевые сплавы	447	130			_	-	-	_	
	Жаропрочные сплавы на основе Fe	943	280							
S	Жаропрочные сплавы на основе Со	1076	320			_	_	0.10	0.20	
	Жаропрочные сплавы на основе Ni	1177	350			_	_	0.10	0.20	
	Жаропрочные сплавы на основе Ті	1262	370							
Н	Закалённые стали	-	50-60HRC			0.08	0.25	_	_	
	Отбеленные чугуны	-	55HRC			0.00	0.20	_	_	

^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr

AFM45-SN12/SN19

Фреза с углом в плане 45° для обработки плоскостей с пластинами SN12/SN19 Пластины SN12/SN19 с 8-ю режущими кромками

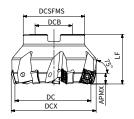
Номер по каталогу	DC	DCX	DCB	DCSFMS	LF	APMX	Внутр. СОЖ	Z	Пластины
AFM45-050-Z04-A22R-SN12-N-C	50	63.9	22	47	40	6.5	اٿم	4	
AFM45-050-Z06-A22R-SN12-N-C	50	63.9	22	47	40	6.5	ا=	6	
AFM45-063-Z04-A22R-SN12-N-C	63	76.9	22	52	40	6.5	الله	4	
AFM45-063-Z06-A22R-SN12-N-C	63	76.9	22	52	40	6.5	اشم	6	
AFM45-063-Z08-A22R-SN12-N-C	63	76.9	22	52	40	6.5	اشم	8	
AFM45-080-Z04-A27R-SN12-N-C	80	93.9	27	62	50	6.5	اشم	4	
AFM45-080-Z05-A27R-SN12-N-C	80	93.9	27	62	50	6.5	اشم	5	
AFM45-080-Z07-A27R-SN12-N-C	80	93.9	27	62	50	6.5	اشم	7	
AFM45-100-Z06-A32R-SN12-N-C	100	113.9	32	77	50	6.5	اشم	6	SN1206ANN SN1206
AFM45-100-Z08-A32R-SN12-N-C	100	113.9	32	77	50	6.5	ا ٿ م	8	
AFM45-125-Z07-A40R-SN12-N-C	125	138.9	40	90	63	6.5	ا ٿ ۽	7	
AFM45-125-Z08-A40R-SN12-N-C	125	138.9	40	90	63	6.5	ا=	8	
AFM45-125-Z10-A40R-SN12-N-C	125	138.9	40	90	63	6.5	اٿم	10	
AFM45-160-Z10-A40R-SN12-N	160	173.9	40	107	63	6.5	× ×	10	
AFM45-200-Z14-A60R-SN12-N	200	213.9	60	130	63	6.5	×	14	
AFM45-250-Z16-A60R-SN12-N	250	263.9	60	180	63	6.5	X	16	
AFM45-315-Z14-A60R-SN12-M	315	328.5	60	220	63	6.5	×	14	
AFM45-160-Z08-A40R-SN19	160	181.3	40	107	63	11	×	8	
AFM45-200-Z10-A60R-SN19	200	221.3	60	130	63	11	×	10	SN1909ANN
AFM45-250-Z12-A60R-SN19	250	271.3	60	180	63	11	×	12	

Размеры (мм)		Запасные части								
Диаметр фрезы	Винт	Момент								
ф50-315(SN1206ANN)	φ50-315(SN1206ANN)		3.5 Нм							
	SP050120	DT-TP20								
φ160-250(SN1909ANN)	SP06018070	DT-TP25	5.0Nm							

Картридж	Винт картриджа	Ключ для крепления картриджа	Клин	Винт клина	Ключ для крепления клина
C-SN1242-62-45	ACH622	LT-H5	AWG-6H-6	AWCH624	LT-H3

	Размер	ры (мм)		Р		M	ı	<	N
Номер по каталогу	Радиус при вершине	Ширина зачистной фаски	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AW100K
SNGX 1206ANN-MM3	0.4	1.8	•	A	A		A	•	
SNGX 1206ANN-MM4	0.4	1.8	•	A	A	•	A	•	
SNGX 1206ANN-MR6	0.4	1.8	•	A	A		A	•	
SNGX 1206ANN-RR2	0.5	1.8	•	A	A		A	•	
SNGX 1909ANN-MM3	0.4	2.9		A					
SNGX 1909ANN-MR6	0.8	2.9		A					
SNGX 120608-MM4	0.8	-	•	A	A		A	•	
SNGX 120612-MM4	1.2	-	•						
SNMX 1206ANN-MM3	0.4	1.8	•	A	A		A	•	
SNMX 1206ANN-MM4	0.4	1.8	•	A	A	•	A	•	
SNMX 1206ANN-MR6	0.4	1.8	•	A	A		A	•	
SNMX 120608-MM4	0.8	-	•	A	A		A	•	
SNMX 120612-MM3	1.2	-	•	A	A		A	•	
SNMX 120612-MM4	1.2	-	•	A	A		A	•	
SNMX 120612R-MM4	1.2	-	•	A	A	•	A	•	
SNMX 120612-MR6	1.2	-	•	A	A		A	•	
SNMX 120612-RR2	1.2	-	•	A	A		A	•	
SNMX 120620-MM4	2.0	-	•	A	A		A	•	
SNMX 120620-RR2	2.0	-	•	A	A		A	•	
SNHX 1206ANN-FM2	0.5	1.8							•
SNHX 1206ANN-W	1.2	6.7	•				A		

●: На складе ▲: Н


	Материалы обрабатываемы	х деталей					Гл	убин	а реза	ния і	и пода	ча													
									SN	1206															
		_								Геом	етрия														
ISO	Описание обрабатываемых	Предел прочности	Твёрдость	a	ар	М	M3	М	M4		R6	R	R2	F	M2										
	материалов	(H/мм²)	(HB)		fz																				
				мин.	макс.	мин.	макс.	мин.	<u> </u>	ім) Т _{мин.}	макс.	мин.	макс.	МИН	макс.										
		<600	<180	14171111	waxo.									14171111.	waxo.										
	Низкоуглеродистые стали	<950	<280			0.15	0.35	0.18	0.38	0.18	0.40	0.18	0.45	-	-										
P	Легированные стали	700-950	200-280																						
		950-1200	280-355			0.12	0.32	0.15	0.35	0.15	0.38	0.15	0.38	-	-										
		1200-1400	355-415																						
	Дуплексные нержавеющие стали	778	230																						
M	Аустенитные нержавеющие стали	675	200			0.12	0.30	0.12	0.32	-	-	-	-	-	-										
	Закалённые аустенитные стали	1013	300	0.20																					
	Серые чугуны	700	220																						
K	Чугуны с шаровидным графитом	880	260		6.50	0.15	0.35	0.18	0.38	0.18	0.40	0.18	0.45	-	-										
	Ковкие чугуны	800	250																						
N	Чистый алюминий	260	75								_		_	0.15	0.35										
N	Алюминиевые сплавы	447	130			-	-	-	-	-	-	-	-	0.15	0.35										
	Жаропрочные сплавы на основе Fe	943	280												-										
S	Жаропрочные сплавы на основе Со	1076	320			0.10	0.25	0.12	0.28	_	_		_												
	Жаропрочные сплавы на основе Ni	1177	350			0.10	0.23	0.12	0.20	-	_	_	_	_											
	Жаропрочные сплавы на основе Ті	1262	370																						
Н	Закалённые стали	-	50-60HRC							_		_		_	_										
	Отбеленные чугуны	-	55HRC				_	_	_	_			_	_											

^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr

AFM75-SN12

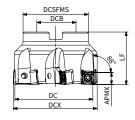
Фреза с углом в плане 75° для обработки плоскостей с пластинами SN12 Пластины SN12 с 8-ю режущими кромками

Номер по каталогу	DC	DCX	DCB	DCSFMS	LF	APMX	Внутр. СОЖ	Z	Пластины
AFM75-050-Z04-A22R-SN12-N-C	50	56.4	22	42	40	8	/= -	4	
AFM75-063-Z06-A22R-SN12-N-C	63	69.4	22	52	40	8	/= -	6	
AFM75-080-Z07-A27R-SN12-N-C	80	86.4	27	62	50	8	/ =-	7	
AFM75-100-Z08-A32R-SN12-N-C	100	106.4	32	67	50	8	, =-	8	
AFM75-125-Z08-A40R-SN12-N-C	125	131.4	40	90	63	8	(= -	8	SN1206ENN SN1206
AFM75-125-Z10-A40R-SN12-N-C	125	131.4	40	90	63	8	, =-	10	
AFM75-160-Z10-A40R-SN12-N	160	166.4	40	107	63	8	×	10	
AFM75-200-Z14-A60R-SN12-N	200	206.4	60	130	63	8	×	14	
AFM75-250-Z16-A60R-SN12-N	250	256.4	60	180	63	8	×	16	

Размеры (мм)		Запасные части								
Диаметр фрезы	Винт	Момент								
ф50-250			3.5 Нм							
	SP050120	DT-TP20								

	Размер	ры (мм)		Р		M	ŀ	(N
Номер по каталогу	Радиус при вершине	Ширина зачистной фаски	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AW100K
SNGX 1206ENN-MM3	0.8	1.2	•	A	A		A	•	
SNGX 1206ENN-MM4	0.8	1.2	•	A	A		•	•	
SNGX 1206ENN-MR6	0.8	1.2	•	A	A		A	•	
SNGX 120608-MM4	0.8	-	•	A	A		A	•	
SNGX 120612-MM4	1.2	-	•						
SNMX 1206ENN-MM4	0.8	1.2			A			•	
SNMX 120608-MM4	0.8	-	•	A	A		A	•	
SNMX 120612-MM3	1.2	-	•	A	A		•	•	
SNMX 120612-MM4	1.2	-	•	A	A		A	•	
SNMX 120612R-MM4	1.2	-	•	A	A	•	A	•	
SNMX 120612-MR6	1.2	-	•	A	A		A	•	
SNMX 120612-RR2	1.2	-	•	A	A		A	•	
SNMX 120620-MM4	2.0	-	•	A	A		A	•	
SNMX 120620-RR2	2.0	-	•	A	A		•	•	
SNHX 1206ENN-W	0.6	1.2	•				A		

• : На складе • На складе, но скоро выйдет замена.


	Материалы обрабатываем	ых деталей				Г	лубин	а реза	ания и	подач	a		
								SN	1206				
		Предел			_		140			етрия	DC		
ISO	Описание обрабатываемых материалов	прочности	Твёрдость (НВ)	a	ıp	MI	M3	IVI	M4 f	z M	R6	RI	R2
	·	(H/mm²)	, ,					(N	 ім)				
				мин.	макс.	мин.	макс.	мин.	макс.	мин.	макс.	мин.	макс.
	Низкоуглеродистые стали	<600	<180			0.12	0.32	0.19	0.35	0.15	0.38	0.18	0.40
	тизкоуптеродистые стали	<950	<280			0.12	0.52	0.13	0.55	0.13	0.50	0.10	0.40
P		700-950	200-280										
	Легированные стали	950-1200	280-355			0.10	0.30	0.12	0.32	0.10	0.35	0.15	0.35
		1200-1400	355-415										
	Дуплексные нержавеющие стали	778	230									-	0.40
M	Аустенитные нержавеющие стали	675	200	00		0.10	0.28	0.10 0.3	0.30	-	-		
	Закалённые аустенитные стали	1013	300										
	Серые чугуны	700	220										
K	Чугуны с шаровидным графитом	880	260	0.20	8.00	.00 0.12	0.32	0.15	0.35	0.12	0.35	0.18	
	Ковкие чугуны	800	250										
N	Чистый алюминий	260	75			_	_		_				
IN	Алюминиевые сплавы	447	130			_	_	-	_	-	-	_	
	Жаропрочные сплавы на основе Fe	943	280										
S	Жаропрочные сплавы на основе Со	1076	320			0.10	0.22	0.10	0.25				
	Жаропрочные сплавы на основе Ni	1177	350			0.10	0.22	0.10	0.23	_	-	_	-
	Жаропрочные сплавы на основе Ті	1262	370										
Н	Закалённые стали	-	50-60HRC			_	_	_	_	_			
	Отбеленные чугуны	-	55HRC					_		_			_

^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr

AFM88-SN12

Фреза с углом в плане 88° для обработки плоскостей с пластинами SN12 Пластины SN12 с 8-ю режущими кромками

Номер по каталогу	DC	DCX	DCB	DCSFMS	LF	APMX	Внутр. СОЖ	Z	Пластины
AFM88-050-Z04-A22R-SN12-N-C	50	51.2	22	42	40	10	-	4	
AFM88-063-Z04-A22R-SN12-N-C	63	64.2	22	52	40	10	-	4	
AFM88-063-Z06-A22R-SN12-N-C	63	64.2	22	62	40	10	6 ≟1	6	
AFM88-080-Z04-A27R-SN12-N-C	80	81.2	27	62	50	10	= 1	4	
AFM88-080-Z07-A27R-SN12-N-C	80	81.2	27	62	50	10	-	7	
AFM88-100-Z08-A32R-SN12-N-C	100	101.2	32	77	50	10	ا = ا	8	
AFM88-100-Z11-A32R-SN12-N-C	100	101.2	32	77	50	10	-	11	SN1206ZNN SN1206
AFM88-125-Z10-A40R-SN12-N-C	125	126.2	40	90	63	10	-	10	
AFM88-125-Z13-A40R-SN12-N-C	125	126.2	40	90	63	10	-	13	
AFM88-160-Z12-A40R-SN12-N	160	161.2	40	108	63	10	×	12	
AFM88-200-Z14-A60R-SN12-N	200	201.2	60	130	63	10	×	14	
AFM88-250-Z12-A60R-SN12-M	250	250.9	60	180	63	10	×	12	
AFM88-315-Z14-A60R-SN12-M	315	315.9	60	220	63	10	×	14	

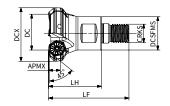
Размеры (мм)		Запасные части								
Диаметр фрезы	Винт	Момент								
ф50-315			3.5 Нм							
	SP050120	DT-TP20								

Картридж	Винт картриджа	Ключ для крепления картриджа	Клин	Винт клина	Ключ для крепления клина
C-SN1242-62-88	ACH622	LT-H5	AWG-6H-6	AWCH624	LT-H3

Замечание: С подводом СОЖ

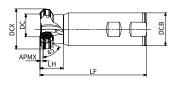
	Размер	ры (мм)		Р		M	ı	<	N
Номер по каталогу	Радиус при вершине	Ширина зачистной фаски	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AW100K
SNGX 1206ZNN-MM3	0.8	1.2	•	A	A		A	•	
SNGX 1206ZNN-MM4	0.8	1.2	•	A	A	•	A .	•	
SNGX 1206ZNN-MR6	0.8	1.2	•	A	A		A	•	
SNGX 120608-MM4	0.8	-	•	A	A		A	•	
SNGX 120612-MM4	1.2	-	•						
SNMX 120608-MM4	0.8	-	•	A	A		A	•	
SNMX 120612-MM3	1.2	-	•	A	A		A	•	
SNMX 120612-MM4	1.2	-	•	A	A		A	•	
SNMX 120612R-MM4	1.2	-	•	A	A	•	A	•	
SNMX 120612-MR6	1.2	-	•	A	A		A	•	
SNMX 120612-RR2	1.2	-	•	A	A		A	•	
SNMX 120620-MM4	2.0	-	•	A	A		A	•	
SNMX 120620-RR2	2.0	-	•	A	A		A	•	
SNHX 1206ZNN-FM2	0.8	1.2							•
SNHX 1206ZNN-W	1.0	4.4	•				A		

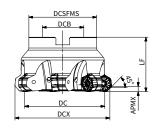
●: На складе ▲


	Материалы обрабатываемых деталей					Глубина резания и подача									
									SN	1206					
		Предел				L.,					етрия				
ISO	Описание обрабатываемых материалов	прочности (нр.)		K	RR2 F		M2								
	'	(H/мм²)	, ,						(M	ім)					
				мин.	макс.	мин.	макс.	мин.	макс.	мин.	макс.	мин.	макс.	мин.	макс.
	Низкоуглеродистые стали	<600	<180			0.12	0.32	0.19	0.35	0.15	0.38	0.18	0.40		
	пизкоупперодистые стали	<950	<280			0.12	0.32	0.19	0.33	0.13	0.36	0.16	0.40	-	-
P		700-950	200-280												
	Легированные стали	950-1200	280-355			0.10	0.30	0.12	0.32	0.10	0.35	0.15	0.35	-	-
		1200-1400	355-415												
	Дуплексные нержавеющие стали	778	230												
M	Аустенитные нержавеющие стали	675	200			0.10	0.28	0.10	0.30	-	-	-	-	-	-
	Закалённые аустенитные стали	1013	300												
	Серые чугуны	700	220												
K	Чугуны с шаровидным графитом	880	260	0.20	10.00	0.12	0.32	0.15	0.35	0.12	0.35	0.18	0.40	-	-
	Ковкие чугуны	800	250												
	Чистый алюминий	260	75											0.40	0.00
N	Алюминиевые сплавы	447	130			-	-	-	-	-	-	-	-	0.12	0.32
	Жаропрочные сплавы на основе Fe	943	280												
S	Жаропрочные сплавы на основе Со	1076	320			0.10	0.22	0.10	0.25						
3	Жаропрочные сплавы на основе Ni	1177	350			0.10	0.22	0.10	0.25	-	-	-	-	-	-
	Жаропрочные сплавы на основе Ті	1262	370												
Н	Закалённые стали	-	50-60HRC												
П	Отбеленные чугуны	-	55HRC			_	-	-	-	-	-	_	_	_	

^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr

AFM45-XN07


Фреза с углом в плане 45° для обработки плоскостей. Первый выбор Пластины XN07 с 14-ю режущими кромками


Номер по каталогу	DC	DCX	CRKS	DCSFMS	LF	LH	APMX	Внутр. СОЖ	Z	Пластины
AFM45-040-Z03-M16R-XN07-C	40	49.3	M16	29	70	43	4.4	الش	3	XN0705

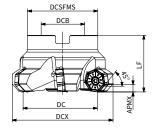
Номер по каталогу	DC	DCX	DCB	LF	LH	APMX	Внутр. СОЖ	Z	Пластины
AFM45-040-Z03-W40R-XN07-C	40	49.8	40	130	28.3	4.4	-	3	XN0705

Номер по каталогу	DC	DCX	DCB	DCSFMS	LF	APMX	Внутр. СОЖ	Z	Пластины
AFM45-040-Z03-A16R-XN07-C	40	49.7	16	35	40	4.4	/= 4	3	
AFM45-050-Z04-A22R-XN07-C	50	59.7	22	42	40	4.4	/ =1	4	
AFM45-050-Z05-A22R-XN07-C	50	59.7	22	42	40	4.4	-	5	
AFM45-063-Z05-A22R-XN07-C	63	72.7	22	48	40	4.4	-	5	
AFM45-063-Z06-A22R-XN07-C	63	72.7	22	48	40	4.4	/ =1	6	
AFM45-080-Z06-A27R-XN07-C	80	89.7	27	62	50	4.4	-	6	
AFM45-080-Z07-A27R-XN07-C	80	89.7	27	62	50	4.4	/ =1	7	
AFM45-100-Z07-A32R-XN07-C	100	109.7	32	77	50	4.4	(=	7	XN0705
AFM45-100-Z08-A32R-XN07-C	100	109.7	32	77	50	4.4	(8	
AFM45-125-Z08-A40R-XN07-C	125	134.7	40	87	63	4.4	-	8	
AFM45-125-Z10-A40R-XN07-C	125	134.7	40	87	63	4.4	/ =1	10	
AFM45-160-Z09-A40R-XN07	160	169.7	40	107	63	4.4	×	9	
AFM45-160-Z12-A40R-XN07	160	169.7	40	107	63	4.4	×	12	
AFM45-200-Z14-A60R-XN07	200	209.3	60	130	63	4.4	×	14	
AFM45-250-Z14-A60R-XN07-S	250	259.6	60	180	63	4.4	×	14	

Размеры (мм)			Запасны	е части		
Диаметр фрезы	Винт	Отвёртка	Подкладная пластина	Винт подкладной пластины	Ключ для подкладной пластины	Момент
ф40-250						3.5 Нм
	SP035120H	DT-TP15	S-XN07030	SS050085F	LT-H3.5	

	Размер	Размеры (мм)				M	ŀ	<	N
Номер по каталогу	Радиус при вершине	Ширина зачистной фаски	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AW100K
XNGU 0705ANN-MM3	0.8	1.1	•	•			•		
XNGU 0705ANN-MM4	0.8	1.1	•				•		
XNMU 0705ANN-MM4	0.8	1.1	•	A	A		•	•	
XNMU 0705ANN-MR6	0.8	1.1	•	•			•	•	
XNMU 070508-MM4	0.8	-	•	A		•	•	•	
XNGX 0705ANN-W	1.0	6	•				•		

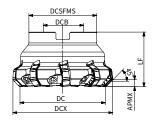
●: На складе


	Материалы обрабатываем		Глубина резания и подача								
						1	XN (
		Предел							етрия		
ISO	Описание обрабатываемых материалов	прочности	Твёрдость (НВ)	a	ıp	MI	M3		M4 z	M	R6
		(H/mm²)	()				(M	м)			
				мин.	макс.	мин.	макс.	мин.	макс.	мин.	макс.
	Unavayenana nyanya anany	<600	<180			0.15	0.35	0.18	0.38	0.18	0.40
	Низкоуглеродистые стали	<950	<280			0.15	0.35	0.16	0.36	0.16	0.40
P		700-950	200-280								
	Легированные стали	950-1200	280-355			0.12	0.32	0.15	0.35	0.15	0.38
		1200-1400	355-415								
	Дуплексные нержавеющие стали	778	230								
M	Аустенитные нержавеющие стали	675	200			0.12	0.30	0.12	0.32	-	-
	Закалённые аустенитные стали	1013	300								
	Серые чугуны	700	220								
K	Чугуны с шаровидным графитом	880	260	0.20	4.40	0.15	0.35	0.18	0.38	0.18	0.40
	Ковкие чугуны	800	250								
	Чистый алюминий	260	75								
N	Алюминиевые сплавы	447	130			-	-	-	-	-	-
	Жаропрочные сплавы на основе Fe	943	280								
S	Жаропрочные сплавы на основе Со	1076	320			0.10	0.25	0.12	0.28		
	Жаропрочные сплавы на основе Ni	1177	350			0.10	0.23	0.12	0.20	_	-
	Жаропрочные сплавы на основе Ті	1262	370								
Н	Закалённые стали	-	50-60HRC				_	_	_	_	_
	Отбеленные чугуны	-	55HRC				_	_			-

^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr

AFM45-XN09

Фреза с углом в плане 45° для обработки плоскостей. Первый выбор Пластины XN09 с 14-ю режущими кромками.


Номер по каталогу	DC	DCX	DCB	DCSFMS	LF	APMX	Внутр. СОЖ	Z	Пластины
AFM45-063-Z05-A22R-XN09-C	63	75.2	22	48	40	6	/ =-	5	
AFM45-080-Z06-A27R-XN09-C	80	92.2	27	62	50	6	-	6	
AFM45-100-Z07-A32R-XN09-C	100	112.2	32	80	50	6	-	7	
AFM45-100-Z08-A32R-XN09-C	100	112.2	32	80	50	6	-	8	
AFM45-125-Z08-A40R-XN09-C	125	137.2	40	87	63	6	=	8	
AFM45-125-Z10-A40R-XN09-C	125	137.2	40	87	63	6	 -	10	XN0906
AFM45-160-Z09-A40R-XN09	160	172.2	40	107	63	6	×	9	
AFM45-160-Z11-A40R-XN09	160	172.2	40	107	63	6	X	11	
AFM45-200-Z12-A60R-XN09	200	212.2	60	130	63	6	×	12	
AFM45-250-Z12-A60R-XN09-S	250	262.8	60	180	63	6	X	12	
AFM45-315-Z14-A60R-XN09-S	315	328.2	60	240	63	6	X	14	

Размеры (мм)			Запасны	е части		
Диаметр фрезы	Винт	Отвёртка	Подкладная пластина	Винт подкладной пластины	Ключ для подкладной пластины	Момент
ф63-315						5.0 Нм
	SP050130	DT-TP20	S-XN09040	SS080100F	LT-H5	

AFM45-XN09-W

Фреза с углом в плане 45° для обработки плоскостей Пластины XN09 с 14-ю режущими кромками, крепление клином

Номер по каталогу	DC	DCX	DCB	DCSFMS	LF	APMX	Внутр. СОЖ	Z	Пластины
AFM45-080-Z09-A27R-XN09-W	80	92.7	27	62	50	6	×	9	
AFM45-100-Z12-A32R-XN09-W	100	112.7	32	80	50	6	×	12	
AFM45-125-Z16-A40R-XN09-W	125	137.7	40	87	63	6	×	16	
AFM45-125-Z16-A40L-XN09-W	125	137.7	40	87	63	6	×	16	
AFM45-160-Z20-A40R-XN09-W	160	172.7	40	107	63	6	×	20	XN0906
AFM45-160-Z20-A40L-XN09-W	160	172.7	40	107	63	6	×	20	AN0906
AFM45-200-Z26-A60R-XN09-W	200	212.7	60	130	63	6	×	26	
AFM45-200-Z26-A60L-XN09-W	200	212.7	60	130	63	6	×	26	
AFM45-250-Z30-A60R-XN09-W	250	262.7	60	170	63	6	×	30	
AFM45-315-Z39-A60R-XN09-W	315	327.7	60	250	63	6	*	39	

Размеры (мм)		Запасные части									
Диаметр фрезы	Клин	Винт	Отвёртка	Момент							
ф80-315				7.0 Нм							
	AWG-8H	WD080320F	LT-H4								

	Размер	оы (мм)	Р			M	ŀ	<	N
Номер по каталогу	Радиус при вершине	Ширина зачистной фаски	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AW100K
XNGU 0906ANN-MM3	0.8	1.4	•	•	A		•		
XNGU 0906ANN-MM4	0.8	1.4	•	•	A		•		
XNMU 0906ANN-MR6	0.8	1.4	•				•	•	
XNMF 0906ANN-MR6	0.8	1.4					•	•	
XNMU 090612-MM4	1.2	-	•	•		•	•	•	
XNGX 0906ANN-W	1.0	7.5	•				•		

●: На складе

	Материалы обрабатываем	ых деталей		Глубина резания и подача							
							XN0	906			
		Предел							етрия		
ISO	Описание обрабатываемых материалов	прочности	Твёрдость (НВ)	a	p	М	M3	l	MM4 fz		R6
	a. spranss	(H/mm ²)	()				(M	<u>'</u> ім)	12		
				мин.	макс.	мин.	макс.	мин.	макс.	мин.	макс.
	Liverayerana suaru va arany	<600	<180			0.15	0.35	0.18	0.38	0.18	0.40
	Низкоуглеродистые стали	<950	<280			0.15	0.35	0.16	0.36	0.16	0.40
Р		700-950	200-280								
	Легированные стали	950-1200	280-355			0.12	0.32	0.15	0.35	0.15	0.38
		1200-1400	355-415								
	Дуплексные нержавеющие стали	778	230								
M	Аустенитные нержавеющие стали	675	200			0.12	0.30	0.12	0.32	-	-
	Закалённые аустенитные стали	1013	300								
	Серые чугуны	700	220								
K	Чугуны с шаровидным графитом	880	260	0.20	6.00	0.15	0.35	0.18	0.38	0.18	0.40
	Ковкие чугуны	800	250								
N	Чистый алюминий	260	75							_	
N	Алюминиевые сплавы	447	130			-	-	-	-	-	-
	Жаропрочные сплавы на основе Fe	943	280								
S	Жаропрочные сплавы на основе Со	1076	320			0.10	0.25	0.12	0.28		
	Жаропрочные сплавы на основе Ni	1177	350			0.10	0.23	0.12	0.20	-	_
	Жаропрочные сплавы на основе Ті	1262	370								
Н	Закалённые стали	-	50-60HRC								
	Отбеленные чугуны	-	55HRC			_					_

^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr


AFF40-LN12/LN15

Фреза для чистовой обработки чугуна Пластины ON05 с 16-ю режущими кромками и зачистные пластины LN12/LN15

Номер по каталогу	DC	DCX	DCB	DCSFMS	LF	APMX	Внутр. СОЖ	*Z	Количество зачистных пластин	Пластины
AFF40-080-Z08-A27R-LN12	80	88.4	27	65	50	0.5	×	8+2	2	ONHF 050408-MM3
AFF40-100-Z10-A32R-LN12	100	108.4	32	80	50	0.5	×	10+2	2	LNHQ 120408FN-W
AFF40-125-Z15-A40R-LN15	125	133.4	40	90	63	0.5	×	15+3	3	
AFF40-160-Z18-A40R-LN15	160	168.4	40	120	63	0.5)	18+3	3	ONHF 050408-MM3
AFF40-200-Z24-A60R-LN15	200	208.4	60	160	63	0.5	×	24+3	3	LNHQ 150416FN-W
AFF40-250-Z30-A60R-LN15	250	258.4	60	200	63	0.5	×	30+3	3	

режущие + зачистные пластины (8+2 и т.д.)

Размеры (мм)			Запасные час	оти	
Диаметр фрезы	Клин	Винт клина	Винт пластины	Регулировочный винт зачистной пластины	Винт картриджа зачистной пластины
ф80-250					
	AWG-6H-13B WD060200 SP040085H		AH050100F	SH060250	

Размеры (мм)			Запасные	части		
Диаметр фрезы	Ключ крепления клина	Ключ крепления зачистной пластины	Ключ крепления картриджа зачистной пластины	Картридж зачис	стной пластины	
ф80-250						5
φου 200	LT-H3 DT-TP10		LT-H2.5	LT-H5	ф80-100	ф125-250
	LI-IIO	D1-11 10	L1-112.5	LI-NO	C-LN1235-2545	C-LN1535-2545

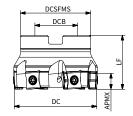
	Размер	ры (мм)	F)	M	ŀ	(Н
Номер по каталогу	Радиус при вершине	Ширина зачистной фаски	AP251U	AP351U	AP403M	AC301K	AP251K	АР151Н
ONHF 050408-MM3	0.8	-						•
LNHQ 120408FN-W	0.8	-						•
LNHQ 150416FN-W	1.6	-						•

●: На складе ▲: На складе, но скоро выйдет замена.

	Материалы обраба	тываемых детале	ей	Глубина резания и подача				
				ONHF05 + LNHQ12/15				
						Геоме	етрия	
ISO	Описание обрабатываемых	Предел прочности	Твёрдость (НВ)	ар		MM3	+ W	
130	материалов	(H/мм²)	твердоств (гів)			fz		
				(MM)				
				мин.	макс.	мин.	макс.	
	Серые чугуны	700	220					
K	Чугуны с шаровидным графитом	880	260	0.20	0.50	0.08	0.25	
	Ковкие чугуны	800	250					

^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr

ASM90-LN12


Фреза для обработки прямоугольных уступов Пластины LN12 с 4 (R)+4 (L) режущими кромками

Номер по каталогу	DC	DCB	DCSFMS	LF	APMX	Внутр. СОЖ	Z	Пластины
ASM90-063-Z06-A22R-LN12-C	63	22	52	40	5	الله	6	
ASM90-063-Z06-A22L-LN12-C	63	22	52	40	5	ا ھُ	6	
ASM90-063-Z08-A22R-LN12	63	22	52	40	5	×	8	
ASM90-063-Z08-A22L-LN12	63	22	52	40	5	×	8	
ASM90-080-Z08-A27R-LN12-C	80	27	62	50	5	ا ھ	8	
ASM90-080-Z08-A27L-LN12-C	80	27	62	50	5	ت -	8	
ASM90-080-Z10-A27R-LN12	80	27	62	50	5	×	10	
ASM90-080-Z10-A27L-LN12	80	27	62	50	5	×	10	
ASM90-100-Z09-A32R-LN12	100	32	78	50	5	**	9	
ASM90-100-Z09-A32L-LN12	100	32	78	50	5	*	9	
ASM90-100-Z13-A32R-LN12	100	32	78	50	5	×	13	
ASM90-100-Z13-A32L-LN12	100	32	78	50	5	×	13	
ASM90-125-Z10-A40R-LN12	125	40	90	63	5	*	10	
ASM90-125-Z10-A40L-LN12	125	40	90	63	5	*	10	LN1206
ASM90-125-Z16-A40R-LN12	125	40	90	63	5	*	16	LIN 1200
ASM90-125-Z16-A40L-LN12	125	40	90	63	5	*	16	
ASM90-160-Z13-A40R-LN12	160	40	107	63	5	×	13	
ASM90-160-Z13-A40L-LN12	160	40	107	63	5	×	13	
ASM90-160-Z21-A40R-LN12	160	40	107	63	5	×	21	
ASM90-160-Z21-A40L-LN12	160	40	107	63	5	₩	21	
ASM90-200-Z16-A60R-LN12	200	60	130	63	5	*	16	
ASM90-200-Z16-A60L-LN12	200	60	130	63	5	*	16	
ASM90-200-Z26-A60R-LN12	200	60	130	63	5	*	26	
ASM90-200-Z26-A60L-LN12	200	60	130	63	5	×	26	
ASM90-250-Z20-A60R-LN12	250	60	180	63	5	×	20	
ASM90-250-Z20-A60L-LN12	250	60	180	63	5	×	20	
ASM90-250-Z32-A60R-LN12	250	60	180	63	5	×	32	
ASM90-250-Z32-A60L-LN12	250	60	180	63	5	X	32	

Размеры (мм)		Запасные части						
Диаметр фрезы	Винт	Винт Отвёртка						
ф63-250	ф63-250		3.5 Нм					
	SP040112	DT-TP15						

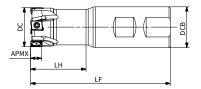
	Размер	ы (мм)		Р		M	ŀ	(N
Номер по каталогу	Радиус при вершине	Ширина зачистной фаски	AP251U	AP351U	AC301P	AP403M	AC151K	AP251K	AW100K
LNET 1206-MM4	0.8	2.5	•			•	•	•	

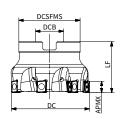
●: На складе

	Материалы обрабатываем	ых деталей			Глубина реза	ния и подача				
					LN1	206				
ISO	Описание обрабатываемых материалов	Предел прочности (Н/мм²)	Твёрдость (НВ)	ар		MI	M4			
		(1.0,000.0.7)		(MM)						
				мин.	макс.	мин.	макс.			
	Низкоуглеродистые стали	<600	<180			0.08	0.35			
	тизкоутпередистые стали	<950	<280			0.00	0.00			
P		700-950	200-280							
	Легированные стали	950-1200	280-355			0.08	0.30			
		1200-1400	355-415							
	Дуплексные нержавеющие стали	778	230							
M	Аустенитные нержавеющие стали	675	200			0.05	0.25			
	Закалённые аустенитные стали	1013	300							
	Серые чугуны	700	220							
K	Чугуны с шаровидным графитом	880	260	0.20	5.00	0.10	0.35			
	Ковкие чугуны	800	250							
N	Чистый алюминий	260	75							
N	Алюминиевые сплавы	447	130			-	-			
	Жаропрочные сплавы на основе Fe	943	280							
S	Жаропрочные сплавы на основе Со	1076	320			0.05	0.20			
	Жаропрочные сплавы на основе Ni	1177	350			0.00	0.20			
	Жаропрочные сплавы на основе Ті	1262	370							
Н	Закалённые стали	-	50-60HRC			_				
	Отбеленные чугуны	-	55HRC			_	_			

^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr

ASM90-LN09


Фреза для обработки прямоугольных уступов. Первый выбор Пластины LN09 с 4-мя режущими кромками


Номер по каталогу	DC	DCB	LF	LH	APMX	Внутр. СОЖ	Z	Пластины
ASM90-025-Z03-W25R-LN09-C	25	25	100	39	8	ا = م	3	
ASM90-025-Z04-W25R-LN09-C	25	25	100	39	8	ا = ۱	4	
ASM90-032-Z04-W32R-LN09-C	32	32	110	44	8	ا = م	4	 LNHU 0904
ASM90-032-Z05-W32R-LN09-C	32	32	110	44	8	ا = م	5	LINHU 0904
ASM90-040-Z04-W32R-LN09-C	40	32	110	25	8	ا=ً م	4	
ASM90-040-Z06-W32R-LN09-C	40	32	110	25	8	ا = م	6	

Номер по каталогу	DC	DCB	LF	LH	APMX	Внутр. СОЖ	Z	Пластины
ASM90-020-Z02-C20R-LN09-L110	20	20	110	30	8	X	2	
ASM90-020-Z03-C20R-LN09-L110	20	20	110	30	8		3	
ASM90-021-Z02-C20R-LN09-L200	21	20	200	30	8		2	
ASM90-025-Z03-C25R-LN09-L200-C	25	25	200	34	8	آٿ	3	
ASM90-025-Z04-C25R-LN09-L200-C	25	25	200	34	8	الله	4	LNHU 0904
ASM90-026-Z03-C25R-LN09-L200-C	26	25	200	34	8	الحا	3	LINHU 0904
ASM90-028-Z03-C25R-LN09-L110-C	28	25	110	34	8	الح	3	
ASM90-032-Z04-C32R-LN09-L250-C	32	32	250	45	8	الله	4	
ASM90-032-Z05-C32R-LN09-L250-C	32	32	250	45	8	ا	5	
ASM90-033-Z04-C32R-LN09-L250-C	33	32	250	45	8	اشم	4	

Номер по каталогу	DC	DCB	LF	DCSFMS	APMX	Внутр. СОЖ	Z	Пластины
ASM90-040-Z04-A16R-LN09-C	40	16	40	35	8	ا= م	4	
ASM90-040-Z06-A16R-LN09-C	40	16	40	35	8	ا أ	6	
ASM90-050-Z05-A22R-LN09-C	50	22	40	42	8	<u> </u>	5	
ASM90-050-Z07-A22R-LN09-C	50	22	40	42	8	ا=ر	7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ASM90-063-Z07-A22R-LN09-C	63	22	40	48	8	الله	7	LNHU 0904
ASM90-063-Z10-A22R-LN09-C	63	22	40	48	8	الله	10	
ASM90-080-Z09-A27R-LN09-C	80	27	50	62	8	ٿ م	9	
ASM90-080-Z13-A27R-LN09-C	80	27	50	62	8	الله	13	

Размеры (мм)	Запасные части								
Диаметр фрезы	Винт	Момент							
ф20-80			1.8 Нм						
	SP030083	DT-TP09							

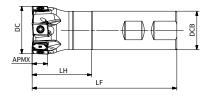
	Размер	оы (мм)		Р		M	ŀ	<	N
Номер по каталогу	Радиус при вершине	Ширина зачистной фаски	AP251U	AP351U	AP351M	AP403M	AC301K	AP251K	AW100K
LNHU 090404ER-FM2	0.4	1.85							•
LNHU 090404ER-MM3	0.4	1.85		A		•			
LNHU 090404ER-MR2	0.4	1.85	•	A		•	A	•	
LNHU 090404ER-MM4	0.4	1.85	•		•	•		•	
LNHU 090408ER-MM4	0.8	1.3	•		•	•		•	
LNHU 090408ER-MR2	0.8	1.3	•	A		•	A	•	
LNHU 090408ER-MM3	0.8	1.3	•		•	•		•	
LNHU 090412ER-MR2	1.2	1.0	•			•	A		
LNHU 090416ER-MR2	1.6	0.65	•			•	A		
LNHU 090420ER-MR2	2.0	0.65	•			•	A		
LNHU 0904PDER-W	0.4	3.6	•				A		

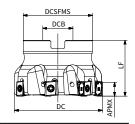
●: На складе ▲: На складе, но скоро выйдет замена.

	Материалы обрабатываем	ых деталей				Глубі	ина реза	ния и п	одача		
							LNHU	0904			
		Предел							етрия	ı	
ISO	Описание обрабатываемых материалов	прочности	Твёрдость (НВ)	а	ip.	М	R2	<u> </u>	M4 z	FN	И2
	Watepualion	(H/mm ²)	(115)				(м	м)			
				мин.	макс.	мин.	макс.	мин.	макс.	мин.	макс.
	Huseyayanan ayan ya anany	<600	<180			0.08	0.28	0.08	0.25		
	Низкоуглеродистые стали	<950	<280			0.06	0.20	0.06	0.25	-	-
P		700-950	200-280								
	Легированные стали	950-1200	280-355			0.06	0.22	0.06	0.20	-	-
		1200-1400	355-415								
	Дуплексные нержавеющие стали	778	230								
M	Аустенитные нержавеющие стали	675	200			0.06	0.22	0.06	0.20	-	-
	Закалённые аустенитные стали	1013	300								
	Серые чугуны	700	220								
K	Чугуны с шаровидным графитом	880	260	0.20	8.00	0.08	0.30	0.08	0.28	-	-
	Ковкие чугуны	800	250								
N	Чистый алюминий	260	75							0.06	0.25
14	Алюминиевые сплавы	447	130			_	_	-	_	0.00	0.23
	Жаропрочные сплавы на основе Fe	943	280								
S	Жаропрочные сплавы на основе Со	1076	320					0.08	0.15		-
	Жаропрочные сплавы на основе Ni	1177	350			_	-	0.00	0.13	_	
	Жаропрочные сплавы на основе Ті	1262	370								
Н	Закалённые стали	-	50-60HRC			_	_	_	_	_	_
	Отбеленные чугуны	-	55HRC								

^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr

ASM90-LN13


Фреза для обработки прямоугольных уступов. Первый выбор Пластины LN13 с 4-мя режущими кромками



Номер по каталогу	DC	DCB	LF	LH	APMX	Внутр. СОЖ	Z	Пластины
ASM90-040-Z05-W32R-LN13-C	40	32	120	49	12	, —	5	LNHU 1306

Номер по каталогу	DC	DCB	LF	DCSFMS	APMX	Внутр. СОЖ	Z	Пластины
ASM90-040-Z04-A16R-LN13-C	40	16	40	35	12	₽ #4	4	
ASM90-040-Z05-A16R-LN13-C	40	16	40	35	12	/ ≟4	5	
ASM90-050-Z05-A22R-LN13-C	50	22	40	42	12	/ =-	5	
ASM90-050-Z06-A22R-LN13-C	50	22	40	42	12	/ ±4	6	
ASM90-063-Z04-A22R-LN13-C	63	22	40	48	12	₽ =4	4	
ASM90-063-Z06-A22R-LN13-C	63	22	40	48	12	/ =-	6	
ASM90-063-Z08-A22R-LN13-C	63	22	40	48	12	₽ =4	8	
ASM90-080-Z05-A27R-LN13-C	80	27	50	62	12	/= -	5	
ASM90-080-Z07-A27R-LN13-C	80	27	50	62	12	/= 4	7	
ASM90-080-Z10-A27R-LN13-C	80	27	50	62	12	₽ =4	10	
ASM90-100-Z07-A32R-LN13-C	100	32	50	80	12	₽ =-	7	LNHU 1306
ASM90-100-Z09-A32R-LN13-C	100	32	50	80	12	₽	9	
ASM90-100-Z13-A32R-LN13-C	100	32	50	80	12	₽ =4	13	
ASM90-125-Z09-A40R-LN13-C	125	40	63	87	12	₽	9	
ASM90-125-Z11-A40R-LN13-C	125	40	63	87	12	/= -	11	
ASM90-125-Z16-A40R-LN13-C	125	40	63	87	12	₹	16	
ASM90-160-Z09-A40R-LN13	160	40	63	107	12	×	9	
ASM90-160-Z13-A40R-LN13	160	40	63	107	12	×	13	
ASM90-200-Z12-A60R-LN13	200	60	63	140	12	×	12	
ASM90-250-Z12-A60R-LN13-M	250	60	63	180	12	×	12	
ASM90-315-Z14-A60R-LN13-M	315	60	63	220	12	×	14	

Размеры (мм)		Запасные части										
Диаметр фрезы	Винт	Отвёртка	Клин	Wedge wrench	Винт клина	Картридж	Cartridge wrench	Винт картриджа	Момент			
ф40-315									3.5 Нм			
	SP040115	DT-TP15	AWG-6H-6	LT-H3	AWCH624	C-LN1342-62-90	LT-H5	ACH622				

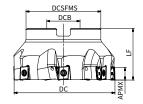
	Размер	ры (мм)		Р		M	ı	<	N
Номер по каталогу	Радиус при вершине	Ширина зачистной фаски	AP251U	AP351U	AP351M	AP403M	AC301K	AP251K	AW100K
LNHU 130608ER-FM2	0.8	2.7							•
LNHU 130608ER-MM3	0.8	2.7		A		•			
LNHU 130608ER-MM4	0.8	2.7	•		•	•		•	
LNHU 130608ER-MR2	0.8	2.7	•	A	•	•	•	•	
LNHU 130612ER-MM4	1.2	2.3	•		•	•		•	
LNHU 130612ER-MR2	1.2	2.3	•	A	•	•	•		
LNHU 130616ER-MR2	1.6	1.9	•	A	•	•	A	•	
LNHU 130620ER-MR2	2.0	1.5	•	•	•	•			
LNHU 130624ER-MR2	2.4	1.0		A	•	•			
LNHU 130631ER-MR2	3.1	0.4		•	•	•	•		
LNHU 1306PDR-W	0.8	5.6	•				•		

●: На складе

	Материалы обрабатываем	ых деталей		Глубина резания и подача							
						LNHU.	.1306				
								етрия			
ISO	Описание обрабатываемых	Предел прочности	Твёрдость	a	р	MI	M3	MI	R2		
	материалов	(H/мм²)	(HB)			(MM)					
				мин.	макс.	мин.	макс.	мин.	макс.		
		<600	<180								
	Низкоуглеродистые стали	<950	<280			0.10	0.30	0.12	0.35		
P		700-950	200-280								
	Легированные стали	950-1200	280-355			0.08	0.25	0.10	0.30		
		1200-1400	355-415								
	Дуплексные нержавеющие стали	778	230								
M	Аустенитные нержавеющие стали	675	200			0.06	0.20	0.08	0.25		
	Закалённые аустенитные стали	1013	300								
	Серые чугуны	700	220								
K	Чугуны с шаровидным графитом	880	260	0.3	12.00	-	-	0.12	0.35		
	Ковкие чугуны	800	250								
N	Чистый алюминий	260	75					_	_		
	Алюминиевые сплавы	447	130			_	_	_	_		
	Жаропрочные сплавы на основе Fe	943	280								
S	Жаропрочные сплавы на основе Со	1076	320			0.06	0.18	0.08	0.22		
	Жаропрочные сплавы на основе Ni	1177	350			0.00	0.10	0.00	0.22		
	Жаропрочные сплавы на основе Ті	1262	370								
Н	Закалённые стали	-	50-60HRC			_	_	0.08	0.20		
	Отбеленные чугуны	-	55HRC						0.20		

^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr

ASM90-LN16


Фреза для обработки прямоугольных уступов. Первый выбор Пластины LN16 с 4-мя режущими кромками

Номер по каталогу	DC	DCB	LF	DCSFMS	APMX	Внутр. СОЖ	Z	Пластины
ASM90-063-Z04-A22R-LN16-C	63	22	40	52	15	الخار	4	
ASM90-080-Z05-A27R-LN16-C	80	27	50	62	15	الله	5	
ASM90-100-Z06-A32R-LN16-C	100	32	50	80	15	الخا	6	LNHU 1607
ASM90-125-Z07-A40R-LN16-C	125	40	63	87	15	<u> </u>	7	
ASM90-160-Z08-A40R-LN16	160	40	63	107	15	×	8	

Размеры (мм)	Запасные части								
Диаметр фрезы	Винт Отвёртка Момент								
ф63-160			5 Нм						
	ST05013063	DT-T20							

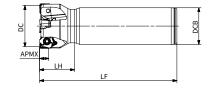
	Размер	ы (мм)		Р		M	ı	(N
Номер по каталогу	Радиус при вершине	Ширина зачистной фаски	AP251U	AP351U	AP351M	AP403M	AC301K	AP251K	AW100K
LNHU 160708ER-MR2	0.8	1.97	•	•			•	•	
LNHU 160716ER-MR2	1.6	1.5	•				•		

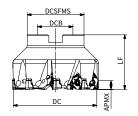
●: На складе ▲: На складе, но скоро выйдет замена.

	Материалы обрабатываем	ых деталей			Глубина реза	ния и подача		
					LNHU	1607		
		П					етрия	
ISO	Описание обрабатываемых материалов	Предел прочности	Твёрдость (НВ)	ар		MR2 fz		
	материалов	(H/Mm^2)	(110)		(84	<u> </u> м)	Z	
				мин.	макс.	мин.	макс.	
		<600	<180					
	Низкоуглеродистые стали	<950	<280			0.10	0.30	
P		700-950	200-280					
	Легированные стали	950-1200	280-355			0.08	0.28	
		1200-1400	355-415					
	Дуплексные нержавеющие стали	778	230					
M	Аустенитные нержавеющие стали	675	200			0.08	0.25	
	Закалённые аустенитные стали	1013	300					
	Серые чугуны	700	220					
K	Чугуны с шаровидным графитом	880	260	0.30	15.00	0.10	0.30	
	Ковкие чугуны	800	250					
N	Чистый алюминий	260	75					
N	Алюминиевые сплавы	447	130			-	-	
	Жаропрочные сплавы на основе Fe	943	280					
S	Жаропрочные сплавы на основе Со	1076	320			_	_	
	Жаропрочные сплавы на основе Ni	1177	350			_	_	
	Жаропрочные сплавы на основе Ті	1262	370					
Н	Закалённые стали	-	50-60HRC			_	_	
	Отбеленные чугуны	-	55HRC			_	_	

^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr

ASM90-WN08


Фреза для обработки прямоугольных уступов Пластины WN08 с 6-ю режущими кромками



Номер по каталогу	DC	DCB	LF	LH	APMX	Внутр. СОЖ	Z	Пластины	
ASM90-040-Z03-W32R-WN08-C	40	32	120	31	7	(* 1	3	WNGU 0806	
ASM90-040-Z04-W32R-WN08-C	40	32	120	31	7	(=1	4	WINGU 0806	

Номер по каталогу	DC	DCB	LF	DCSFMS	APMX	Внутр. СОЖ	Z	Пластины
ASM90-050-Z04-A22R-WN08-C	50	22	40	42	7	ت ا	4	
ASM90-050-Z05-A22R-WN08-C	50	22	40	42	7	ا ت	5	
ASM90-063-Z04-A22R-WN08-C	63	22	40	48	7	; ±-1	4	
ASM90-063-Z06-A22R-WN08-C	63	22	40	48	7	ت ا	6	
ASM90-063-Z07-A22R-WN08-C	63	22	40	48	7	₹ -1	7	
ASM90-080-Z05-A27R-WN08-C	80	27	50	62	7	ر ة ،	5	
ASM90-080-Z07-A27R-WN08-C	80	27	50	62	7	ر تا ۱	7	
ASM90-080-Z09-A27R-WN08-C	80	27	50	62	7	ر ة ،	9	
ASM90-100-Z06-A32R-WN08-C	100	32	50	80	7	ر تا ۱	6	WNGU 0806
ASM90-100-Z08-A32R-WN08-C	100	32	50	80	7	₽	8	WINGO 0806
ASM90-100-Z11-A32R-WN08-C	100	32	50	80	7	(* -	11	
ASM90-125-Z07-A40R-WN08-C	125	40	63	87	7	ب ة ،	7	
ASM90-125-Z11-A40R-WN08-C	125	40	63	87	7	ب <u>ت</u> م	11	
ASM90-125-Z13-A40R-WN08-C	125	40	63	87	7	الله الله	13	
ASM90-160-Z08-A40R-WN08	160	40	63	107	7	**	8	
ASM90-160-Z12-A40R-WN08	160	40	63	107	7	*	12	
ASM90-200-Z14-A60R-WN08	200	60	63	140	7	×	14	
ASM90-250-Z16-A60R-WN08	250	60	63	180	7	×	16	

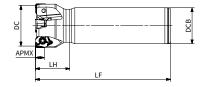
Размеры (мм)		Запасные части									
Диаметр фрезы	Винт	Винт Отвёртка									
ф40-250			3.5 Нм								
	SP040090	DT-TP15									

	Размер	ры (мм)			•		M	ŀ	(N	Н
Номер по каталогу	Радиус при вершине	Ширина зачистной фаски	AP251U	AP351U	AP351M	AP401U	AP403M	AC301K	AP251K	AW100K	АР151Н
WNHU 080608R-FM2	0.8	2.0								•	
WNGU 080604R-MM3	0.4	2.2		•	•	•					
WNGU 080608R-MM3	0.8	2.0	•	•	•	•	•		•		
WNGU 080604R-MM4	0.4	2.2	•	•	•	•			•		
WNGU 080608R-MM4	0.8	2.0	•	•	•	•		•	•		•
WNGU 080612R-MM4	1.2	1.6	•	•	•	•					
WNGU 080616R-MM4	1.6	1.2	•	•	•	•					
WNGU 080608R-MR2	0.8	2.0	•	•	•		•	•	•		
WNGU 080612R-MR2	1.2	1.6	•		•				•		
WNGU 080616R-MR2	1.6	1.2	•		•				•		
WNHX 0806ZZR-W	1.0	4.8	•					•			

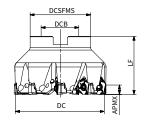
●: На складе

	Материалы обрабатываем	ых деталей				Г	лубин	а реза	и кина	подач	а	МR2							
								WNGU	0806				-						
		Предел								етрия									
ISO	Описание обрабатываемых материалов	прочности	Твёрдость (НВ)	l a	p	FM2 MM3 MM4					M	MR2							
	arephanes	(H/mm ²)	()					(N	<u>'</u> ім)										
				мин.	макс.	мин.	макс.	мин.	макс.	мин.	макс.	мин.	макс.						
		<600	<180					0.12	0.05	0.12	0.28	0.12	0.00						
	Низкоуглеродистые стали	<950	<280					0.12	0.25	0.12	0.28	0.12	0.30						
P		700-950	200-280	1															
	Легированные стали	950-1200	280-355					0.10	0.20	0.10	0.25	0.10	0.28						
		1200-1400	355-415																
	Дуплексные нержавеющие стали	778	230			-	-												
M	Аустенитные нержавеющие стали	675	200					0.08	0.18	0.08	0.18	-	-						
	Закалённые аустенитные стали	1013	300																
	Серые чугуны	700	220																
K	Чугуны с шаровидным графитом	880	260	0.60	8.00			0.12	0.20	0.10	0.28	0.15	0.30						
	Ковкие чугуны	800	250																
N	Чистый алюминий	260	75			0.10	0.24	_	_	_	_		_						
IN	Алюминиевые сплавы	447	130			0.10	0.24	-	-	-	-	-	-						
	Жаропрочные сплавы на основе Fe	943	280																
S	Жаропрочные сплавы на основе Со	1076	320				_	0.12	0.13	0.10	0.15								
	Жаропрочные сплавы на основе Ni	1177	350			_	-	0.12	0.13	0.10	0.13	_	-						
	Жаропрочные сплавы на основе Ті	1262	370																
Н	Закалённые стали	-	50-60HRC			_	_	_	_	_	_	_							
	Отбеленные чугуны	-	55HRC																

^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr


ASM90-WN08-N

Фреза для обработки прямоугольных уступов. Первый выбор Пластины WN08 с 6-ю режущими кромками



Номер по каталогу	DC	DCB	LF	LH	APMX	Внутр. СОЖ	Z	Пластины
ASM90-040-Z03-W32R-WN08-N-C	40	32	120	30	8	-	3	WNMU 0806
ASM90-040-Z04-W32R-WN08-N-C	40	32	120	30	8	-	4	WINIVIO 0000

Номер по каталогу	DC	DCB	LF	DCSFMS	APMX	Внутр. СОЖ	Z	Пластины
ASM90-050-Z04-A22R-WN08-N-C	50	22	40	42	7	ا ٿ م	4	
ASM90-050-Z05-A22R-WN08-N-C	50	22	40	42	7	اشم	5	
ASM90-063-Z04-A22R-WN08-N-C	63	22	40	48	7	ا=	4	
ASM90-063-Z06-A22R-WN08-N-C	63	22	40	48	7	ا ا	6	
ASM90-063-Z07-A22R-WN08-N-C	63	22	40	48	7	ا ـــ ـُ	7	
ASM90-080-Z05-A27R-WN08-N-C	80	27	50	62	7	الله	5	
ASM90-080-Z07-A27R-WN08-N-C	80	27	50	62	7	ا - ا	7	
ASM90-080-Z09-A27R-WN08-N-C	80	27	50	62	7	اشم	9	
ASM90-100-Z06-A32R-WN08-N-C	100	32	50	80	7	اشم	6	WNMU 0806
ASM90-100-Z08-A32R-WN08-N-C	100	32	50	80	7	ا - ا	8	WINIVIO 0600
ASM90-100-Z11-A32R-WN08-N-C	100	32	50	80	7	ا - م	11	
ASM90-125-Z07-A40R-WN08-N-C	125	40	63	87	7	ا = ۱	7	
ASM90-125-Z11-A40R-WN08-N-C	125	40	63	87	7	= 1	11	
ASM90-125-Z13-A40R-WN08-N-C	125	40	63	87	7	ا = ۲	13	
ASM90-160-Z08-A40R-WN08-N	160	40	63	107	7	×	8	
ASM90-160-Z12-A40R-WN08-N	160	40	63	107	7	×	12	
ASM90-200-Z14-A60R-WN08-N	200	60	63	140	7	×	14	
ASM90-250-Z16-A60R-WN08-N	250	60	63	180	7	×	16	

Размеры (мм)		Запасные части									
Диаметр фрезы	Винт	Винт Отвёртка									
ф40-250			3.5 Нм								
	SP040112	DT-TP15									

	Размер	ры (мм)	F	•	М	ı	<
Номер по каталогу	Радиус при вершине	Ширина зачистной фаски	AP251U	AP351M	AP403M	AC301K	AP251K
WNMU 080608R-MR2	0.8	2.3	•	•	•	A	•
WNMU 080608R-MM4	0.8	2.3	•	•	•	•	•
WNMU 080608R-MM3	0.8	2.3	•	•	•	A	•
WNMU 080612R-MR2	1.2	1.19	•	•		•	•
WNMU 080612R-MM4	1.2	1.18	•	•	•		•
WNMU 080616R-MR2	1.6	0.81	•		•		
WNMU 080616R-MM4	1.6	0.8	•		•		

Доступны также пластины из сплава АС251Р для обработки стали.

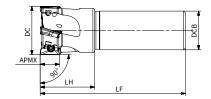
•: На складе •: На складе, но скоро выйдет замена.

	Материалы обрабатываем	ых деталей	,	Глубина резания и подача							
							WNMU	0806			
ISO	Описание обрабатываемых материалов	Предел прочности (Н/мм²)	Твёрдость (НВ)	а	ıp	M	M3	М	M4	M	R2
		(1 1/WIWI)					(M	м)			
				мин.	макс.	мин.	макс.	мин.	макс.	мин.	макс.
	Низкоуглеродистые стали	<600	<180			0.12	0.25	0.12	0.28	0.12	0.30
	тизкоупперодистые стали	<950	<280			0.12	0.23	0.12	0.20	0.12	0.50
Р		700-950	200-280								
		950-1200	280-355			0.10	0.20	0.10	0.25	0.10	0.28
		1200-1400	355-415								
	Дуплексные нержавеющие стали	ые нержавеющие стали 778 230									
M	Аустенитные нержавеющие стали	675	200			0.08	0.18	0.08	0.18	-	-
	Закалённые аустенитные стали	1013	300								
	Серые чугуны	700	220	0.60	8.00						
K	Чугуны с шаровидным графитом	880	260			0.12	0.20	0.10	0.28	0.15	0.30
	Ковкие чугуны	800	250								
	Жаропрочные сплавы на основе Fe	943	280								
	Жаропрочные сплавы на основе Со	1076	320			0.12	0.12	0.10	0.15		
S	Жаропрочные сплавы на основе Ni	1177	350			0.12	0.13	0.10	0.15	-	-
	Жаропрочные сплавы на основе Ті	1262	370								
Н	Закалённые стали -	50-60HRC									
	Отбеленные чугуны	-	55HRC			-	-	-	-	-	-

^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr

ASM90-AP17

Фреза для обработки прямоугольных уступов. Пластины AP17 с 2-мя режущими кромками



Номер по каталогу	DC	DCB	LF	LH	APMX	Внутр. СОЖ	Z	Пластины
ASM90-025-Z02-C25R-AP17-L100-C	25	25	100	39	16	ا ا	2	
ASM90-032-Z03-C32R-AP17-L110-C	32	32	110	40	16	اٿم	3	A DIZT 1705
ASM90-032-Z03-C32R-AP17-L200-C	32	32	200	40	16	(= 1	3	APKT 1705
ASM90-040-Z04-C32R-AP17-L120-C	40	32	120	45	16	-	4	

Номер по каталогу	DC	DCB	LF	DCSFMS	APMX	Внутр. СОЖ	Z	Пластины	
ASM90-050-Z05-A22R-AP17-C	50	22	40	45	16	-	5		
ASM90-063-Z06-A22R-AP17-C	63	22	40	55	16	- -1	6	APKT 1705	
ASM90-080-Z06-A27R-AP17-C	80	27	50	62	16	-	6		
ASM90-100-Z08-A32R-AP17-C	100	32	50	78	16	ا	8		

Размеры (мм)	Запасные части							
Диаметр фрезы	Винт	Отвёртка	Момент					
ф25	SP040084	DT-TP15	4011.					
ф32-100	SP040100H	DI-1P15	4.0 Нм					

	Размер	ры (мм)		Р		M	ı	<	S	N
Номер по каталогу	Радиус при вершине	Ширина зачистной фаски	AP251U	AP351U	AP351M	AP403M	AC301K	AP251K	AP403S	AW100K
APKT 1705PDER-DT	0.8	2.16	•	•		•		•		•
APKT 170516R-DT	1.6	1.7	•					•		
APKT 170524R-DT	2.4	0.95	•		•	•		•		
APKT 170530R-DT	3.0	0.48	•		•	•		•		
APKT 170540R-DT	4.0	-	•		•	•				

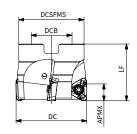
●: На складе ▲: На складе, но скоро выйдет замена.

	Материалы обрабатываем	ых деталей			Глубина реза	ния и подача		
					APKT.	.1705		
	Описание обрабатываемых	Предел	Твёрдость	а	ıp	DT		
ISO	материалов	прочности (Н/мм²)	(НВ)			l	Z	
		(17/4/14/7)			`	м) 		
		<600	<180	мин.	макс.	мин.	макс.	
	Низкоуглеродистые стали					0.08	0.25	
		<950	<280					
P		700-950	200-280					
	Легированные стали	950-1200	280-355			0.06	0.22	
		1200-1400	355-415					
	Дуплексные нержавеющие стали	778	230					
M	Аустенитные нержавеющие стали	675	200	0.10		0.06	0.20	
	Закалённые аустенитные стали	1013	300					
	Серые чугуны	700	220		16.00	0.08		
K	Чугуны с шаровидным графитом	880	260				0.25	
	Ковкие чугуны	800	250					
N	Чистый алюминий	260	75			0.06	0.30	
	Алюминиевые сплавы	447	130			0.00	0.50	
	Жаропрочные сплавы на основе Fe	943	280					
S	Жаропрочные сплавы на основе Со	1076	320			0.06	0.18	
	Жаропрочные сплавы на основе Ni	1177	350			0.00	0.10	
	Жаропрочные сплавы на основе Ті	1262	370					
Н	Закалённые стали	-	50-60HRC			_	_	
	Отбеленные чугуны	-	55HRC			_	-	

^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr

ASM90-TD15

Фреза для обработки прямоугольных уступов. Пластины TD15 с 3-мя режущими кромками, низкие усилия резания



Номер по каталогу	DC	DCB	LF	LH	APMX	Внутр. СОЖ	Z	Пластины	
ASM90-032-Z02-C32R-TD15-C	32	32	110	37	11	-	2	TD.T 1505	
ASM90-032-Z02-C32R-TD15-L200-C	32	32	200	37	11	/ ±4	2		
ASM90-040-Z03-C32R-TD15-C	40	32	120	38	11	, ±4	3		
ASM90-040-Z03-C32R-TD15-L200-C	40	32	200	38	11	-	3		

Номер по каталогу	DC	DCB	LF	DCSFMS	APMX	Внутр. СОЖ	Z	Пластины
ASM90-040-Z04-A16R-TD15-C	40	16	40	35	11	ا	4	
ASM90-050-Z04-A22R-TD15-C	50	22	40	42	11	الخا	4	
ASM90-050-Z05-A22R-TD15-C	50	22	40	42	11	اشم	5	
ASM90-063-Z04-A22R-TD15-C	63	22	40	48	11	ا آ م	4	
ASM90-063-Z05-A22R-TD15-C	63	22	40	48	11	ا#م	5	
ASM90-063-Z06-A22R-TD15-C	63	22	40	48	11	ا=	6	
ASM90-080-Z05-A27R-TD15-C	80	27	50	62	11	اشم	5	
ASM90-080-Z06-A27R-TD15-C	80	27	50	62	11	 =	6	
ASM90-080-Z07-A27R-TD15-C	80	27	50	62	11	ا = ا	7	TD.T 1505
ASM90-100-Z06-A32R-TD15-C	100	32	50	80	11	ا ٿ م	6	
ASM90-100-Z08-A32R-TD15-C	100	32	50	80	11	ا آ م	8	
ASM90-125-Z07-A40R-TD15-C	125	40	63	87	11	الخا	7	
ASM90-125-Z09-A40R-TD15-C	125	40	63	87	11	الخام	9	
ASM90-160-Z08-A40R-TD15	160	40	63	107	11	×	8	
ASM90-160-Z10-A40R-TD15	160	40	63	107	11	×	10	
ASM90-200-Z09-A60R-TD15	200	60	63	140	11	×	9	
ASM90-250-Z11-A60-TD15-M	250	60	63	180	11	×	11	

Размеры (мм)		Запасные части							
Диаметр фрезы	Винт	Момент							
ф32-250			3.5 Нм						
	SP040100H	DT-TP15							

Крепёжный болт	Ключ крепёжного болта	Винт картриджа	Ключ для крепления картриджа	Клин	Винт клина	Ключ для крепления клина	Картридж
WD080300	LT-H4	ACH622	LT-H5	AWG-6H-6	AWCH624	LT-H3	C-TD1540-62-90

	Размер	оы (мм)	ı	•	M	ŀ	(N
Номер по каталогу	Радиус при вершине	Ширина зачистной фаски	AP251U	AP351M	AP403M	AC301K	AP251K	AW100K
TDMT 150508R-MM4	0.8	1.49	•	•	•	A	•	
TDMT 150512R-MM4	1.2	1	•	•	•	A	•	
TDMT 150516R-MM4	1.6	0.93	•	•	•	A	•	
TDMT 150520R-MM4	2	0.71	•		•		•	
TDMT 150524R-MM4	2.4	0.59	•		•		•	
TDMT 150531R-MM4	3.1	0.4	•		•		•	
TDMT 150540R-MM4	4	0.4	•		•		•	
TDMT 150508R-MM3	0.8	1.49	•		•		•	
TDHT 150508R-MM4	0.8	1.5	•				•	

Доступны также пластины из сплава АС251Р для обработки стали.

●: На складе	▲: На складе,	но скоро выйдет замена.
--------------------------------	---------------	-------------------------

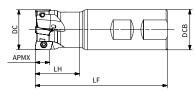
	Материалы обрабатываем	ых деталей			Глубина реза	ния и подача		
		Предел			TD.T			
ISO	Описание обрабатываемых	прочности	Твёрдость	а	p	fz		
	материалов	(Н/мм²)	(HB)	мин.	макс.	м) мин.	макс.	
		<600	<180	IVIVIT.	waro.			
	Низкоуглеродистые стали	<950	<280			0.08	0.25	
P		700-950	200-280					
	Легированные стали	950-1200	280-355			0.06	0.22	
		1200-1400	355-415					
	Дуплексные нержавеющие стали	778	230					
M	Аустенитные нержавеющие стали	675	200			0.06	0.20	
	Закалённые аустенитные стали	1013	300					
	Серые чугуны	700	220			0.08		
K	Чугуны с шаровидным графитом	880	260	0.10	11.00		0.25	
	Ковкие чугуны	800	250					
N	Чистый алюминий	260	75			0.06	0.30	
N	Алюминиевые сплавы	447	130			0.06	0.30	
	Жаропрочные сплавы на основе Fe	943	280					
S	Жаропрочные сплавы на основе Со	1076	320			0.06	0.18	
3	Жаропрочные сплавы на основе Ni	1177	350			0.06	0.18	
	Жаропрочные сплавы на основе Ті	1262	370					
Н	Закалённые стали	-	50-60HRC					
	Отбеленные чугуны	-	55HRC			-	-	

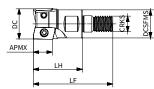
^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr

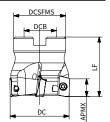
ASM90-AO12

Фреза для обработки прямоугольных уступов.

Пластины АО12 с 2-мя режущими кромками, низкие усилия резания




Номер по каталогу	DC	DCB	LF	LH	APMX	Внутр. СОЖ	Z	Пластины
ASM90-020-Z02-C20R-AO12-L150-C	20	20	150	28	11	 -	2	
ASM90-025-Z03-C25R-AO12-L170-C	25	25	170	33	11	ا ٿ م	3	AO.T 1204
ASM90-032-Z04-C32R-AO12-L250-C	32	32	250	35	11	الله	4	


Номер по каталогу	DC	DCB	LF	LH	APMX	Внутр. СОЖ	Z	Пластины
ASM90-020-Z02-W20R-AO12-C	20	20	85	30	11	الله	2	
ASM90-025-Z03-W20R-AO12-C	25	20	95	35	11	الله	3	AO.T 1204
ASM90-032-Z04-W32R-AO12-C	32	32	105	40	11	الله	4	AO.1 1204
ASM90-040-Z04-W32R-AO12-C	40	32	120	45	11	الله	4	

Номер по каталогу	DC	LF	LH	CRKS	DCSFMS	APMX	Внутр. СОЖ	Z	Пластины
ASM90-020-Z02-M10R-AO12-C	20	51	31	M10	18	11	ا ق ام	2	
ASM90-025-Z03-M12R-AO12-C	25	59	37	M12	23	11	ا=م	3	AO.T 1204
ASM90-032-Z04-M16R-AO12-C	32	72	48	M16	29	11	اشم	4	AU.1 1204
ASM90-035-Z04-M16R-AO12-C	35	72	48	M16	29	11	ا=م	4	

Номер по каталогу	DC	DCB	LF	DCSFMS	APMX	Внутр. СОЖ	Z	Пластины
ASM90-040-Z04-A16R-AO12-C	40	16	40	35	11	ا = ۱	4	
ASM90-050-Z05-A22R-AO12-C	50	22	40	42	11	الله	5	
ASM90-050-Z07-A22R-AO12-C	50	22	40	42	11	اشم	7	
ASM90-063-Z06-A22R-AO12-C	63	22	40	48	11	ا = م	6	AO.T 1204
ASM90-063-Z08-A22R-AO12-C	63	22	40	48	11	ا= م	8	
ASM90-080-Z07-A27R-AO12-C	80	27	50	62	11	ا ت	7	
ASM90-080-Z10-A27R-AO12-C	80	27	50	62	11	1	10	

Длиннокромочные исполнения фрез АРЕ90-АО12 также доступны для заказа.

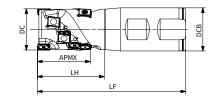
Размеры (мм)		Запасные части	
Диаметр фрезы	Винт	Момент	
ф20-32	SP035078		4.0 Нм
ф40-80	SP035086		

	Размер	оы (мм)			M	ŀ	(S
Номер по каталогу	Радиус при вершине	Ширина зачистной фаски	AP251U	AP351M	AP403M	AC301K	AP251K	AP403S
AOGU 120408ER-MM3	0.8	-	•	•	•			•
AOMT 120408ER-MM4	0.8	1.56	•	•	•		•	•
AOMT 120412ER-MM4	1.2	1.18		•	•			•
AOMT 120416ER-MM4	1.6	1.16		•	•			•
AOMT 120420ER-MM4	2.0	0.96	•	•	•			•
AOMT 120424ER-MM4	2.4	0.93	•	•	•			•
AOMT 120431ER-MM4	3.1	0.59		•	•			•
AOMT 120440ER-MM4	4.0	0.75		•	•			•

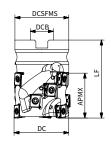
●: На складе ▲: На складе, но скоро выйдет замена.

	Материалы обрабатываем	ых деталей			Глубина реза	ния и подача		
		_			AO.T	1204		
ISO	Описание обрабатываемых	Предел прочности	Твёрдость	а	ıp	L	z	
	материалов	(H/мм²)	(HB)		· · · · · · · · · · · · · · · · · · ·	IM)		
				мин.	макс.	мин.	макс.	
	Низкоуглеродистые стали	<600	<180			0.08	0.25	
	тиокоутпородиотые отали	<950	<280			0.00	0.20	
P		700-950	200-280					
	Легированные стали	950-1200	280-355			0.06	0.22	
		1200-1400	355-415					
	Дуплексные нержавеющие стали	778	230					
M	Аустенитные нержавеющие стали	675	200			0.06	0.20	
	Закалённые аустенитные стали	1013	300					
	Серые чугуны	700	220					
K	Чугуны с шаровидным графитом	880	260	0.10	11.00	0.08	0.25	
	Ковкие чугуны	800	250					
N	Чистый алюминий	260	75			0.06	0.30	
	Алюминиевые сплавы	447	130			0.00	0.50	
	Жаропрочные сплавы на основе Fe	943	280					
S	Жаропрочные сплавы на основе Со	1076	320			0.06	0.18	
	Жаропрочные сплавы на основе Ni	1177	350			0.00	0.10	
	Жаропрочные сплавы на основе Ті	1262	370					
Н	Закалённые стали	-	50-60HRC			_	_	
	Отбеленные чугуны	-	55HRC			-	-	

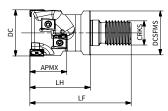
^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr


APE90-LN09

Длиннокромочная фреза Пластины LN09 с 4-мя режущими кромками



Номер по каталогу	DC	DCB	LF	LH	APMX	Внутр. СОЖ	Z	Кол-во рядов	Кол-во пластин	Пластины
APE90-025-Z02-W25R-LN09-L32-F-C	25	25	100	43	32	-	2	4	8	
APE90-032-Z02-W32R-LN09-L32-F-C	32	32	105	44	32	(2	4	8	
APE90-032-Z02-W32R-LN09-L40-F-C	32	32	110	50	40	(2	5	10	LNHU 0904
APE90-040-Z03-W40R-LN09-L40-F-C	40	40	125	55	40	(* 1	3	5	15	
APE90-040-Z03-W40R-LN09-L48-F-C	40	40	130	59	48	(=	3	6	18	



Номер по каталогу	DC	DCB	LF	DCSFMS	APMX	Внутр.	Винт	Z	Кол-во рядов	Кол-во пластин	Inserts
APE90-040-Z03-A16R-LN09-L32-F-C	40	16	55	38	32	ا=	SH080400	3	4	12	
APE90-040-Z03-A16R-LN09-L40-F-C	40	16	65	38	40	ا = ۱	SH080500	3	5	15	LNHU 0904
APE90-050-Z04-A22R-LN09-L48-F-C	50	22	75	47.5	48	=	SH100550	4	6	24	

Винт	Номер по каталогу	Типоразмер винта	Момент
	SH080400	M8*40	41Nm
	SH080500	M8*50	41Nm
	SH100550	M10*55	81Nm

Номер по каталогу	DC	LF	LH	CRKS	DCSFMS	APMX	Внутр.	Z	Кол-во рядов	Кол-во пластин	Пластины
APE90-025-Z02-M12R-LN09-L24-F-C	25	64	40	M12	23	24		2	3	6	
APE90-032-Z02-M16R-LN09-L24-F-C	32	67	40	M16	30	24	=	2	3	6	LNHU 0904
APE90-032-Z02-M16R-LN09-L32-F-C	32	77	50	M16	30	32	-	2	4	8	

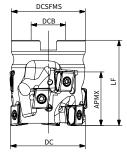
Размеры (мм)		Запаснь	ые части	
Диаметр фрезы	Винт	Отвёртка	Отвёртка	Момент
ф25-50			>	1.8 Нм
	SP030083	DT-TP09	AFW-15/24	

	Размер	ры (мм)		Р		M	ı	(N
Номер по каталогу	Радиус при вершине	Ширина зачистной фаски	AP251U	AP351U	AP351M	AP403M	AC301K	AP251K	AW100K
LNHU 090404ER-FM2	0.4	1.85							•
LNHU 090404ER-MM3	0.4	1.85		A		•			
LNHU 090404ER-MR2	0.4	1.85	•	A		•	A	•	
LNHU 090404ER-MM4	0.4	1.85	•		•	•		•	
LNHU 090408ER-MM4	0.8	1.3	•		•	•		•	
LNHU 090408ER-MR2	0.8	1.3	•	A		•	A	•	
LNHU 090408ER-MM3	0.8	1.3	•		•	•		•	
LNHU 090412ER-MR2	1.2	1.0	•			•	•		
LNHU 090416ER-MR2	1.6	0.65	•			•	A		
LNHU 090420ER-MR2	2.0	0.65	•			•	•		
LNHU 0904PDER-W	0.4	3.6	•					•	

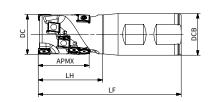
●: На складе ▲: На складе, но скоро выйдет замена.

	Материалы обрабатываем	ых деталей		Глубина резания и подача							
							LNHU.	.0904			
	Описание обрабатываемых	Предел	Твёрдость	_	ıp	М	М3	М	R2	FN	И 2
ISO	материалов	прочности	(НВ)		.—————————————————————————————————————			f	z		
		(H/mm ²)					· `	м)			
				мин.	макс.	мин.	макс.	мин.	макс.	мин.	макс.
	Низкоуглеродистые стали	<600	<180			0.06	0.22	0.08	0.25	-	_
		<950	<280								
P		700-950	200-280			0.05					
	Легированные стали	950-1200	280-355]			0.18	0.06	0.20	-	-
		1200-1400	355-415								
	Дуплексные нержавеющие стали	778	230								
M	Аустенитные нержавеющие стали	675	200			0.05	0.18	0.06	0.18	-	-
	Закалённые аустенитные стали	1013	300								
	Серые чугуны	700	220								
K	Чугуны с шаровидным графитом	880	260	0.20	48.00	0.05	0.22	0.08	0.25	-	-
	Ковкие чугуны	800	250								
N	Чистый алюминий	260	75							0.06	0.25
	Алюминиевые сплавы	447	130			_	_	-	-	0.00	0.23
	Жаропрочные сплавы на основе Fe	943	280								
S	Жаропрочные сплавы на основе Со	1076	320			0.05	0.15				
3	Жаропрочные сплавы на основе Ni	1177	350			0.03	0.13	_	_	_	_
	Жаропрочные сплавы на основе Ті	1262	370								
Н	Закалённые стали	-	50-60HRC				_	0.05	0.12		
	Отбеленные чугуны	-	55HRC			_		0.03	0.12		-

^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr


APE90-LN13

Длиннокромочная фреза Пластины LN13 с 4-мя режущими кромками



Номер по каталогу	DC	DCB	LF	DCSFMS	APMX	Внутр.	Винт	Z	Кол-во рядов	Кол-во пластин	Пластины
APE90-040-Z02-A16R-LN13-L34-F-C	40	16	55	39	34	القام	SH100400	2	3	6	
APE90-040-Z02-A16R-LN13-L45-F-C	40	16	65	39	45	7-1	SH100450	2	4	8	
APE90-050-Z03-A22R-LN13-L34-F-C	50	22	55	47.5	34	الله	SH100400	3	3	9	
APE90-050-Z03-A22R-LN13-L45-F-C	50	22	65	47.5	45	-	SH100450	3	4	12	LNHU 1306
APE90-063-Z04-A27R-LN13-L56-F-C	63	27	80	59.5	56	اقم	SH120600	4	5	20	
APE90-063-Z04-A27R-LN13-L45-F-C	63	27	70	59.5	45	(** 1	SH120500	4	4	16	
APE90-080-Z05-A32R-LN13-L56-F-C	80	32	85	75.6	56	ا	SH160650	5	5	25	

Номер по каталогу	DC	DCB	LF	LH	APMX	Внутр. СОЖ	Z	Кол-во рядов	Кол-во пластин	Пластины
APE90-040-Z02-W40R-LN13-L34-F-C	40	40	120	54	34	1	2	3	6	LNHU 1306
APE90-040-Z02-W40R-LN13-L45-F-C	40	40	135	64	45	-	2	4	8	LINITO 1300

Винт	Номер по каталогу	Типоразмер винта	Момент
	SH080400	M8*40	41 Нм
	SH080500	M8*50	41 Нм
	SH100550	M10*55	81 Нм
	SH100400	M10*40	81 Нм
	SH100450	M10*45	81 Нм
	SH120500	M12*50	142 Нм
•	SH120600	M12*60	142 Нм
	SH160650	M16*65	350 Нм

Размеры (мм)	Запасные части								
Диаметр фрезы	Винт	Момент							
ф40-80			3.5 Нм						
	SP040115	DT-TP15							

	Размер	ры (мм)		Р		M	ı	<	N
Номер по каталогу	Радиус при вершине	Ширина зачистной фаски	AP251U	AP351U	AP351M	AP403M	AC301K	AP251K	AW100K
LNHU 130608ER-FM2	0.8	2.7							•
LNHU 130608ER-MM3	0.8	2.7		•		•			
LNHU 130608ER-MM4	0.8	2.7	•		•	•		•	
LNHU 130608ER-MR2	0.8	2.7	•	•	•	•	•	•	
LNHU 130612ER-MM4	1.2	2.3	•		•	•		•	
LNHU 130612ER-MR2	1.2	2.3	•	•	•	•	•	•	
LNHU 130616ER-MR2	1.6	1.9	•	•	•	•		•	
LNHU 130620ER-MR2	2.0	1.5		•	•	•	•		
LNHU 130624ER-MR2	2.4	1.0		A	•	•	•		
LNHU 130631ER-MR2	3.1	0.4		•	•	•	•		
LNHU 1306PDR-W	0.8	5.6	•					•	

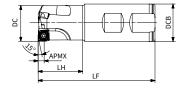
●: На складе

	Материалы обрабатываем	ых деталей		Глубина резания и подача							
							LNHU.	.1306			
	Описание обрабатываемых	Предел	Твёрдость	a	ıp	М	M3		R2	FN	/12
ISO	материалов	прочности (Н/мм²)	прочности (НВ)		Z	Z					
		(1.1/11111)		мин.	макс.	мин.	макс.	мин.	макс.	мин.	макс.
		<600	<180	мип.	Makc.	мип.	Makc.	IVIVITI.	Marc.	IVIVITI.	warc.
	Низкоуглеродистые стали	<950	<280			0.10	0.28	0.10	0.30	-	-
P		700-950	200-280								
	Легированные стали	950-1200	280-355			0.08	0.25	0.08	0.28	-	-
		1200-1400	355-415								
	Дуплексные нержавеющие стали	778	230							-	-
M	Аустенитные нержавеющие стали	675	200			0.08	0.22	0.08	0.25		
	Закалённые аустенитные стали	1013	300								
	Серые чугуны	700	220								
K	Чугуны с шаровидным графитом	880	260	0.30	85	-	-	0.10	0.32	-	-
	Ковкие чугуны	800	250								
N	Чистый алюминий	260	75							0.08	0.30
N	Алюминиевые сплавы	447	130			_	_	_	-	0.00	0.30
	Жаропрочные сплавы на основе Fe	943	280								
S	Жаропрочные сплавы на основе Со	1076	320			0.06	0.18	0.08	0.22	_	
	Жаропрочные сплавы на основе Ni	1177	350			0.00	0.10	0.00	0.22	_	-
	Жаропрочные сплавы на основе Ті	1262	370								
Н	Закалённые стали	-	50-60HRC			_	_	0.06	0.15	_	_
	Отбеленные чугуны	-	55HRC					0.00			

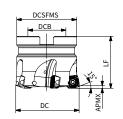
^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr

AHM15-XD09

Фреза для работы на высоких подачах с углом в плане 15° Пластины XD09 с 4-мя режущими кромками



Номер по каталогу	DC	DCB	LF	LH	APMX	Внутр. СОЖ	Z	Пластины
AHM15-025-Z02-W25R-XD09-C	25	25	96	38	1.5	/ = 1	2	XD0904
AHM15-032-Z03-W32R-XD09-C	32	32	100	38	1.5	("	3	AD0904



Номер по каталогу	DC	DCB	LF	LH	APMX	Внутр. СОЖ	Z	Пластины
AHM15-025-Z02-C25R-XD09-C	25	25	200	49	1.5	F	2	
AHM15-026-Z02-C25R-XD09-L180-C	26	25	180	29	1.5	-	2	XD0904
AHM15-032-Z03-C32R-XD09-C	32	32	250	69	1.5	-	3	

Номер по каталогу	DC	DCB	DCSFMS	LF	APMX	Внутр. СОЖ	Z	Пластины
AHM15-040-Z03-A16R-XD09-C	40	16	35	32	1.5	/	3	
AHM15-040-Z04-A16R-XD09-C	40	16	35	32	1.5	/ =1	4	
AHM15-040-Z05-A16R-XD09-C	40	16	35	32	1.5	-	5	XD0904
AHM15-050-Z05-A22R-XD09-C	50	22	46	40	1.5	<u> </u>	5	
AHM15-050-Z06-A22R-XD09-C	50	22	46	40	1.5	/= 1	6	

Размеры (мм)	Запасные части									
Диаметр фрезы	Винт	Момент								
ф25-50			3.0 Нм							
	SP035086	DT-TP10								

	Размеры (мм)		Р			М	K		S
Номер по каталогу	Радиус при вершине	Ширина зачистной фаски	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AP403S
XDLT 090408ER-MM3	0.8	1.3	•	•	•		•		•
XDMW 090408ER-HR2	0.8	1.3					•		

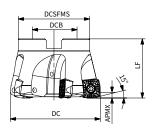
●: На складе ▲: На складе, но скоро выйдет замена.

Материалы обрабатываемых деталей			Глубина, ширина фрезерования и подача на зуб										
ISO	Описание обрабатываемых материалов	Предел прочности (Н/мм²)	Твёрдость (НВ)	XD0904									
				Фрезерование на высоких подачах Плунжерное фрезерование									
				ар		fz		ae		fz			
					1		(MM)	1		1			
				мин.	макс.	мин.	макс.	мин.	макс.	мин.	макс.		
P	Низкоуглеродистые стали	<600	<180	0.20	1.50	0.30	1.50	0.00	7.00	0.05	0.15		
		<950	<280										
	Легированные стали	700-950	200-280			0.30	1.50			0.05	0.12		
		950-1200	280-355										
		1200-1400	355-415										
M	Дуплексные нержавеющие стали	778	230			0.20	0.80			0.05	0.10		
	Аустенитные нержавеющие стали	675	200										
	Закалённые аустенитные стали	1013	300			0.10	0.40			0.05	0.08		
K	Серые чугуны	700	220			0.30	1.50			0.05	0.15		
	Чугуны с шаровидным графитом	880	260										
	Ковкие чугуны	800	250										
N	Чистый алюминий	260	75			-	-			-	-		
	Алюминиевые сплавы	447	130										
S	Жаропрочные сплавы на основе Fe	943	280			0.10	0.50			0.05	0.10		
	Жаропрочные сплавы на основе Со	1076	320										
	Жаропрочные сплавы на основе Ni	1177	350										
	Жаропрочные сплавы на основе Ті	1262	370										
Н	Закалённые стали		50-60HRC			0.30	1.00			0.05	0.10		
	Отбеленные чугуны	-	55HRC							0.03	0.10		

указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr

AHM15-XD12

Фреза для работы на высоких подачах с углом в плане 15° Пластины XD12 с 4-мя режущими кромками



Номер по каталогу	DC	DCB	LF	LH	APMX	Внутр. СОЖ	Z	Пластины
AHM15-032-Z02-C32R-XD12-C	32	32	250	70	2.5	اشم	2	XD1205

Номер по каталогу	DC	DCB	DCSFMS	LF	APMX	Внутр. СОЖ	Z	Пластины
AHM15-052-Z03-A22R-XD12-C	52	22	45	40	2.5	(- 1	3	
AHM15-052-Z04-A22R-XD12-C	52	22	45	40	2.5	اشم	4	
AHM15-052-Z05-A22R-XD12-C	52	22	45	40	2.5	ا = ا	5	
AHM15-063-Z04-A22R-XD12-C	63	22	48	40	2.5	(* 1	4	
AHM15-063-Z05-A22R-XD12-C	63	22	48	40	2.5	(* 1	5	
AHM15-063-Z04-60A22R-XD12-C	63	22	60	40	2.5	(* 1	4	
AHM15-063-Z05-60A22R-XD12-C	63	22	60	40	2.5	(* I	5	
AHM15-066-Z04-A27R-XD12-C	66	27	50	45	2.5	(±1	4	
AHM15-066-Z05-A27R-XD12-C	66	27	50	45	2.5	(* 1	5	
AHM15-066-Z04-63A27R-XD12-C	66	27	63	45	2.5	(* 1	4	
AHM15-066-Z05-63A27R-XD12-C	66	27	63	45	2.5	ſ " i	5	
AHM15-080-Z05-A27R-XD12-C	80	27	55	50	2.5	ا آ ا	5	XD1205
AHM15-080-Z08-A27R-XD12-C	80	27	55	50	2.5	(* 1	8	
AHM15-080-Z05-76A27R-XD12-C	80	27	76	50	2.5	اشم	5	
AHM15-080-Z08-76A27R-XD12-C	80	27	76	50	2.5	اشم	8	
AHM15-100-Z06-A32R-XD12-C	100	32	80	50	2.5	اشم	6	
AHM15-100-Z09-A32R-XD12-C	100	32	80	50	2.5	(* 1	9	
AHM15-100-Z06-96A32R-XD12-C	100	32	96	50	2.5	اشم	6	
AHM15-100-Z09-96A32R-XD12-C	100	32	96	50	2.5	اشم	9	
AHM15-125-Z08-A40R-XD12-C	125	40	89	63	2.5	اللم	8	
AHM15-125-Z11-A40R-XD12-C	125	40	89	63	2.5	اشم	11	
AHM15-125-Z08-100A40R-XD12-C	125	40	100	63	2.5	الله	8	
AHM15-125-Z11-100A40R-XD12-C	125	40	100	63	2.5	الله	11	

Замечание: С подводом СОЖ Без подвода СОЖ

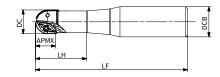
Размеры (мм)		Запасные части	
Диаметр фрезы	Винт	Момент	
ф32-125			3.5 Нм
	SP040112	DT-TP15	

	Размер	оы (мм)		Р		М	ŀ	<	N
Номер по каталогу	Радиус при вершине	Ширина зачистной фаски	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AW100K
XDLT 120508ER-MM3	0.8	2.2	•	•	A		•	•	•
XDLT 120512ER-MM3	1.2	2.2	•	•	A		•	•	
XDMW 120508ER-HR2	0.8	2.2	•				A		

Доступны также пластины из сплавов AC151K для обработки чугуна и AC251P для обработки стали.

●: На складе

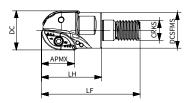
	Материалы обрабатываем	ых деталей		Гг	іубина, ц	ширина (фрезеро	вания і	и подач	а на зу	б
							XD120	5			
	Описание обрабатываемых	Предел	Твёрдость	Фрезерс	вание на		подачах	Плунж	ерное с		
ISO	материалов	прочности (Н/мм²)	(НВ)	а	р	f	z	ae		f	Z
		(17/4/14/7)		мин.	макс.	мин.	(мм) макс.	мин.	макс.	мин.	макс.
		<600	<180	MIZIT.	warc.	WIVIT.	Marc.	IVIVIT.	warc.	IVIVITI.	Makc.
	Низкоуглеродистые стали	<950	<280			0.30	2.00			0.06	0.18
P		700-950	200-280								
	Легированные стали	950-1200	280-355			0.30	2.00			0.06	0.15
		1200-1400	355-415								
	Дуплексные нержавеющие стали	778	230			0.20	1.00			0.06	0.12
M	Аустенитные нержавеющие стали	675	200				1.00			0.00	0.12
	Закалённые аустенитные стали	1013	300			0.10	0.10 0.60			0.05	0.10
	Серые чугуны	700	220								
K	Чугуны с шаровидным графитом	880	260	0.50	2.50	0.30	2.00	0.00	10.00	0.06	0.18
	Ковкие чугуны	800	250								
N	Чистый алюминий	260	75			_	_			_	_
14	Алюминиевые сплавы	447	130								
	Жаропрочные сплавы на основе Fe	943	280								
S	Жаропрочные сплавы на основе Со	1076	320			0.30 2.00			0.05	0.12	
	Жаропрочные сплавы на основе Ni	1177	350			0.30	2.00			0.05	0.12
	Жаропрочные сплавы на основе Ті	1262	370								
Н	Закалённые стали	•	50-60HRC			0.30	1.00			0.05	0.12
	Отбеленные чугуны		55HRC			0.00	1.00			0.00	0.12


^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr

APM00-RP

Фреза со сферическим концом

Пластины RP08/RP10 с 2-мя режущими кромками


Номер по каталогу	DC	DCB	LF	LH	APMX	Внутр. СОЖ	Z	Пластины
APM00-016-Z02-C20R-RP080-L120-C	16	20	120	35	14	=	2	RPM 080ER-MM4
APM00-020-Z02-C25R-RP100-L126-C	20	25	126	43	18	= 1	2	RPM 100ER-MM4
APM00-020-Z02-C25R-RP100-L176-C	20	25	176	43	18	الخام	2	RPM TOUER-MIM4

APM00-RP

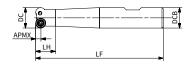
Фреза со сферическим концом Пластины RP08/RP10 с 2-мя режущими кромками

Номер по каталогу	DC	LF	LH	CRKS	DCSFMS	APMX	Внутр. СОЖ	Z	Пластины
APM00-016-Z02-M10R-RP080-C	16	49	28	M10	15	14	 -	2	RPM 080ER-MM4
APM00-020-Z02-M10R-RP100-C	20	50	30	M10	15	18	ٿ م	2	RPM 100ER-MM4

Размеры (мм)		Запасные	е части	
Диаметр фрезы	Винт	Отвёртка	Отвёртка	Момент
ф16			>	
	SP02506450H	DT-TP08	AFW-15	1.8 Нм
ф20	SP030072H	DT-TP09	AFVV-15	

Замечание: 🛋 С подводом СОЖ **Б**ез подвода СОЖ

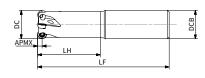
	Размер	ры (мм)	F	•	N	Л	K	S
Номер по каталогу	Радиус при вершине	Ширина зачистной фаски	AP251U	AP351U	AP401U	AP351M	AP351K	AP403S
RPM 080ER-MM4	8	-	•	A	•	•		•
RPM 100ER-MM4	10	-	•	A	•	•		•

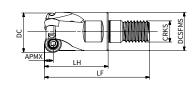

	Материалы обрабатываем	ых деталей			Глубина реза	ния и подача		
					RP	M		
	Описание обрабатываемых	Предел	Твёрдость	a	р		M4	
ISO	материалов	прочности (Н/мм²)	(НВ)	_		fz		
		(17/4/14/7)			`	IM)	l	
		<600	<180	мин.	макс.	мин.	макс.	
	Низкоуглеродистые стали					0.10	0.20	
		<950	<280					
P		700-950	200-280					
	Легированные стали	950-1200	280-355			0.10	0.18	
		1200-1400	355-415					
	Дуплексные нержавеющие стали	778	230					
M	Аустенитные нержавеющие стали	675	200			0.10	0.18	
	Закалённые аустенитные стали	1013	300					
	Серые чугуны	700	220					
K	Чугуны с шаровидным графитом	880	260	0.20	15.00	-	-	
	Ковкие чугуны	800	250					
N	Чистый алюминий	260	75			_	_	
	Алюминиевые сплавы	447	130			_		
	Жаропрочные сплавы на основе Fe	943	280					
S	Жаропрочные сплавы на основе Со	1076	320			0.06	0.12	
	Жаропрочные сплавы на основе Ni	1177	350			0.00	0.12	
	Жаропрочные сплавы на основе Ті	1262	370					
Н	Закалённые стали	-	50-60HRC			_	_	
	Отбеленные чугуны	-	55HRC					

^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr

APM00-RO08

Фреза для профильной обработки Пластины RO08




Номер по каталогу	DC	DCB	LF	LH	APMX	Внутр. СОЖ	Z	Пластины
APM00-016-Z02-W16R-RO08-L100	16	16	100	15.6	4	×	2	RO0803

Номер по каталогу	DC	DCB	LF	LH	APMX	Внутр. СОЖ	Z	Пластины
APM00-025-Z04-C25R-RO08-L116-C	25	25	116	55.3	4	<u> </u>	4	RO0803

Номер по каталогу	DC	CRKS	DCSFMS	LF	LH	APMX	Внутр. СОЖ	Z	Пластины
APM00-020-Z03-M10R-RO08-C	20	M10	18	49.5	30	4	ا ـــّـ م	3	RO0803

Размеры (мм)	Запасные части								
Диаметр фрезы	Винт	Момент							
ф16-25			2.0 Нм						
	SP030072H	DT-TP09							

Замечание: 👛 С подводом СОЖ **Б**ез подвода СОЖ

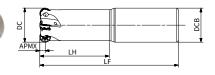
	Размер	ы (мм)		Р		M	ı	(S
Номер по каталогу	IC	S	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AP403S
ROHT 0803MOE-MM3	8	3.18				•			•

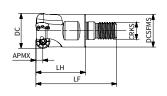
	Материалы обрабатываем	ых деталей		Глубина резания и подача							
						RO0	0803				
		_				MI	M3				
ISO	Описание обрабатываемых	Предел прочности	Твёрдость	a	ър	fz					
	материалов	(Н/мм²)	(HB)		•	0.1 < 3	p ≤ 4				
					1	· · ·	ім)				
		<600	<180	мин.	макс.	мин.	макс.	мин.	макс.		
	Низкоуглеродистые стали	<950	<280			0.15	0.50	0.08	0.30		
P		700-950	200-280								
	Легированные стали	950-1200	280-355			0.12	0.45	0.06	0.28		
		1200-1400	355-415								
	Дуплексные нержавеющие стали	778	230					0.06			
M	Аустенитные нержавеющие стали	675	200			0.10	0.40		0.25		
	Закалённые аустенитные стали	1013	300								
	Серые чугуны	700	220								
K	Чугуны с шаровидным графитом	880	260	0.50	4.00	-	-	-	-		
	Ковкие чугуны	800	250								
N	Чистый алюминий	260	75			0.10	0.35	0.06	0.25		
N	Алюминиевые сплавы	447	130			0.10	0.35	0.06	0.25		
	Жаропрочные сплавы на основе Fe	943	280								
S	Жаропрочные сплавы на основе Со	1076	320								
3	Жаропрочные сплавы на основе Ni	1177	350			_	-	-	-		
	Жаропрочные сплавы на основе Ті	1262	370								
Н	Закалённые стали	-	50-60HRC			_	_	_			
	Отбеленные чугуны	-	55HRC			_	_	_	_		

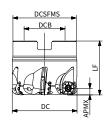
^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr

APM00-RO10

Фреза для профильной обработки Пластины RO10 с 4-мя и 8-ю режущими кромками






Номер по каталогу	DC	DCB	LF	LH	APMX	Внутр. СОЖ	Z	Пластины
APM00-025-Z03-C25R-RO10-L225-C	25	25	225	56.2	5	-	3	R010T3
APM00-032-Z04-C32R-RO10-L130-C	32	32	130	65	5	-	4	Ku 1013

Номер по каталогу	DC	CRKS	DCSFMS	LF	LH	APMX	Внутр. СОЖ	Z	Пластины
APM00-025-Z03-M12R-RO10-C	25	M12	23	59	35	5	(= -1	3	DO 10T2
APM00-032-Z04-M16R-RO10-C	32	M16	29	70	43	5	-	4	R010T3

Номер по каталогу	DC	DCB	DCSFMS	LF	APMX	Внутр. СОЖ	Z	Пластины
APM00-040-Z05-A16R-RO10-C	40	16	35	40	5	= 1	5	R010T3
APM00-050-Z06-A22R-RO10-C	50	22	47	40	5	<u>+</u>	6	K01013

Размеры (мм)	Запасные части								
Диаметр фрезы	Винт	Момент							
ф25-50			2.0 Нм						
	SP030072H	DT-TP09							

Замечание: 📥 С подводом СОЖ **Б**ез подвода СОЖ

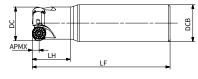
	Размер	ы (мм)		Р		M	ŀ	(S
Номер по каталогу	IC	S	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AP403S
ROHT 10T3M8E-MM3	10	3.97				•			•
ROMT 10T3M4E-MR6	10	3.97				•			•

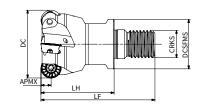
	Материалы обрабатываем	ых деталей		Глубина резания и подача									
								RO	10T3				
		-					MI	M3			МR fz 2.1 < ар ≤ 1.2 мин. макс. 0.15 0.60 0.12 0.55	R6	
ISO	Описание обрабатываемых	Предел прочности	Твёрдость					Z		fz			
	материалов	(Н/мм²)			$0.1 < ap \le 12$ $1.2 < ap \le$								
				мин.	макс.	мин.	макс.	мин.	ім) Макс.	MIALL	Make	мин.	макс.
		<600	<180	IVIVITI.	wakc.	IVIVIT.		IVIVIT.		IVIVITI.	wakc.	IVIVITI.	Wakc.
	Низкоуглеродистые стали	<950	<280			0.15	0.55	0.10	0.30	0.15	0.60	0.10	0.32
Р		700-950	200-280									0.08	
	Легированные стали	950-1200	280-355			0.12	0.50	0.08	0.28	0.12	0.55		0.30
		1200-1400	355-415										
	Дуплексные нержавеющие стали	778	230										0.28
M	Аустенитные нержавеющие стали	675	200 300			0.10	0.45	0.08	0.25	0.10	0.50		
	Закалённые аустенитные стали	1013											
	Серые чугуны	700	220										
K	Чугуны с шаровидным графитом	880	260	0.80	5.00	-	-	-	-	-	-	-	-
	Ковкие чугуны	800	250										
N	Чистый алюминий	260	75										
IN	Алюминиевые сплавы	447	130			_	-	_	-	-	_	_	_
	Жаропрочные сплавы на основе Fe	943	280										
S	Жаропрочные сплавы на основе Со	1076	320			0.10	0.40	0.08	0.25				
	Жаропрочные сплавы на основе Ni	1177	350			0.10	0.40	0.00	0.23	_	_	_	-
	Жаропрочные сплавы на основе Ті	1262	370										
Н	Закалённые стали	-	50-60HRC			_	_	_	_	_	_	_	
	Отбеленные чугуны	-	55HRC									_	

^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr

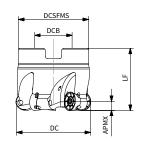
APM00-RO12

Фреза для профильной обработки Пластины RO12 с 4-мя и 6-ю режущими кромками





Номер по каталогу	DC	DCB	LF	LH	APMX	Внутр. СОЖ	Z	Пластины
APM00-032-Z03-C32R-RO12-L120-C	32	32	120	33	6	7=1	3	RO1204



Номер по каталогу	DC	CRKS	DCSFMS	LF	LH	APMX	Внутр. СОЖ	Z	Пластины
APM00-040-Z04-M16R-RO12-C	40	M16	29	70	43	6	الله الله	4	RO1204

Номер по каталогу	DC	DCB	DCSFMS	LF	APMX	Внутр. СОЖ	Z	Пластины
APM00-040-Z04-A16R-RO12-C	40	16	35	40	6	-	4	
APM00-050-Z05-A22R-RO12-C	50	22	45	40	6	-	5	RO1204
APM00-063-Z06-A22R-RO12-C	63	22	48	40	6	-	6	KO1204
APM00-080-Z07-A27R-RO12-C	80	27	62	50	6	-	7	

Размеры (мм)		Запасные части	
Диаметр фрезы	Винт	Отвёртка	Момент
ф32-80			4.0 Нм
	SP040085H	DT-TP10	

Замечание: С подводом СОЖ Без подвода СОЖ

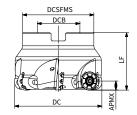
	Размер	ы (мм)		Р		M	ŀ	(S
Номер по каталогу	IC	S	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AP403S
ROHT 1204M4E-MM3	12	4.76				•			•
ROHT 1204M6E-MM3	12	4.76				•			•
ROMT 1204M6E-MR6	12	4.76				•			•

	Материалы обрабатываем	ых деталей		Глубина резания и подача										
						RO1204								
							MI	M3		MR6				
ISO	Описание обрабатываемых	Предел прочности	Твёрдость	а	p	fz								
	материалов	(Н/мм²)	(HB)	0.1 < ap ≤ 1.5 1.5 < ap ≤ 6 0.1 < ap ≤ 1.5 1.5 < a (MM)										
				мин.	макс.	мин.	макс.	мин.	ім) П _{макс.}	мин.	макс.	мин.	макс.	
		<600	<180	мин.	макс.	мин.	Makc.	мин.	макс.	мин.	макс.	мин.	Makc.	
	Низкоуглеродистые стали		<280			0.18	0.60	0.12	0.32	0.18	0.65	0.12	0.35	
		<950					0.55							
Р		700-950	200-280					0.10	0.30					
	Легированные стали	950-1200	280-355			0.15				0.15	0.60	0.10	0.32	
		1200-1400	355-415											
	Дуплексные нержавеющие стали	778	230						0.28	0.12		0.10		
M	Аустенитные нержавеющие стали	675	200			0.12	0.50	0.10			0.55		0.30	
	Закалённые аустенитные стали	1013	300											
	Серые чугуны	700	220				_	_	-					
K	Чугуны с шаровидным графитом	880	260	0.80	6.00	-				-	-	-	-	
	Ковкие чугуны	800	250											
	Чистый алюминий	260	75											
N	Алюминиевые сплавы	447	130			-	-	-	-	-	-	-	-	
	Жаропрочные сплавы на основе Fe	943	280											
	Жаропрочные сплавы на основе Со	1076	320			0.40	0.45	0.40	0.00					
S	Жаропрочные сплавы на основе Ni	1177	350			0.12	0.45	0.10	0.28	-	-	-	-	
	Жаропрочные сплавы на основе Ті	1262	370											
Н	Закалённые стали	-	50-60HRC											
	Отбеленные чугуны	-	55HRC			-	-	-	_	-	-	_	-	

^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr

APM00-R016

Фреза для профильной обработки Пластины RO16 с 6-ю и 8-ю режущими кромками



Номер по каталогу	DC	DCB	DCSFMS	LF	APMX	Внутр. СОЖ	Z	Пластины
APM00-063-Z05-A22R-RO16-C	63	22	48	40	8	ٿ م	5	
APM00-080-Z06-A27R-RO16-C	80	27	62	50	8	f=1	6	RO1605
APM00-100-Z07-A32R-RO16-C	100	32	80	50	8	ٿ م	7	

Размеры (мм)		Запасные части	
Диаметр фрезы	Винт	Отвёртка	Момент
ф63-100			5.0 Нм
	SP050120	DT-TP20	

Замечание: С подводом СОЖ Без подвода СОЖ

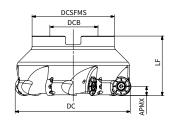
	Размер	ы (мм)		Р		M	ı	(S
Номер по каталогу	IC	S	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AP403S
ROHT 1605M8E-MM3	16	5.56				•			•
ROMT 1605M6E-MR6	16	5.56				•			•

	Материалы обрабатываем	ых деталей		Глубина резания и подача										
						RO1605								
							MI	M3		MR6				
ISO	Описание обрабатываемых	Предел прочности	Твёрдость	а	p	fz								
	материалов	(Н/мм²)	(HB)	0.1 < ap ≤ 1.5 1.5 < ap ≤ 8 0.1 < ap ≤ 1.5 1.5 < (MM)										
				мин.	макс.	мин.	макс.	мин.	ім) П _{макс.}	мин.	макс.	мин.	макс.	
		<600	<180	мин.	макс.	мин.	макс.	мин.	макс.	мин.	макс.	мин.	Makc.	
	Низкоуглеродистые стали	<950	<280			0.20	0.65	0.12	0.35	0.20	0.68	0.12	0.38	
							0.60							
P		700-950	200-280			0.18			0.32	0.18		0.10		
	Легированные стали	950-1200	280-355					0.10			0.65		0.35	
		1200-1400												
	Дуплексные нержавеющие стали	778	230						0.30	0.15		0.10		
M	Аустенитные нержавеющие стали	675	200			0.15	0.55	0.10			0.58		0.32	
	Закалённые аустенитные стали	1013	300											
	Серые чугуны	700	220				_	_	-			1		
K	Чугуны с шаровидным графитом	880	260	0.80	8.00	-				-	-	-	-	
	Ковкие чугуны	800	250											
	Чистый алюминий	260	75											
N	Алюминиевые сплавы	447	130			-	-	-	-	-	-	-	-	
	Жаропрочные сплавы на основе Fe	943	280											
	Жаропрочные сплавы на основе Со	1076	320			0.45	0.50	0.40	0.00					
S	Жаропрочные сплавы на основе Ni	1177	350			0.15	0.50	0.10	0.30	-	-	-	-	
	Жаропрочные сплавы на основе Ті	1262	370											
Н	Закалённые стали	-	50-60HRC											
	Отбеленные чугуны	-	55HRC			-	_	-	_	-	-	-	-	

^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr

APM00-RO20

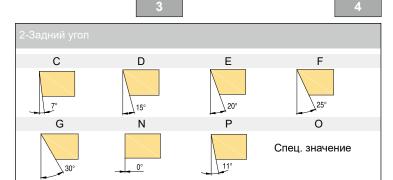
Фреза для профильной обработки Пластины RO20 с 8-ю режущими кромками



Номер по каталогу	DC	DCB	DCSFMS	LF	APMX	Внутр. СОЖ	Z	Пластины
APM00-100-Z06-A32R-RO20-C	100	32	80	50	10	-	6	
APM00-125-Z07-A40R-RO20-C	125	40	87	63	10	F	7	RO2006
APM00-160-Z08-A40R-RO20	160	40	107	63	10	×	8	

Размеры (мм)		Запасные части									
Диаметр фрезы	Винт	Отвёртка	Момент								
ф100-160			7.0 Нм								
	ST060180	DT-T25									

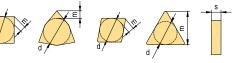
Замечание: С подводом СОЖ Без подвода СОЖ


	Размер	ры (мм)		Р		M	ı	(S
Номер по каталогу	IC	S	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AP403S
ROHT 2006M8E-MM3	20	6.35				•			•
ROMT 2006M8E-MR6	20	6.35				•			•

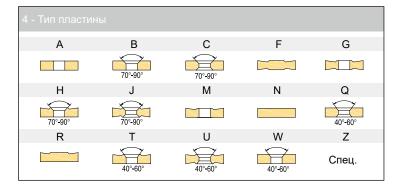
	Материалы обрабатываем	ых деталей		Глубина резания и подача											
								RO2	2006						
							MI	M3			MI	R6			
ISO	Описание обрабатываемых	Предел прочности	Твёрдость	a	р	fz $ 0.1 < ap \le 2.5 2.5 < ap \le 10 0.1 < ap \le 2.5 2.5 < ap \le 10$									
	материалов	(Н/мм²)	(HB)			0.1 < a	ıp ≤ 2.5		-	0.1 < a	ap ≤ 2.5	2.5 < a	ap ≤ 10		
				мин.	макс.	мин.	макс.	(М	м) макс.	мин.	макс.	мин.	макс.		
		<600	<180	IVIVITI.	warc.	IVIVIT.	warc.	IVIVITI.	warc.	IVIVITI.	warc.	IVIVITI.	warc.		
	Низкоуглеродистые стали	<950	<280			0.20	0.70	0.15	0.38	0.20	0.80	0.15	0.40		
P		700-950	200-280					0.12							
	Легированные стали	950-1200	280-355			0.18	0.65		0.35	0.18	0.70	0.12	0.38		
	710171pobarrible orazir	1200-1400	355-415			0.10	0.03	0.12	0.55	0.10	0.70	0.12	0.50		
	_		778 230						0.32						
	Дуплексные нержавеющие стали			-									0.35		
M	Аустенитные нержавеющие стали	675	200			0.15	0.60	0.12		0.15	0.65	0.12			
	Закалённые аустенитные стали	1013	300		10.00										
	Серые чугуны	700	220				-	-	-						
K	Чугуны с шаровидным графитом	880	260	1.00		-				-	-	-	-		
	Ковкие чугуны	800	250												
N	Чистый алюминий	260	75												
N	Алюминиевые сплавы	447	130			-	-	-	-	-	-	-	-		
	Жаропрочные сплавы на основе Fe	943	280												
	Жаропрочные сплавы на основе Со	1076	320	1		0.45	0.55	0.40	0.00						
S	Жаропрочные сплавы на основе Ni	1177	350			0.15	0.55	0.12	0.32	-	-	-	-		
	Жаропрочные сплавы на основе Ті	1262	370												
Н	Закалённые стали	-	50-60HRC			_			_				_		
П	Отбеленные чугуны	-	55HRC				_		_			_			

^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.Средняя толщина стружки hm = fz x sin Kr

Система обозначения фрезерных пластин



M

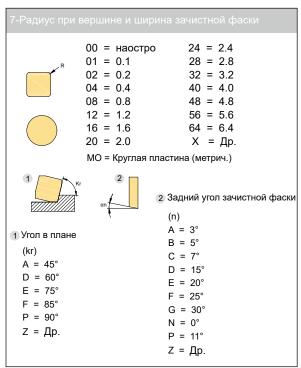


Класс точности	Ед.	Диаметр впис. окружности d	Размер до вершины m	Толщина s
Α	мм	± 0,025	± 0,005	± 0,025
С	мм	± 0,025	± 0,013	± 0,025
E	мм	± 0,025	± 0,025	± 0,025
F	мм	± 0,013	± 0,005	± 0,025
G	мм	± 0,025	± 0,025	± 0,13
н	мм	± 0,013	± 0,013	± 0,025
J	мм	*	± 0,005	± 0,025
к	мм	*	± 0,013	± 0,025
L	мм	*	± 0,025	± 0,025
М	мм	*	*	± 0,127
U	мм	*	*	± 0,127
N	мм	*	*	± 0,025

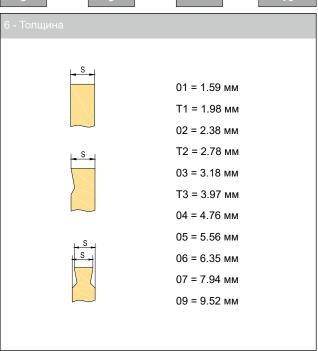
^{*} больше информации в таблицах справа и снизу

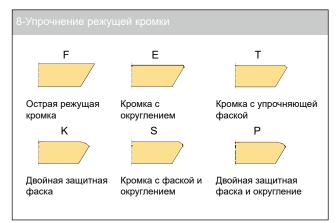
Для классов М и N	Форі	ма D	Фор	ма V
IC	d	m	d	m
5.56	± 0,05	± 0,11		
6.35	± 0,05	± 0,11	± 0,05	± 0,16
7.94	± 0,05	± 0,11	± 0,05	± 0,16
9.525	± 0,05	± 0,11	± 0,05	± 0,16
12.7	± 0,08	± 0,15	± 0,08	± 0,2
15.875	± 0,10	± 0,18	± 0,10	± 0,27
19.05	± 0,10	± 0,18	± 0,10	± 0,27

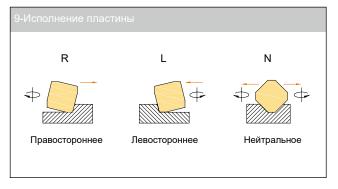
	Форма:	C, E, H, M,	O, P, S, T, R	, W
IC	C	i		m
ic	J,K,L,M,N	U	M, N	U
4.76	± 0,05	± 0,08	± 0,08	± 0,13
5.56	± 0,05	± 0,08	± 0,08	± 0,13
6	± 0,05	± 0,08	± 0,08	± 0,13
6.35	± 0,05	± 0,08	± 0,08	± 0,13
7.94	± 0,05	± 0,08	± 0,08	± 0,13
8	± 0,05	± 0,08	± 0,08	± 0,13
9.525	± 0,05	± 0,08	± 0,08	± 0,13
10	± 0,05	± 0,08	± 0,08	± 0,13
12	± 0,08	± 0,13	± 0,13	± 0,2
12.7	± 0,08	± 0,13	± 0,13	± 0,2
15.875	± 0,1	± 0,18	± 0,15	± 0,27
16	± 0,1	± 0,18	± 0,15	± 0,27
19.05	± 0,1	± 0,18	± 0,15	± 0,27
20	± 0,1	± 0,18	± 0,15	± 0,27
25	± 0,13	± 0,25	± 0,18	± 0,38
25.4	± 0,13	± 0,25	± 0,18	± 0,38
31.75	± 0,15	± 0,25	± 0,2	± 0,38
32	± 0,15	± 0,25	± 0,2	± 0,38



5-Длина р		эй кром	VIA				
э-длина р							
Диаметр впис. окружности (мм)	Н	М	0	R	S	Т	Z
(MM)					L	L	
3.180						05	
3.970						06	
5.000				05			
5.560						09	
6.000				06			
6.350						11	
7.940						13	
8.000				08			
9.525				09	09	16	
10.000				10			
12.000				12			
12.700			04	12	12	22	
15.875				15	15	27	
16.000			06	16			
19.050				19	19	33	
20.000				20			
25.000				25	25		
25.400				25			
31.750				31			
32.000				32			







10-Геометрия пластины (см. описание фрезерных геометрий)

Если пластина обладает и зачистной фаской, и радиусом при вершине, то радиус указывается между значением толщины пластины и обозначением угла в плане Пример: APET 160408PDFR-FM2

ACHTECK

www.achtecktool.com/ru

ЭКСПЕРТ В РЕЗАНИИ ТРУДНООБРАБАТЫВАЕМЫХ МАТЕРИАЛОВ

Фрезерные пластины

Рекомендации по выбору геометрий фрезерных пластин

				Геометрии фрезерных пластин											
Man	гериалы обрабатыва	емых дета	алей	FM2	ММЗ	MM4	MR2	MR6	RR2	HR2					
ISO	Описание обрабатываемых материалов	Предел прочности (Н/мм²)	Твёрдость (НВ)	Для обработки алюминиевых сплавов	Лёгкое фрезерование	Получистовая обработка средней тяжести	Получерновая обработка	Черновая обработка	Тяжёлое черновое фрезерование	Черновое фрезерование					
	Низкоуглеродистые	<600	<180	-	•	•	•	•	-	-					
	стали	<950	<280	-	•	•	•	•	-	-					
P		700-950	200-280	-	•	•	•	•	-	-					
	Легированные стали	950-1200	280-355	-	•	•	•	•	-	-					
		1200-1400	355-415	-	•	•	•	•	-	-					
	Дуплексные нержавеющие стали	778	230	-	•	•	•	-	-	-					
M	Аустенитные нержавеющие стали	675	200	-	•	•	•	-	-	-					
	Закалённые аустенитные стали	1013	300	-	•	•	•	-	-	-					
	Серые чугуны	700	220	-	-	•	•	•	•	•					
K	Чугуны с шаровидным графитом	880	260	-	-	•	•	•	•	•					
	Ковкие чугуны	800	250	-	-	•	•	•	•	•					
N	Чистый алюминий	260	75	•	-	-	-	-	-	-					
IN	Алюминиевые сплавы	447	130	•	-	-	-	•	-	-					
	Жаропрочные сплавы на основе Fe	943	280	-	•	•	•	-	-	-					
S	Жаропрочные сплавы на основе Со	1076	320	-	•	•	•	-	-	-					
3	Жаропрочные сплавы на основе Ni	1177	350	-	•	•	•	-	-	-					
	Жаропрочные сплавы на основе Ті	1262	370	-	•	•	•	-	-	-					
Н	Закалённые стали	-	50-60HRC	-	-	•	•	-	-	-					
	Отбеленные чугуны	-	55HRC	-	-	•	•	-	-	-					

Первый выборАльтернативный выборНе рекомендуется

Описание фрезерных геометрий пластин

Геометрия	Форма главной режущей кромки	Описание
FM2		 Острая геометрия для обработки алюминиевых и других цветных сплавов Генерирует низкие усилия резания Полированная передняя поверхность и большой передний угол отлично сопротивляются возникновению нароста
ММЗ		 Острая геометрия, первый выбор для лёгкого фрезерования и обработки нержавеющих сталей Генерирует низкие усилия резания, подходит для маломощных станков Также подходит для лёгкого фрезерования сталей и жаропрочных сплавов
MM4		 Универсальная геометрия для операций средней тяжести Подходит для обработки сталей, нержавеющих сталей, жаропрочных сплавов Также может применяться для обработки чугунов
MR2		 Геометрия для получернового фрезерования Подходит для обработки сталей, чугунов, нержавеющих сталей и жаропрочных сплавов Желательна жёсткая система СПИД
MR6		 Первый выбор для черновой обработки стали, чугуна и нержавеющих сталей Требует жёсткой системы СПИД Также может применяться для обработки закалённых сталей
HR2		 Геометрия для чернового фрезерования чугуна Требует жёсткой системы СПИД
RR2		 Геометрия для тяжёлого чернового фрезерования стали и чугуна Требует жёсткой системы СПИД
IT		 Геометрия для лёгкого чистового фрезерования
DT		 Геометрия для универсального применения

Фрезы со сменными ежущими пластинами

Рекомендации по выбору фрезерных марок сплавов

			Обл	асть пр	именен	ия фрез	верных	марок с	плавов					
Группа	Материалы							С по	крытием	1				
обрабатываемого материала	обрабатываемых деталей	ISO	PVD	PVD	PVD	PVD	PVD	PVD	PVD	PVD	CVD	CVD	Без покрытия	ISO
		P01												P01
		P05												P05
		P10												P10
		P15												P15
	Углеродистые и	P20												P20
P	легированные	P25	AP251U											P25
	стали	P30	_ \		AP351M						AC301P			P30
		P35		321	35				-		<u>\</u>			P35
		P40		AP351U	_ \									P40
		P45												P45
		P50											+	P50
		M01 M05												M01 M05
		M10											+	M10
		M15												M15
		M20												M20
M	Нержавеющие	M25	_ <mark>51</mark> _											M25
141	стали	M30	AP251U		Σ								1	M30
		M35			221									M35
		M40			AP351M		AP403S	AP403M						M40
		M45					P4_	240						M45
		M50					▼	A						M50
		K01												K01
		K05												K05
		K10												K10
		K15		AP151H										K15
		K20		4							0			K20
K	Чугуны	K25	AP251K						-		AC301K			K25
		K30	- \$ -		-						\square		-	K30
		K35											-	K35
		K40											+	K40
		K45 K50											+	K45 K50
		N01												N01
		N05												N05
	Алюминий и	N10											X	N10
N	алюминиевые	N15											AW100K	N15
	сплавы	N20											M M	N20
		N25												N25
		N30												N30
		S01												S01
		S05												S05
		S10												S10
		S15												S15
	Жаропрочные	S20				-			-					S20
S	сплавы	S25												S25
		S30		AP351M								-		S30
		S35 S40		P35	38	- ≥ -								S35 S40
		S40 S45		_ ₹	AP403S	AP403M						-		S40 S45
		S50			AP -	AP.								S50
		H01												H01
		H05												H05
	Закалённые	H10	I											H10
Н	сплавы и	H15	АР151Н											H15
	отбеленные чугуны	H20	AP											H20
	. j. j	H25												H25
		H30												H30

Рекомендации по выбору фрезерных марок сплавов

				Марки сплавов										
N	Іатериалы обрабатыв	заемых дета	лей		С	покрыт	ием PV	'D			ытием VD		ытием VD	Без покрытия
ISO	Описание обрабатываемых материалов	Предел прочности (Н/мм²)	Твёрдость (НВ)	AP251U	AP351U	AP351M	AP401U	AP403S	AP403M	AC301P	AC301K	AP251K	AP151H	AW100K
	Низкоуглеродистые	<600	<180	•	•	•	•		•	•	•	-	-	-
	стали	<950	<280	•	•	•	•		•	•	•	-	-	-
P		700-950	200-280	•	•	•	•		•	•	•	-	-	-
	Легированные стали	950-1200	280-355	•	•	•	•		•	•	•	-	-	-
		1200-1400	355-415	•	•	•	•		•	•	•	-	-	-
	Дуплексные нержавеющие стали	778	230	•	•	•	•	•	•	0	-	-	-	-
M	Аустенитные нержавеющие стали	675	200	•	•	•	•	•	•	•	-	-	-	-
	Закалённые аустенитные стали	1013	300	•	•	•	•	•	•	•	-	-	-	=
	Серые чугуны	700	220	-	-	-	-	-	-	-	•	•	•	-
K	Чугуны с шаровидным графитом	880	260	-	-	-	-	-	-	-	•	•	•	-
	Ковкие чугуны	800	250	-	-	-	-	-	-	-	•	•	•	-
N	Чистый алюминий	260	75	1	-		-			-	-	-	-	•
IN	Алюминиевые сплавы	447	130	-	-		-			-	-	-	-	•
	Жаропрочные сплавы на основе Fe	943	280	-	•	•	0	•	•	-	-	-	-	-
S	Жаропрочные сплавы на основе Со	1076	320	-	•	•	•	•	•	-	-	-	-	-
3	Жаропрочные сплавы на основе Ni	1177	350	-	•	•	•	•	•	-	-	-	-	-
	Жаропрочные сплавы на основе Ті	1262	370	-	•	•	•	•	•	-	-	-	-	•
Н	Закалённые стали		50-60HRC	1	-		-			-	-	-	•	-
П	Отбеленные чугуны		55HRC	-	-		-			-	-	-	•	-

Первый выборАльтернативный выборНе рекомендуется

Фрезы со сменными ежущими пластинами

Описание марок сплавов для фрезерования

Сплавы для общего фрезерования

Низкоуглеродистые, углеродистые, легированные и инструментальные стали.

Основные сплавы

AP251U P25(P15-P35)

Универсальный твёрдый сплав для фрезерования большинства обрабатываемых материалов. Обладает основой средней твёрдости и износостойким покрытием PVD. Является первым выбором как для черновой, так и для чистовой обработки стали в стабильных условиях резания. Подходит как для обработки с применением СОЖ, так и без, при небольшой ширине резания, сложных траекториях фрезерования и при обработке вязких материалов - низкоуглеродистых сталей и нержавеющих сталей.

AC301P P35(P25-P40)

Первый выбор для черновой обработки стали. Сплав обладает основой повышенной прочности и CVD покрытием. Подходит для фрезерования с большой глубиной на средних и повышенных скоростях резания при плохих условиях обработки.

Дополнительные сплавы

AP351M P35(P25-P45)

Сплав повышенной прочности с PVD покрытием и для фрезерования нержавеющих сталей на средних и низких скоростях резания. Подходит также для обработки углеродистых и легированных сталей когда требуется повышенная прочность.

AP351U P35(P30-P45)

Универсальный сплав повышенной прочности для обработки различных материалов заготовок. Дополняет сплав AP251U, когда необходима повышенная прочность.

Аустенитные, супераустенитные и дуплексные нержавеющие стали.

Основные сплавы

AP351M M35(M25-M45)

Сплав повышенной прочности с PVD покрытием и для фрезерования нержавеющих сталей на средних и низких скоростях резания. Подходит также для обработки углеродистых и легированных сталей когда требуется повышенная прочность..

AP403M M35(M35-M50)

Первый выбор для фрезерования нержавеющих сталей. Обладает основой высокой прочности и покрытием PVD повышенной толщины. Показывает отличные результаты при черновой обработке при нестабильных условиях резания. Может применяться для фрезерования сталей при работе на удар.

Доступны также новые сплавы с CVD покрытием: AC151K для лёгкого фрезерования чугуна и AC251P для обработки плоскостей в деталях их стали при средних условиях резания.

Дополнительные сплавы

AP251U M25(M15-M35)

Универсальный твёрдый сплав для фрезерования большинства обрабатываемых материалов. Обладает основой средней твёрдости и износостойким покрытием PVD. Является первым выбором как для черновой, так и для чистовой обработки стали в стабильных условиях резания. Подходит как для обработки с применением СОЖ, так и без, при небольшой ширине резания, сложных траекториях фрезерования и при обработке вязких материалов низкоуглеродистых сталей и нержавеющих сталей.

AP403S M15(M35-M50)

Первый выбор для фрезерования жаропрочных сплавов. Основа сплава обладает повышенной прочностью, а также сопротивляемостью высоким температурам, PVD покрытие же придаёт необходимую стойкость к износу. Рекомендуется прежде всего для обработки в нестабильных условиях при низких скоростях резания. Также может применяться для чернового фрезерования нержавеющих и углеродистых сталей, в том числе при работе на удар.

AP351U M35(M30-M45)

Универсальный сплав повышенной прочности для обработки различных материалов заготовок. Дополняет сплав AP251U, когда необходима повышенная прочность.

Серые, высокопрочные и ковкие чугуны

Основные сплавы

AC301K K25(K10-K35)

Сплав повышенной прочности с CVD покрытием. Рекомендуется для черновой и получистовой обработки серого чугуна при средних и повышенных скоростях резания. При обработке без СОЖ позволяет достигать высокой стойкости.

AP251K K25(K15-K40)

Сплав средней твёрдости и прочности с PVD покрытием. Рекомендуется для получистовой и черновой обработки серого чугуна и чугуна с шаровидным графитом при средних и низких скоростях резания. Позволяет получать высоких результатов по стойкости при обработке как с СОЖ, так и без.

Дополнительные сплавы

AP151H K15(K10-K20)

Первый выбор для чистовой и черновой обработки закалённых сталей. Обладает основой повышенной твёрдости с нанесённым на неё PVD покрытием. Также применяется для чистового фрезерования различных видов чугунов.

Цветные сплавы

Основные сплавы

AW100K N15 (N10-N20)

Сплав повышенной твёрдости без покрытия. Первый выбор для фрезерования цветных сплавов. Позволяет получать режущую кромку повышенной остроты.

Жаропрочные сплавы

Основные сплавы

AP403S S15(S35-S50)

Первый выбор для фрезерования жаропрочных сплавов. Основа сплава обладает повышенной прочностью, а также сопротивляемостью высоким температурам, PVD покрытие же придаёт необходимую стойкость к износу. Рекомендуется прежде всего для обработки в нестабильных условиях при низких скоростях резания. Также может применяться для чернового фрезерования нержавеющих и углеродистых сталей, в том числе при работе на удар.

Дополнительные сплавы

AP351M S35(S25-S45)

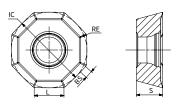
Сплав повышенной прочности с PVD покрытием и для фрезерования нержавеющих сталей на средних и низких скоростях резания. Подходит также для обработки углеродистых и легированных сталей когда требуется повышенная прочность.

AP403M S35(S35-S50)

Первый выбор для фрезерования нержавеющих сталей. Обладает основой высокой прочности и покрытием PVD повышенной толщины. Показывает отличные результаты при черновой обработке при нестабильных условиях резания. Может применяться для фрезерования сталей при работе на удар.

Закалённые стали и отбеленные чугуны

Основные сплавы

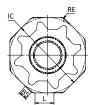

AP151H H15(H10-H20)

Первый выбор для чистовой и черновой обработки закалённых сталей. Обладает основой повышенной твёрдости с нанесённым на неё PVD покрытием. Также применяется для чистового фрезерования различных видов чугунов.

Доступны также новые сплавы с CVD покрытием: AC151K для лёгкого фрезерования чугуна и AC251P для обработки плоскостей в деталях их стали при средних условиях резания.

Фрезы со сменными эжущими пластинами

OD..06
Односторонние пластины с задним углом с 8-ю режущими кромками

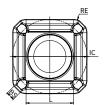


			Vo.по.п		507/44		• Xc	роши	e (Средн	ние	# Пл	охие
			УСЛОЕ	вия обра	юотки		•	#	#	*	•	•	•
		(Основнь	ые разм	еры (мм	1)		Р		М	ŀ	<	N
Вид пластины	Обозначение пластины	L	IC	S	RE	BS	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AW100K
E3)	ODET 0605APFN-FM2	6	6 16 5.56 0.8 1.6								•		
8													
	ODMT 060508EN-MM3	6	16	5.56	0.8	-	•	•	•		A	•	
(3)	ODMT 060512EN-MM3	6	16	5.56	1.2	-	•						
	ODHT 0605APEN-MM3	6	16	5.56	0.8	1.6	•	•			A	•	
Res.	ODEW 0605APSR-HR2	6	16	5.56	-	1.6					A	•	
	ODMW 060512EN-HR2	6	16	5.56	1.2	-					•	•	

^{•:} На складе 🛕: На складе, но скоро выйдет замена.

ON..05

Двусторонние пластины с 16-ю режущими кромками

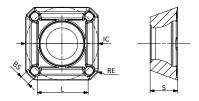

		Условия обработки						роши	e (Среді	ние	# Пло	охие
			YCHOE	ия оора	ЮОТКИ		•	#	#	*	•	•	•
		(Основнь	ые разм	еры (мм	1)		Р		M K		K N	
Вид пластины	Обозначение пластины	L	IC	S	RE	BS	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AW100K
	ONHU 050408-MM3	4	12.7	4.76	0.8	-	•						
	ONMU 050408-MM4	4	12.7	4.76	0.8	-	•	•			•	•	
.00	ONHU 0504ZNR-MM3	4	12.7	4.76	0.8	1.4	•						

●: На складе

Фрезы со сменными ежущими пластинами

SD..09/12

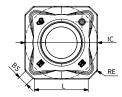
Пластины квадратной формы с задним углом и 4-мя режущими кромками



			\/oп.			• Xo	роши	е (Сред	ние	# Пл	охие	
			услов	ия обра	ютки		•	#	•	*	•	•	•
		(Основнь	іе разм	еры (мм)		Р		М	K		N
Вид пластины	Обозначение пластины	L IC S RE BS						AP351U	AC301P	AP403M	AC301K	AP251K	AW100K
	SDMT 09T304EN-MM3	8.7	9.525	3.97	0.4	-	•	•	•		•		
	SDMT 09T308EN-MM3	7.9	9.525	3.97	0.8	-	•	•			•		
	SDMT 120408EN-MM4	11.1	12.7	4.76	0.8	-	•	•		•	•		
	SDMT 120412EN-MM3	10.3	12.7	4.76	1.2	-	•	•	•		•		
4	SDKT 1204AEEN-MR2	8.1	12.7	4.76	-	2		•				•	
75	SDGT 09T3PDER-MR6	6.7	9.525	3.97	0.8	1.2	•	A			•	•	

●: На складе

SE..12
Пластины квадратной формы с задним углом и 4-мя режущими кромками

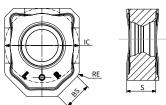

			Vопов	wa ofina	ботии		• Хорошие • Средние • Плох							
		Условия обработки					•	+	#	#	•	•	•	
		(Основные размеры (мм)							М	ŀ	<	N	
Вид пластины	Обозначение пластины	L	IC	S	RE	BS	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AW100K	
	SEKT 1204AFER-MR2	8.9	8.9 12.7 4.91 1.2 1.8					•						

^{●:} На складе ▲: На складе, но скоро выйдет замена.

Фрезы со сменными ежиними ппастинами

SN..12/19

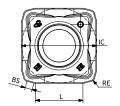
Двусторонние пластины с 8-ю режущими кромками (подходят для фрез AFM45-SN12/SN19)


			\/	6	.e		• Xo	роши	e (Сред	ние	# Пл	охие
			услов	ия обра	юотки		•	+	+	*	•	•	•
		(Эсновнь	не разме	еры (мм	1)		Р		М	ı	<	N
Вид пластины	Обозначение пластины	L	IC	S	RE	BS	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AW100K
	SNHX 1206ANN-FM2	9.3	12.7	6.25	0.5	1.8							•
	SNGX 1206ANN-MM3	9.4	12.7	6.25	0.4	1.8	•	•	•		•	•	
	SNGX 1206ANN-MM4	9.4	12.7	6.25	0.4	1.8	•	•	•	•	•	•	
	SNGX 1206ANN-MR6	9.4	12.7	6.25	0.4	1.8	•	•	•		•	•	
	SNGX 1206ANN-RR2	9.3	12.7	6.25	0.5	1.8	•	•	•		•	•	
	SNMX 1206ANN-MM3	9.4	12.7	6.25	0.4	1.8	•	•	•		•	•	
	SNMX 1206ANN-MM4	9.4	12.7	6.25	0.4	1.8	•	•	•	•	•	•	
	SNMX 1206ANN-MR6	9.4	12.7	6.25	0.4	1.8	•	•	•		•	•	
	SNGX 1909ANN-MM3	14.2	19.05	8.55	0.4	2.9		•					
	SNGX 1909ANN-MR6	14.2	19.05	8.55	0.8	2.9		A					

●: На складе

▲: На складе, но скоро выйдет замена.

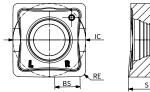
SNHX12


Зачистные двусторонние пластины с 2-мя режущими кромками (подходят для фрез AFM45-SN12)

\$	<u>- S</u>		Vспов	вия обра	аботки		● Xo	роши	e H	Сред	ние	# Пл	охие
			707102	www.			•	#	#	#	•	•	•
		Основные размеры (мм)						Р		М	ı	<	N
Вид пластины	Обозначение пластины	L	IC	S	RE	BS	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AW100K
0.000	SNHX 1206ANN-W	-	12.7	6.25	1.2	6.7	•				A		

●: На складе

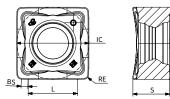
SN..12 Двусторонние пластины с 8-ю режущими кромками (подходят для фрез AFM75-SN12)



				ua ofina	ботки		● Xo	роши	e (Среді	ние	# Пл	охие
			ACHOE	ия обра	ЮОТКИ		•	*	*	*	•	•	•
		(Основнь	е разме	еры (мм)		Р		М	ŀ	<	N
Вид пластины	Обозначение пластины	L	IC	S	RE	BS	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AW100K
	SNGX 1206ENN-MM3	8.1	12.7	6.35	0.8	1.2	•	A	•		•	•	
	SNGX 1206ENN-MM4	8.1	12.7	6.35	8.0	1.2	•	•	•		•	•	
	SNGX 1206ENN-MR6	8.1	12.7	6.35	0.8	1.2	•	•	•		•	•	
	SNMX 1206ENN-MM4	8.1	12.7	6.35	0.8	1.2			•			•	

^{●:} На складе ▲: На складе, но скоро выйдет замена.

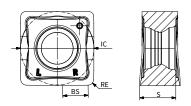
SNHX12


Зачистные двусторонние пластины с 2-мя режущими кромками (подходят для фрез AFM75-SN12)

■ BS →	S		Vепоп	вия обра	ботки		● Xc	роши	e (Среді	ние	# Пло	охие
			YCHOE	ия оора	оотки		•	#	#	#	•	•	•
										М		ζ .	N
Вид пластины	Обозначение пластины	L	IC	S	RE	BS	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AW100K
Contract of	SNHX 1206ENN-W	-	12.7	6.25	0.6	1.2	•				•		

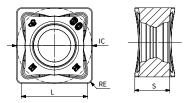
Фрезы со сменными ежущими прастинами

SN..12 Двусторонние пластины с 8-ю режущими кромками (подходят для фрез AFM88-SN12)



			Vепоп	ия обра	ботки		● Xo	роши	е (Н	Сред	ние	# Пл	охие
			YCHOE	ия оора	ЮОТКИ		•	#	#	*	•	•	•
		(Основнь	ые разм	еры (мм)		Р		М	ı	<	N
Вид пластины	Обозначение пластины	L	IC	S	RE	BS	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AW100K
	SNHX 1206ZNN-FM2	8.7	12.7	6.45	0.8	1.2							•
	SNGX 1206ZNN-MM4	8.7	12.7	6.45	0.8	1.2	•	•	•	•	•	•	
	SNGX 1206ZNN-MR6	8.7	12.7	6.45	0.8	1.2	•	•	•		•	•	
	SNGX 1206ZNN-MM3	8.7	12.7	6.45	0.8	1.2	•	•	•		•	•	
	SNMX 1206ZNN-MM4	8.7	12.7	6.45	0.8	1.2	•			•		•	

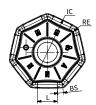
●: На складе ▲: На складе, но скоро выйдет замена.


SNHX12

Зачистные двусторонние пластины с 8-ю режущими кромками (подходят для фрез AFM88-SN12)

			Vспор	ия обра	ботки		● Xo	роши	e (Сред	ние	# Пл	охие
			70,106	ии оорг	ЮОТКИ		•	•	#	*	•	•	•
		()		Р		М	ı	<	N			
Вид пластины	Обозначение пластины	Основные размеры (мм) L IC S RE BS					AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AW100K
	SNHX 1206ZNN-W	-	12.7	6.25	1.0	4.4	•				•		

SN..12 Двусторонние пластины с 8-ю режущими кромками без зачистных фасок

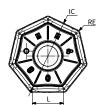


			\/a=c=	6::			• Xo	роши	e (Средн	ние	# Пл	охие
			услов	ия обра	ЮОТКИ		•	•	+	*	•	•	•
		(Основнь	не разме	еры (мм)		Р		М		<	N
Вид пластины	Обозначение пластины	L	IC	S	RE	BS	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AW100K
	SNGX 120608-MM4	11.1	12.7	6.4	0.8	-	•	•	•		•	•	
	SNGX 120612-MM4	10.3	12.7	6.4	1.2	-	•						
	SNMX 120608-MM4	11.1	12.7	6.4	0.8	-	•	•	•		•	•	
	SNMX 120612-MM3	10.3	12.7	6.4	1.2	-	•	•	•		•	•	
	SNMX 120612-MM4	10.3	12.7	6.4	1.2	-	•	•	•		•	•	
	SNMX 120612-MR6	10.3	12.7	6.4	1.2	-	•	•	•		•	•	
	SNMX 120612-RR2	10.3	12.7	6.4	1.2	-	•	•	•		•	•	
	SNMX 120620-MM4	8.7	12.7	6.4	2.0	-	•	•	•		•	•	
	SNMX 120620-RR2	8.7	12.7	6.4	2.0	-	•	•	•		•	•	
Description	SNMX 120612R-MM4	8.7	12.7	6.4	1.2	-	•	•	•	•	A	•	

Фрезы со сменными эжущими пластинами

XN..07/09ANN

Двусторонние пластины с 14-ю режущими кромками

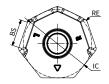


			Variati		507111		• X	роши	е (Сред	ние	# Пл	охие
			ACHOE	вия обра	ЮОТКИ		•	#	#	*	•	•	•
		(Основны	ые разм	еры (мм	1)		Р		М	ı	<	N
Вид пластины	Обозначение пластины	L	IC	S	RE	BS	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AW100K
5	XNGU 0705ANN-MM3	7	14.5	5	0.8	1.1	•	•			•		
	XNGU 0705ANN-MM4	7	14.5	5	0.8	1.1	•				•		
	XNMU 0705ANN-MM4	7	14.5	5	0.8	1.1	•	•	•		•	•	
	XNMU 0705ANN-MR6	7	14.5	5	0.8	1.1	•	•			•	•	
	XNGU 0906ANN-MM3	9.2	19	5.875	0.8	1.4	•	•	•		•		
	XNGU 0906ANN-MM4	9.2	19	5.875	0.8	1.4	•	A	A		•		
2	XNMU 0906ANN-MR6	9.2	19	5.875	0.8	1.4	•				A	•	

●: На складе

XN..07/09

Двусторонние пластины с 14-ю режущими кромками без зачистных фасок

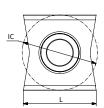


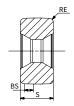
			Vопол		ботил		● Xo	роши	e (Средн	ние	# Пл	охие
			YCHOE	вия обра	ЮОТКИ		•	#	•	*	•	•	•
		Основные размеры (мм)						Р		М		<	N
Вид пластины	Обозначение пластины	L	IC	S	RE	BS	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AW100K
	XNMU 070508-MM4	7	14.5	5	0.8	-	•	•		•	•	•	
	XNMU 090612-MM4	9.2	19	5.875	1.2	-	•	•		•	•	•	

●: На складе ▲: На складе, но скоро выйдет замена.

XNGX 07/09ANN-W

Двусторонние зачистные пластины с 2+2 режущими кромками

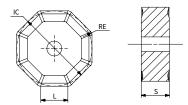




	4 3 ≱				<i>c</i>		● Xo	роши	e (+)	Среді	ние	# Пло	охие
			УСЛОВ	вия обра	ЮОТКИ		•	#	0	*	•	•	•
			Эсновнь	ые разм	еры (мм)							
Вид пластины	Обозначение пластины	L	IC	S	RE	BS	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AW100K
	XNGX 0705ANN-W	6	15	5	1.0	5.6	•				•		
	XNGX 0906ANN-W	7.5	19.05	5.88	1.0	7.5	•				•		

LNET 12

Пластины тангенциального крепления с 4+4 режущими кромками для обработки прямоугольных уступов

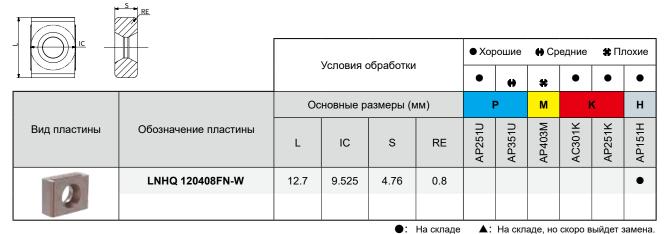


			Venon	ия обра	ботки		● Xo	роши	е (Сред	ние	# Пл	охие
			YCHOB	ия оора	ЮОТКИ		•	#	#	#	•	•	•
		Основные размеры (мм)						Р		М	ŀ	<	N
Вид пластины	Обозначение пластины	L	IC	S	RE	BS	AP251U	AP351U	AC301P	AP403M	AC151K	AP251K	AW100K
	LNET 1206-MM4	12.3	12.7	6.35	0.8	2.5	•			•	•	•	
10													

●: На складе ▲: На

ON05/LN12/LN15

Двусторонние пластины с 16-ю режущими кромками для чистовой обработки чугуна

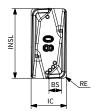


			Vollopus	S S S S S S S S S S S S S S S S S S S		• Xop	ошие	(†) Ср	едние	# Пı	похие
			Условия с	ораостки		•	#	*	•	•	•
		Oc	новные р	азмеры (м	им)	ı	•	M	ŀ	(н
Вид пластины	Обозначение пластины	L	IC	S	RE	AP251U	AP351U	AP403M	AC301K	AP251K	АР151Н
	ONHF 050408-MM3	5.3	12.7	4.76	0.8						•

●: На складе ▲: На складе, но скоро выйдет замена.

LN12

Зачистные пластины тангенциального крепления с 4+4 режущими кромками для чистовой обработки чугуна

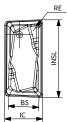

LN15

Зачистные пластины тангенциального крепления с 4+4 режущими кромками для чистовой обработки чугуна

	RE										
IC IIC			.,	● Xop	ошие	(4) Ср	едние	# Плохие			
			Условия с	•	+	*	•	•	•		
		Основные размеры (мм)					Р		K		н
Вид пластины	Обозначение пластины	L	IC	S	RE	AP251U	AP351U	AP403M	AC301K	AP251K	АР151Н
2	LNHQ 150416FN-W	15.875	9.525	4.76	1.6						•

LNHU 0904..

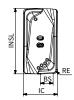
Пластины тангенциального крепления с 4-мя режущими кромками для обработки прямоугольных уступов



		Vananus afinafiatus				• Xo	роши	e (Сред	ние	# Плохие		
		Условия обработки			•	+	+	*	•	•	•		
		Основные размеры (мм)						Р			K		N
Вид пластины	Обозначение пластины	INSL	IC	S	RE	BS	AP251U	AP351U	AP351M	AP403M	AC301K	AP251K	AW100K
	LNHU 090404ER-FM2	9	4.5	8.49	0.4	1.85							•
	LNHU 090404ER-MM3	9	4.5	8.49	0.4	1.85		•		•			
	LNHU 090404ER-MR2	9	4.5	8.49	0.4	1.85	•	•		•	•	•	
	LNHU 090404ER-MM4	9	4.5	8.5	0.4	1.85	•		•	•		•	
T-3	LNHU 090408ER-MM4	9	4.5	8.5	0.8	1.45	•		•	•		•	
	LNHU 090408ER-MR2	9	4.5	8.4	0.8	0.98	•	•		•	•	•	
	LNHU 090408ER-MM3	9	4.5	8.5	0.8	1.45	•		•	•		•	
	LNHU 090412ER-MR2	9	4.5	8.31	1.2	1.0	•			•	•		
	LNHU 090416ER-MR2	9	4.5	8.22	1.6	0.65	•			•	•		
	LNHU 090420ER-MR2	9	4.5	8.12	2.00	0.65	•			•	•		

●: На складе

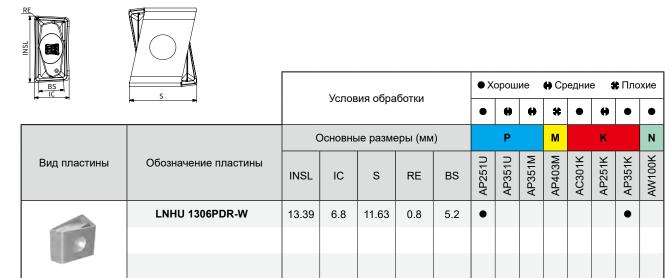
▲: На складе, но скоро выйдет замена.



BS S			Условия обработки					• Хорошие • Средние • Плохие							
		эсловия оораоотки						#	H	#	•	#	•	•	
		Основные размеры (мм)					Р			M	К			N	
Вид пластины	Обозначение пластины	INSL	IC	S	RE	BS	AP251U	AP351U	AP351M	AP403M	AC301K	AP251K	AP351K	AW100K	
	LNHU 0904PDER-W	9.2	4.5	8.38	0.4	3.6	•				•				

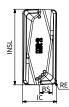
●: На складе

LNHU 1306..


Пластины тангенциального крепления с 4-мя режущими кромками для обработки прямоугольных уступов

			Vопол	вия обра	ботки		● Xo	роши	e (Средн	ние	# Пло	охие
			YCHOE	зия оора	ЮОТКИ		•	#	*	*	•	•	•
		C	Основнь	ые разме	еры (мм)		Р		М	ı	<	N
Вид пластины	Обозначение пластины	INSL	IC	S	RE	BS	AP251U	AP351U	AP351M	AP403M	AC301K	AP251K	AW100K
	LNHU 130608ER-FM2	13.02	6.8	8.49	0.8	2.7							•
	LNHU 130608ER-MM3	13.02	6.8	11.85	8.0	2.7		•		•			
	LNHU 130608ER-MM4	13.02	6.8	11.85	8.0	2.7	•		•	•		•	
	LNHU 130608ER-MR2	13.02	6.8	11.85	8.0	2.7	•	•	•	•	•	•	
	LNHU 130612ER-MM4	13.02	6.8	11.74	1.2	2.3	•		•	•		•	
	LNHU 130612ER-MR2	13.02	6.8	11.73	1.2	1.3	•	•	•	•	•	•	
	LNHU 130616ER-MR2	13.02	6.8	11.6	1.6	1.9	•	•	•	•		•	
	LNHU 130620ER-MR2	13.02	6.8	11.52	2	1.5		•	•	•	•		
	LNHU 130624ER-MR2	13.02	6.8	11.4	2.4	1.0		•	•	•	•		
	LNHU 130631ER-MR2	13.02	6.8	11.23	3.1	0.4		•	•	•	•		

●: На складе▲: На складе, но скоро выйдет замена.

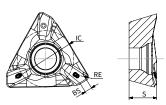


●: На складе ▲: На складе, но скоро выйдет замена.

Фрезы со сменными ежущими пластинами

LNHU 1607...

Пластины тангенциального крепления с 4-мя режущими кромками для обработки прямоугольных уступов

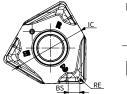

			\/0.00	of no	.б.т		● Xo	роши	e (Сред	ние	# Пл	охие
			YCHOE	вия обра	ЮОТКИ		•	#	#	*	•	•	•
		Основные размеры (мм)								М	ŀ	•	N
Вид пластины	Обозначение пластины	INSL	IC	S	RE	BS	AP251U	AP351U	AP351M	AP403M	AC301K	AP251K	AW100K
	LNHU 160708ER-MR2	16	7.2	15.1	0.8	1.97	•	•			•	•	
73	LNHU 160716ER-MR2	16	7.2	14.94	1.6	1.5	•				•		

●: На складе

▲: На складе, но скоро выйдет замена.

TDMT 1505..

Односторонние пластины с задним углом с 3-мя режущими кромками для обработки прямоугольных уступов

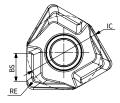

		11.4 5.6 0.8 1.49 11.4 5.6 1.2 1.0 11.4 5.6 1.6 0.93 11.4 5.6 2.0 0.71				● Xo	роши	e (Средн	ние	# Пл	охие
			условия с	ораоотки		•	+	•	*	•	•	•
		Oc	новные ра	азмеры (м	им)		Р		М		Κ	N
Вид пластины	Обозначение пластины	IC	S	RE	BS	AP251U	AP351U	AP351M	AP403M	AC301K	AP251K	AW100K
	TDMT 150508R-MM4	11.4	5.6	0.8	1.49	•		•	•	•	•	
	TDMT 150512R-MM4	11.4	5.6	1.2	1.0	•		•	•	•	•	
	TDMT 150516R-MM4	11.4	5.6	1.6	0.93	•		•	•	•	•	
Consider	TDMT 150520R-MM4	11.4	5.6	2.0	0.71	•			•		•	
3	TDMT 150524R-MM4	11.4	5.6	2.4	0.59	•			•		•	
_	TDMT 150531R-MM4	11.4	5.56	3.1	0.4	•			•		•	
	TDMT 150540R-MM4	11.4	5.56	4.0	0.4	•			•		•	
	TDMT 150508R-MM3	11.4	5.56	0.8	1.49	•			•		•	
	TDHT 150508R-MM4	11.4	5.6	0.8	1.5	•					•	

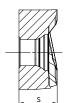
•: На складе 🛕: На складе, но скоро выйдет замена.

Фрезы со сменными режущими пластинами

WNGU 0806..

Двусторонние пластины с 6-ю режущими кромками для обработки прямоугольных уступов

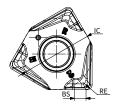


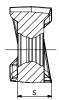


		.,				•	Хоро	ошие	+	Сред	ние	#	Плохі	ие
		yo	словия (оораоот	КИ	•	#	#	*	*	•	•	•	•
		Осно	овные р	азмеры	(мм)		Р		ľ	VI	ŀ	K	N	Н
Вид пластины	Обозначение пластины	IC	S	RE	BS	AP251U	AP351U	AP351M	AP401U	AP403M	AC301K	AP251K	AW100K	AP151H
	WNHU 080608R-FM2	12.5	6.45	0.8	2.0								•	
	WNGU 080604R-MM3	12.5	6.44	0.4	2.2		•	•	•					
	WNGU 080608R-MM3	12.5	6.45	0.8	2.0	•	•	•	•	•		•		
<u> </u>	WNGU 080604R-MM4	12.5	6.44	0.4	2.2	•	•	•	•			•		
6	WNGU 080608R-MM4	12.5	6.44	0.8	2.0	•	•	•	•		•	•		•
	WNGU 080612R-MM4	12.5	6.44	1.2	1.6	•	•	•	•					
	WNGU 080616R-MM4	12.5	6.44	1.6	1.2	•	•	•	•					
	WNGU 080608R-MR2	12.5	6.45	0.8	2.0	•	•	•		•	•	•		
	WNGU 080612R-MR2	12.5	6.44	1.2	1.6	•		•				•		
	WNGU 080616R-MR2	12.5	6.45	1.6	1.2	•		•				•		

●: На складе

▲: На складе, но скоро выйдет замена.

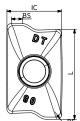

		4 		Условия с	бработки		● Xo	роши	• 🗰	Среді	ние	# Пло	охие
				условия с	ораоотки		•	•	#	+	*	•	•
			Oc	новные ра	азмеры (м	им)		F	,		М	K	N
Ви	ид пластины	Обозначение пластины	IC	S	RE	BS	AP301U	AP251U	AP351U	AP351M	AP403M	AC301K	AW100K
		WNHX 0806ZZR-W	12.5	6.47	1.1	4.71	•					•	
	S												


●: На складе

▲: На складе, но скоро выйдет замена.

WNMU 0806..

Двусторонние пластины с 6-ю режущими кромками для обработки прямоугольных уступов

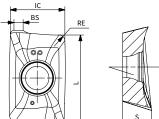

			V070047	S S S S S T I I I		● Xopo	шие	• Средні	1е #1	1лохие
			Условия с	ораоотки	l	•	+	#	•	•
		Oc	новные р	азмеры (м	им)	ı	•	М	ŀ	ζ
Вид пластины	Обозначение пластины	IC	S	RE	BS	AP251U	AP351M	AP403M	AC301K	AP251K
	WNMU 080608R-MR2	12.5	6.6	0.8	2.3	•	•	•	A	•
	WNMU 080608R-MM4	12.5	6.58	0.8	2.3	•	•	•	•	•
	WNMU 080608R-MM3	12.5	6.58	0.8	2.3	•	•	•	A	•
C.	WNMU 080612R-MR2	12.5	6.47	1.2	1.19	•	•		•	•
	WNMU 080612R-MM4	12.5	6.47	1.2	1.18	•	•	•		•
	WNMU 080616R-MR2	12.5	6.5	1.6	0.81	•		•		
	WNMU 080616R-MM4	12.5	6.5	1.6	0.8	•		•		

^{●:} На складе ▲: На складе, но скоро выйдет замена.

Фр<mark>езы со сменн</mark>ыми эжу<u>щими пласти</u>нами

APKT 1705..-DT..

Односторонние пластины с задним углом с 2-мя режущими кромками для обработки прямоугольных уступов

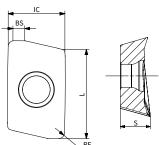

RE	<u> </u>		Varian	ua 050	-6		•x	орош	ие	(†) Ср	едни	е	В Пло	хие
			ACHOR	ия обра	иоотки		•	+	+	*	•	•	•	*
		0	СНОВНЫ	е разм	еры (мі	м)		Р		М	ı	<	N	s
Вид пластины	Обозначение пластины	L	IC	S	RE	BS	AP251U	AP351U	AP351M	AP403M	AC301K	AP251K	AW100K	AP403S
	APKT 1705PER-DT	17.4	10.76	5.63	0.8	2.16	•	•		•		•	•	
4	APKT 170516R-DT	17.4	10.74	5.63	1.6	1.72	•					•		
	APKT 170524R-DT	17.4	10.76	5.63	2.4	0.95	•		•	•		•		
	APKT 170530R-DT	17.4	10.76	5.63	3.0	1.48	•		•	•		•		
	APKT 170540R-DT	17.4	10.76	5.63	4.0	-	•		•	•				

●: На складе

▲: На складе, но скоро выйдет замена.

APKT 1003.IT

Односторонние пластины с задним углом с 2-мя режущими кромками для обработки прямоугольных уступов

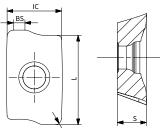

<u> </u>	= 3 		Vопор	ия обра	эботии		• X	орош	ие	(†) Ср	едни	e ‡	Пло	хие
			ACHOR	ия оора	аоотки		•	#	#	*	•	•	•	*
		Основные размеры (мм)								М	-	•	N	S
Вид пластины	Обозначение пластины	L	IC	S	RE	BS	AP251U	AP351U	AP351M	AP403M	AC301K	AP251K	AW100K	AP403S
4	APKT 1003PDER-IT	10.79	6.66	3.77	0.8	1.06	•	•		•			•	
437														

●: На складе ▲: На складе, но скоро выйдет замена.

Фрезы со сменными ежущими пластинами

AOMT 1204..-MM4..

Односторонние пластины с задним углом с 2-мя режущими кромками для обработки прямоугольных уступов

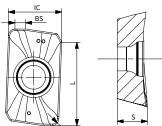


RE	S P		Vопор	ua ofina	ботии		● Xo	рошие	⊕ Cp	едние	# □.	лохие
			ACHOR	ия обра	ЮОТКИ		•	*	+	#	•	#
		C	Основнь	не разм	еры (мм	1)		Р		М	K	S
Вид пластины	Обозначение пластины	L	IC	S	RE	BS	AP251U	AP351U	AP351M	AP403M	AP251K	AP403S
	AOMT 120408ER-MM4	12.8	8.15	5.07	0.8	1.56	•		•	•	•	•
	AOMT 120412ER-MM4	12.8	8.15	5.07	1.2	1.18			•	•		$\mid ullet \mid$
	AOMT 120416ER-MM4	12.8	8.15	5.07	1.6	1.2			•	•		•
31	AOMT 120420ER-MM4	12.8	8.15	5.07	2.0	1.0	•		•	•		•
	AOMT 120424ER-MM4	12.8	8.15	5.07	2.4	0.9	•		•	•		•
	AOMT 120431ER-MM4	12.8	8.15	5.07	3.1	0.6			•	•		•
	AOMT 120440ER-MM4	12.8	8.15	5.07	4.0	0.8			•	•		•

●: На складе ▲: На складе, но скоро выйдет замена.

ADMT 11T3..-MM4..

Односторонние пластины с задним углом с 2-мя режущими кромками для обработки прямоугольных уступов

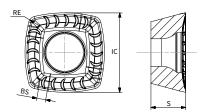

RE	S		\/o=o=	a oбъ	507111		● Xop	рошие	() Cp	едние	# □	лохие
			ACTION	ия обра	ЮОТКИ		•	#	#	#	•	#
		(Основнь	іе разм	еры (ми	1)		Р		М	K	s
Вид пластины	Обозначение пластины	L	IC	S	RE	BS	AP251U	AP351U	AP351M	AP403M	AP251K	AP403S
	ADMT 11T304R-MM4	11	6.92	3.59	0.4	1.1	•		•	•	•	•
	ADMT 11T308R-MM4	11	6.92	3.59	0.8	1.41	•	•	•	•	•	•
	ADMT 11T308R-MM3	11	6.92	3.59	0.8	1.3	•		•	•	•	
5	ADMT 11T312R-MM4	11	6.92	3.59	1.2	0.8	•		•	•	•	•
	ADMT 11T316R-MM4	11	6.92	3.59	1.6	0.4	•		•	•	•	
	ADMT 11T320R-MM4	11	6.92	3.59	2.0	0.23	•	•	•	•	•	•
	ADMT 11T324R-MM4	11	6.92	3.59	2.4	0.21	•		•	•	•	•
	ADMT 11T331R-MM4	11	6.92	3.59	3.1	0.63	•		•	•	•	

^{●:} На складе ▲: На складе, но скоро выйдет замена.

Фрезы со сменными эжущими пластинами

APMT..

Односторонние пластины с задним углом с 2-мя режущими кромками для обработки прямоугольных уступов

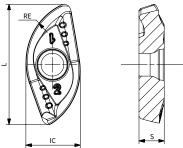

RE	- S ►	,	Услові	40 of n	оботи		•×	ороши	1e (Среді	ние	# Пло	хие
			CITOBI	ия оор	аоотки	1	•	#	#	#	•	•	•
		Ос	новны	е разм	іеры (і	им)		Р		М	ŀ	<	Н
Вид пластины	Обозначение пластины	L	IC	S	RE	BS	AP251U	AP351U	AP351M	AP403M	AC301K	AP251K	АР151Н
400	APMT 1135PDER	9.7	6.27	3.5	0.8	1.25	•	•	•			•	•
	APMT 113508PDER	9.7	6.17	3.5	0.8	0.85	•	•				•	
	APMT 1604PDER	12.7	9.37	5.17	0.8	1.54	•		•			•	•

●: На складе

▲: На складе, но скоро выйдет замена.

XD..09/12

Односторонние пластины с задним углом с 4-мя режущими кромками для обработки на высоких подачах

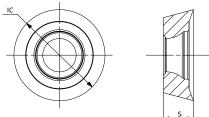

		\/		52252		● Xo	рошие	(†) Ср	едние	# Пло	эхие
) yo	:ловия с	бработ	ки	•	#	#	•	•	*
		Осно	вные р	азмеры	(мм)		Р		ŀ	(S
Вид пластины	Обозначение пластины	IC	S	RE	BS	AP251U	AP351U	AC301P	AC301K	AP251K	AP403S
	XDLT 090408ER-MM3	9.525	4.76	0.8	1.3	•	A	A	A		•
	XDLT 120508ER-MM3	12.7	5.56	0.8	2.2	•	A	•	•	•	•
	XDLT 120512ER-MM3	12.7	5.56	1.2	2.2	•	A	A	•	•	
	XDMW 090408ER-HR2	9.525	4.76	0.8	1.3				A		
	XDMW 120508ER-HR2	12.7	5.56	0.8	2.2	•			•		

^{●:} На складе ▲: На складе, но скоро выйдет замена.

Фрезы со сменными режущими пластинами

RPM ...MM4

Односторонние пластины с задним углом с 2-мя режущими кромками для фрез со сферическим концом

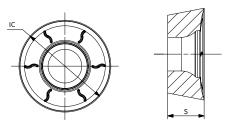

IC	S	Условия обработки					рошие	н Ср	едние	#1117	охие
		Условия обрасотки			•	#	#	•	•	*	
		Осно	овные р	азмеры	(MM)	ı	•	M	ŀ	(s
Вид пластины	Обозначение пластины	L	IC	S	RE	AP251U	AP351M	AP403M	AC301K	AP251K	AP403S
ROP	RPM 080ER-MM4	14.76	6.89	3.21	8.0	•	•	•			•
	RPM 100ER-MM4	18.85	8.62	3.89	10	•	•				•

●: На складе

▲: На складе, но скоро выйдет замена.

RD/RP

Позитивные пластины круглой формы для профильного фрезерования и обработки плоскостей



I	S			•	Хороц	ше 4	€ Среді	ние	ж КопП	ие
		Условия	обработки	•	#	+	*	•	•	•
		Основные	размеры (мм)		Р		М	J	(н
Вид пластины	Обозначение пластины	IC	S	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	АР151Н
	RDHT 0702MOE-MM3	7	2.38	•						
	RDHT 1003MOE-MM3	10	3.18	•						
	RDHT 12T3MOE-MM3	12	3.97	•	•	•		•	•	
	RDHT 1606MOE-MM3	16	6.35	•	•	•		•	•	
	RDHT 1604MOE-MM3	16	4.76	•	•				•	
	RDHW 0702MOS-HR2	7	2.38	•	•	•		•	•	
	RDHW 1003MOS-HR2	10	3.18	•	•	•		•	•	
	RDHW 12T3MOS-HR2	12	3.97	•	•	•		•	•	
	RDHW 1606MOS-HR2	16	6.35	•					•	
	RDMT 0702MOE-MM3	7	2.38					•		
	RDMT 1003MOE-MM3	10	3.18	•	•	•		•		
	RDMT 12T3MOE-MM3	12	3.97	•		•		•		
	RDMT 1606MOE-MM3	16	6.35	•		•		•		
	RDMT 1604MOE-MM3	16	4.76			A		A		
	RDMW 1204MOE-HR2	12	4.76	•	•					
	RDMW 1606MOE-HR2	16	6.35					A		
	RPMW 1003MOE-HR2	10	3.18	•	•					•
	RPMW 10T3MOE-HR2	10	3.97	•	A					•
	RPMT 1204MOE	12	4.76	•	•					•

•: На складе •: На складе, но скоро выйдет замена.

Фрезы со сменными жущими пластинами

RO..T Позитивные пластины круглой формы для профильного фрезерования и обработки плоскостей

I		\\\		• Xc	роши	e (Среді	ние	# Пл	охие
		Условия обработки		•	+	+	#	•	•	*
		Основные р	азмеры (мм)		P N		M K		K	s
Вид пластины	Обозначение пластины	IC	S	AP251U	AP351U	AC301P	AP403M	AC301K	AP251K	AP403S
	ROHT 0803MOE-MM3	8	3.18				•			•
	ROHT 10T3M8E-MM3	10	3.97				•			•
	ROHT 1204M4E-MM3	12	4.76				•			•
	ROHT 1204M6E-MM3	12	4.76				•			•
	ROHT 1605M8E-MM3	16	5.56				•			•
	ROHT 2006M8E-MM3	20	6.35				•			•
	ROMT 10T3M4E-MR6	10	3.97				•			•
	ROMT 1204M6E-MR6	12	4.76				•			•
	ROMT 1605M6E-MR6	16	5.56			•			•	
	ROMT 2006M8E-MR6	20	6.35				•			•

^{●:} На складе ▲: На складе, но скоро выйдет замена.

Рекомендуемые значения скоростей резания для фрез со сменными режущими пластинами

	Мат	ериалы обрабатываемых	деталей														
						А	P251	U	Α	C301	Р	Α	P351	U	Α	P351	M
							PVD			CVD			PVD			PVD	
						-	15-P3		F	25-4	0		30-P		_	20-P	
				0 00	Z	IVI	15-M	35		_		_	25-M 25-S3		M	20-M	40
				H (1)	۱ğ.					_			_		S	20-S	10
ISO	Описани	е обрабатываемых мате	риалов	JOCT JIJK	ел прочности (Н/мм²)		_			_			_		_		
				Твёрдость по Бринеллю(НВ) редел прочност (Н/мм²)			_			_						_	
				급	Предел і (Н/												
					_												
						1/10	1/5	1/1	1/10	1/5	1/1	1/10	1/5	1/1	1/10	1/5	1/1
		0 < 0.050/	0	405	400	200	000	040	200	200	000	000	040	000			
		C ≤ 0.25% 0.25 < C ≤ 0.55%	Отожжённые Отожжённые	125 190	428 639	320 290	280	240	380 350	300 250	260 220	280 250	240	200 170			
		0.25 < C ≤ 0.55%	Термообработанные	210	708	260	210	170	310	220	190	230	180	140			
	Низкоуглеродистые стали	C > 0.55%	Отожжённые	190	639	290	240	200	350	250	220	250	210	170			
	Стали	C > 0.55%	Термообработанные	300	1013	210	170	130	250	170	150	160	130	100			
		Хорошо обрабатываемые стали	Отожжённые	220	745	250	200	160	300	210	180	220	170	130			
		(короткая стружка)															
Р		Отожжённы		175	591	290	250	200	340	300	250	270	230	180			
	Низколегированные стали	Термообработа		285	960 1282	250	210	160 140	290 250	250	200 160	230	190	140 120			
		Термообработа Термообработа		380 430	1477	230 190	190 150	110	210	210 170	130	170	170 130	90			
	Discourse	Отожжённы		200	675	220	190	160	240	210	180	200	170	140			
	Высоколегированные и инструментальные	Закалённые и отпу		300	1013	170	140	110	190	160	130	150	130	90			
	стали	Закалённые и отпу	щенные	400	1361	150	120	90	160	130	100	130	100	70			
	Hannana and an and an and an an an an an an an an an an an an an	Ферритные и мартенситнь	іе, отожжённые	200	675	190	160	130	200	170	140	160	140	110	180	150	120
	Нержавеющие стали	Мартенситные, термооб	Бработанные	330	1114	160	120	90	170	140	110	140	110	80	150	120	90
		Аустенитны	е	200	675	180	150	120				170	140	110	170	150	120
M	Нержавеющие стали	Аустенитные, закалённые (РН в	нержавеющие стали)	300	1013	160	130	100				150	120	90	150	130	100
		Аустенитно-ферритные		230	778	170	140	110				160	130	100	160	140	110
	Ковкие чугуны	Ферритные		200	400												
		Перлитные С низким пределом г		260 180	700												
ĸ	Серые чугуны	С высоким пределом прочно		245	350												
	Чугуны с шаровидным	Ферритные	·	155	400												
	графитом	Перлитные		265	700												
	Чугун	ны с вермикулярным графитом (С	GI)	230	400												
	Деформируемые	Алюминиевые сплавы, не подв	вергнутые старению	30	-												
	алюминиевые сплавы	Алюминиевые сплавы, подве	ргнутые старению	100	340												
	Литые алюминиевые	≤ 12% Si, не подвергнут		75	260												
N	сплавы	≤ 12% Si, подвергнуты		90	310												
IV	Manusan	> 12% Si, не подвергнут	тые старению	130	450												
	Магниевые сплавы	Нелегированная электроли	тическая брокая	70 100	250 340												
	Моль и оппор	Латунь, бронза, красн	· · · · · · · · · · · · · · · · · · ·	90	310												
	Медь и сплавы на её основе (бронза, латунь)			110	380												
		Высокопрочные спла		300	1010												
			Отожжённые	200	680							90	80	70	100	90	80
		На основе железа (Fe)	Состаренные	280	940							75	60	50	80	70	60
	Жарапрании с аппари	He especially (All)	Отожжённые	250	840							80	55	45	70	60	50
	Жаропрочные сплавы		Состаренные	350	1180							60	50	35	60	50	40
	жаропрочные сплавы	На основе никеля (Ni) и кобальта (Co)			1080							60	55	40	65	55	45
S	жаропрочные сплавы	(Co)	Литые	320													90
S		(Со) Чистый тита	Литые н	200	680							110	90	80	120	100	
S	Титановые сплавы	(Co) Чистый тита α , β сплавы, соста	Литые н	200 375	1260							50	40	30	55	45	35
	Титановые сплавы	(Со) Чистый тита	Литые н	200 375 410	1260 1400							50 50	40 40	30 30	55 55	45 45	35 35
	Титановые сплавы	(Co) Чистый тита α , β сплавы, соста	Литые н	200 375 410 300	1260 1400 1010							50 50 65	40 40 60	30 30 50	55 55 70	45 45 65	35 35 55
	Титановые сплавы	(Со) Чистый тита α , β сплавы, соста β сплавы	Литые н ренные	200 375 410 300 300	1260 1400 1010 1010							50 50	40 40	30 30	55 55	45 45	35 35
	Титановые сплавы	(Co) Чистый тита α , β сплавы, соста	Литые н ренные щенные	200 375 410 300	1260 1400 1010 1010 RC							50 50 65	40 40 60	30 30 50	55 55 70	45 45 65	35 35 55
	Титановые сплавы Вольфрамовые сплавы Молибденовые сплавы	(Со) Чистый тита α , β сплавы, соста β сплавы Закалённые и отпу	Литые н ренные щенные щенные	200 375 410 300 300 50H	1260 1400 1010 1010 RC							50 50 65	40 40 60	30 30 50	55 55 70	45 45 65	35 35 55
	Титановые сплавы Вольфрамовые сплавы Молибденовые сплавы	(Со) Чистый тита α , β сплавы, соста β сплавы Закалённые и отпу Закалённые и отпу	Литые н ренные щенные щенные	200 375 410 300 300 50H 55H	1260 1400 1010 1010 RC RC							50 50 65	40 40 60	30 30 50	55 55 70	45 45 65	35 35 55

^{*} указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ. Средняя толщина стружки hm = fz x sin Kr

	<i> </i>	 AP403N	 Л	,	AP401L			AP4035			марок AC301k			 AP251k	(,	AP151H	1	<i>A</i>	AW100F	 K
	<u> </u>	PVD		<u> </u>	PVD			PVD		<u> </u>	CVD			PVD		<u> </u>	PVD			покры	
	F	P30-P4	5	F	P20-P40)		_			_						_				
	٨	/30-M4	5	١	/120-M4	0	١	/30-M4	5		_			_			_			_	
		_			_			_		ŀ	<10-K3	5	ŀ	<15-K40)	ŀ	<15-K40	0		_	
		30-S4	5		_			S30-S4	5		_			_			_			_	
		_			_			_			_			_			_		١	N05-N1	5
,								_		H	H15-H2	5				H	H15-H2	5			
										жена н				`							,
	1/10	1/5	1/1	1/10	1/5	1/1	1/10	1/5	1/1	1/10	1/5	1/1	1/10	1/5	1/1	1/10	1/5	1/1	1/10	1/5	1/
			Скорос	ть реза	ния (м/	мин)															
	170	140	110	160	140	110															
	140	110	80	140	110	80															
	160	140	110	160	140	110	190	160	140												
	140	120	90	150	130	90	170	140	120												
	150	130	100	150	130	100	160	130	110		212	400						100			
										240	210	180	220	190	160	180	150	120			
										220	190	160	200	170	140	160	130	100			
										280	250	220	260	230	200	210	180	150			
										240	210	180	210	190	160	180	150	120			
										260	230	200	240	210	180	190	160	130			
										190 200	160 170	130 140	170 180	140 150	110 120	150 160	120 130	90			

														2200	2200	2000
														1800	1800	1600
														600	600	500
														500	500	400
														280	280	200
														400	400	300
														300	300	250
														200	200	160
95	85	75		110	100	90										
80	65	55		90	80	70										
85	60	50		80	70	60										
65	55	35		75	65	50										
65	60	45		75	65	55										
120	95	85		120	100	90										
50	40	30		60	50	40										
50	40	30		60	50	40										
70	60	50		70	65	60										
70	60	50		70	65	60										
							70	60	50		65	55	45			
											60	50	40			
											60	50	40			

ACHTECK

www.achtecktool.com/ru

ЭКСПЕРТ В РЕЗАНИИ ТРУДНООБРАБАТЫВАЕМЫХ МАТЕРИАЛОВ

Видео М200 в работе

Цельные твёрдосплавные концевые фрезы

Серия	Вид	Семейство	Кол-во зубьев	Угол винтовой линии	Операции	Допуск на диметр реж. части (мм)	Диаметр (мм)	Применение	Описание
M200-2ES		ECO line	Z=2	35°		+0.00	1-20	Универсальное	Для обработки углеродистых, легированных, нержавеющих сталей с твёрдостью до 45 HRc, а также чугунов
M200-4ES		ECO line	Z=4	35°/38°		+0.00 -0.03	1-20	Универсальное	Для обработки углеродистых, легированных, нержавеющих сталей с твёрдостью до 45 НЯс, а также чугунов. 4 зуба с неравномерным шагом и углом винтовой линии позволяют выполнять черновую и чистовую обработку с высокой производительностью без вибраций.
M200-4CS		ECO line	Z=4	35°/38°		+0.00 -0.03	4-20	Универсальное	Для обработки углеродистых, легированных, нержавеющих сталей твёрдостью до 45 нRс, а также чугунов. 4 зуба с неравномерным шагом и углом винтовой линии позволяют выполнять черновую и чистовую обработку с высокой производительностью без вибраций. Фаска на вершинах зубьев позволяет избегать выкрашивания при высокоскоростной обработке.
M200-4RS		ECO line	Z=4	35°/38°		R±0.02	1-20	Универсальное	Для обработки углеродистых, легированных, нержавеющих сталей, чугунов твёрдостью до 45 НВс. 4 зуба с неравномерным шагом и углом винтовой линии позволяют выполнять черновую и чистовую обработку с высокой производительностью без вибраций. С радиусом при вершине зубьев.
M200-2BS		ECO line	Z=2	30°	V	≤6±0.01 >6±0.02	1-20	Универсальное	Фрезы со сферическим концом для профильной обработки углеродистых, легированных, нержавеющих сталей, чугунов твёрдостью до 45 HRc.
M205-6ES		ECO line	Z=6	45°		+0.00 -0.03	6-20	Универсальное	Фрезы с 6-ю зубьями с для чистовой и высокоскоростной обработки стенок и уступов при повышенной минутной подаче. Рекомендуются для материалов групп ISO P, K и M.
M245-2ES		ECO line	Z=2	45°		+0.00	3-20	Для цветных сплавов	Фрезы с 2-мя зубьями для обработки алюминиевых сплавов. Специальная обработка режущих кромок. Уникальная конструкция снижает склонность к вибрациям, позволяя достигать хорошего качества обработанной поверхности.
M245-3ES		ECO line	Z=3	37°/39° /41°		+0.00	3-20	Для цветных сплавов	Фрезы с 3-мя зубьями для обработки алюминиевых сплавов. Неравномерный шаг и угол винтовой линии. Специальная обработка режущих кромок. Уникальная конструкция снижает склонность к вибрациям, позволяя достигать хорошего качества обработанной поверхности.
M245-3EL		ECO line	Z=3	45°		+0.00 -0.02	4-20	Для цветных сплавов	Фрезы с 3-мя зубьями для обработки алюминиевых сплавов. Удлинённое исполнение. Неравномерный шаг и угол винтовой линии. Специальная обработка режущих кромок. Уникальная конструкция снижает склонность к вибрациям, позволяя достигать хорошего качества обработанной поверхности.

Фрезы других конструкций будут выходить в течение года, а именно: фрезы для обработки закалённых сталей, для обработки жаропрочных сплавов и нержавеющих сталей, для обработки на высоких подачах, высокопроизводительные многофункциональные фрезы М210, фрезы для черновой обработки М216, полностью заменяя семейство фрез М100 прошлого поколения.
Возможно изготовления фрез специальных геометрий или нестандартного размера по запросу.

Информационные указатели

Информационные указатели	Описание
	Обработка пазов и прямоугольных уступов
	Черновая обработка уступов
	Чистовая обработка уступов
% →	Обработка на высоких подачах
	Трохоидальное фрезерование
V	Профильное фрезерование
V	Обработка фасок
AlTiN	Покрытие AlTiN

Информационные указатели	Описание
AlCrN	Покрытие AlCrN
UN	Без покрытия
30°	Угол винтовой линии 30°
35°	Угол винтовой линии 35°
35°/38°	Углы винтовой линии 35°/38°
40°	Угол винтовой линии 40°
45°	Угол винтовой линии 45°
37939944	Углы винтовой линии 37°/39°/41°
35°/38°	Углы винтово линии 35°/38 Угол винтово линии 40° Угол винтово линии 45° Углы винтово линии

Информационные указатели	Описание
HA DIN6535	Цилиндрический хвостовик
HB DIN6535	Хвостовик Weldon
90°	Наостро
CR	С радиусом при вершине зуба
BR	Со сферическим концом
45°	С фаской при вершине зуба
D	Коническая форма для обработки фасок
Р	Со стружкоделительными канавками

Система обозначение цельных твёрдосплавных концевых фрез

1-Тип инструмента М Фреза

2-Поколение

2,3,4,5,6.....

3-Применение

00-09 Универсальные, материалы твёрдостью до 45 HRc 10-19 Универсальные, материалы твёрдостью до 55 HRc 20-29 Высокопроизводительные фрезы

30-39 Для обработки стали (ISO P)

40-49 Для обработки цветных сплавов (ISO N)

50-59 Для обработки нержавеющих сталей (ISO M)

60-69 Для обработки жаропрочных сплавов (ISO S)

70-79 Для обработки закалённых сталей (ISO H) 80-99 Др.

5-Исполнение режущей части

Е Наостро

В Со сферическим концом

R С радиусом при вершине зуба

С С фаской при вершине зуба

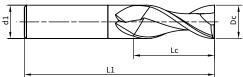
Р Со стружкоделительными канавками

W Специальной формы

Т С режущей частью конической формы

Н Форма для работы на высоких подачах

6-И	сполнение
s	Стандартное
L	Удлинённое
Х	Длинное
Α	Экстра длинное
SP	С длинной режущей кромкой
LP	Удлинённое с длинной режущей кромкой
SN	С короткой режущей кромкой

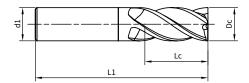

7-Диаметр фрезь 060=6.0 мм 200=20.0 мм 8-Размер фаски или радиуса при вершине зуба 002=0.2 мм

N С прямой шейкой
 С С конической шейкой
 Р Нестандартный хвостовик
 W Хвостовик Weldon
 Без обозначения: исполнение
 без шейки

Цельные твёрдостлавные

Цельные твёрдосплавные фрезы серии М200

Экономичная серия Фрезы с 2-мя зубьями


Цельные твёрдосплавные концевые фрезы Твёрдость обрабатываемого материала до 45 HRc

Р	М	K	N	S	Н	0						
••	•	••										
	● Первый выбор Возможное применение											

Номер по каталогу	Dс мм h9	d1 мм	Lc MM	L1 MM	Z	Наличие
M200-2ES-010	1	4	3	50	2	•
M200-2ES-015	1.5	4	4	50	2	•
M200-2ES-020	2	4	6	50	2	•
M200-2ES-025	2.5	4	8	50	2	•
M200-2ES-030	3	4	8	50	2	•
M200-2ES-040	4	4	12	50	2	•
M200-2ES-050	5	6	13	50	2	•
M200-2ES-060	6	6	16	50	2	•
M200-2ES-070	7	8	20	60	2	•
M200-2ES-080	8	8	20	60	2	•
M200-2ES-090	9	10	23	75	2	•
M200-2ES-100	10	10	25	75	2	•
M200-2ES-120	12	12	30	75	2	•
M200-2ES-140	14	14	34	100	2	•
M200-2ES-160	16	16	36	100	2	•
M200-2ES-180	18	18	40	100	2	•
M200-2ES-200	20	20	45	100	2	•

● На складе ○ Уточняйте наличие

Экономичная серия Фрезы с 4-мя зубьями для черновой и чистовой обработки

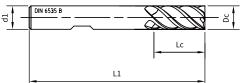
Цельные твёрдосплавные концевые фрезы Твёрдость обрабатываемого материала до 45 HRc

Р	M	K	N	S	Н	0
••	•	••				
		р ●Воз	иожное пр	именение		

Номер по каталогу	Dc мм h9	d1 мм	Lc MM	L1 мм	Z	Наличие
M200-4ES-010	1	4	3	50	4	•
M200-4ES-015	1.5	4	4	50	4	•
M200-4ES-020	2	4	6	50	4	•
M200-4ES-025	2.5	4	8	50	4	•
M200-4ES-030	3	4	8	50	4	•
M200-4ES-030P	3	6	8	50	4	•
M200-4ES-035	3.5	4	11	50	4	•
M200-4ES-040	4	4	12	50	4	•
M200-4ES-040P	4	6	12	50	4	•
M200-4ES-045	4.5	6	12	50	4	•
M200-4ES-050	5	6	13	50	4	•
M200-4ES-055	5.5	6	16	50	4	•
M200-4ES-060	6	6	16	50	4	•
M200-4ES-065	6.5	8	16	60	4	•
M200-4ES-070	7	8	20	60	4	•
M200-4ES-075	7.5	8	20	60	4	•
M200-4ES-080	8	8	20	60	4	•
M200-4ES-085	8.5	10	23	75	4	•
M200-4ES-090	9	10	23	75	4	•
M200-4ES-095	9.5	10	25	75	4	•
M200-4ES-100	10	10	25	75	4	•
M200-4ES-110	11	12	28	75	4	•
M200-4ES-120	12	12	30	75	4	•
M200-4ES-140	14	14	34	100	4	•
M200-4ES-160	16	16	36	100	4	•
M200-4ES-180	18	18	40	100	4	•
M200-4ES-200	20	20	45	100	4	•

Номер по каталогу	Dс мм h9	d1 мм	Lc MM	L1 мм	Z	Наличие
M200-4ESP-010	1	4	4	50	4	•
M200-4ESP-020	2	4	10	50	4	•
M200-4ESP-030	3	4	12	50	4	•
M200-4ESP-040	4	4	16	50	4	•
M200-4ESP-050	5	6	18	50	4	•
M200-4ESP-060	6	6	20	50	4	•
M200-4ESP-080	8	8	24	60	4	•
M200-4ESP-100	10	10	30	75	4	•
M200-4ESP-120	12	12	35	75	4	•
M200-4ESP-140	14	14	40	100	4	•
M200-4ESP-160	16	16	45	100	4	•
M200-4ESP-180	18	18	45	100	4	•

Номер по каталогу	Dс мм h9	d1 мм	Lc MM	L1 MM	Z	Наличие
M200-4EL-030	3	4	15	60	4	•
M200-4EL-030P	3	6	15	60	4	•
M200-4EL-040	4	4	20	60	4	•
M200-4EL-050	5	6	25	75	4	•
M200-4EL-060	6	6	25	75	4	•
M200-4EL-080	8	8	30	75	4	•
M200-4EL-100	10	10	40	100	4	•
M200-4EL-120	12	12	45	100	4	•
M200-4EL-140	14	14	60	150	4	•
M200-4EL-160	16	16	70	150	4	•
M200-4EL-180	18	18	70	150	4	•
M200-4EL-200	20	20	70	150	4	•


Номер по каталогу	Dc мм h9	d1 мм	Lc MM	L1 MM	Z	Наличие
M200-4ELP-050	5	6	30	75	4	•
M200-4ELP-060	6	6	35	75	4	•
M200-4ELP-100	10	10	50	100	4	•
M200-4ELP-120	12	12	50	100	4	•
M200-4ELP-200	20	20	80	150	4	•

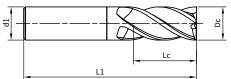
Номер по каталогу	Dс мм h9	d1 мм	Lc мм	L1 мм	Z	Наличие
M200-4EX-040	4	4	30	75	4	•
M200-4EX-040P	4	6	20	75	4	•
M200-4EX-060	6	6	35	100	4	•
M200-4EX-080	8	8	35	100	4	•

● На складе ○ Уточняйте наличие

Экономичная серия

Фрезы с 4-мя зубьями для черновой и чистовой обработки

Цельные твёрдосплавные концевые фрезы Твёрдость обрабатываемого материала до 45 HRc


	Р	М	K	N	S	Н	0		
	•	•	••						
● Первый выбор Возможное пг									

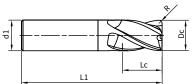
Номер по каталогу	Dс мм h9	d1 мм	Lc мм	L1 MM	Z	Наличие
M200-4ES-060W	6	6	16	50	4	•
M200-4ES-080W	8	8	20	60	4	•
M200-4ES-100W	10	10	25	75	4	•
M200-4ES-120W	12	12	30	75	4	•
M200-4ES-140W	14	14	34	100	4	•
M200-4ES-160W	16	16	36	100	4	•
M200-4ES-180W	18	18	40	100	4	•
M200-4ES-200W	20	20	45	100	4	•

● На складе ○ Уточняйте наличие

Экономичная серия

Фрезы с 4-мя зубьями с упрочняющей фаской для черновой и чистовой обработки

Цельные твёрдосплавные концевые фрезы Твёрдость обрабатываемого материала до 45 HRc



Номер по каталогу	Dc мм h9	d1 мм	Chamfer _{MM}	Lc MM	L1 MM	Z	Наличие
M200-4CS-040	4	4	0.1	12	50	4	•
M200-4CS-050	5	6	0.1	13	50	4	•
M200-4CS-060	6	6	0.1	16	50	4	•
M200-4CS-080	8	8	0.1	20	60	4	•
M200-4CS-100	10	10	0.1	25	75	4	•
M200-4CS-120	12	12	0.1	30	75	4	•
M200-4CS-140	14	14	0.15	34	100	4	•
M200-4CS-160	16	16	0.15	36	100	4	•
M200-4CS-180	18	18	0.15	40	100	4	•
M200-4CS-200	20	20	0.15	45	100	4	•

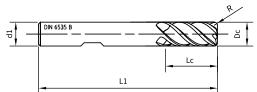
[●] На складе ○ Уточняйте наличие

Экономичная серия

Фрезы с 4-мя зубьями с радиусом при вершине зубьев для черновой и чистовой обработки

Цельные твёрдосплавные концевые фрезы Твёрдость обрабатываемого материала до 45 HRc

● Первый выбор						р • Возмож	ное применение
Номер по каталогу	Dc мм h9	R мм ±0.02	d1 мм	Lc MM	L1 MM	Z	Наличие
M200-4RS-010002	1	0.2	4	3	50	4	•
M200-4RS-015002	1.5	0.2	4	4	50	4	•
M200-4RS-020002	2	0.2	4	6	50	4	•
M200-4RS-030002	3	0.2	4	8	50	4	•
M200-4RS-030003	3	0.3	4	8	50	4	•
M200-4RS-030005	3	0.5	4	8	50	4	•
M200-4RS-040002	4	0.2	4	12	50	4	•
M200-4RS-040003	4	0.3	4	12	50	4	•
M200-4RS-040005	4	0.5	4	12	50	4	•
M200-4RS-040010	4	1	4	12	50	4	•
M200-4RS-050002	5	0.2	6	13	50	4	•
M200-4RS-050005	5	0.5	6	13	50	4	•
M200-4RS-050010	5	1	6	13	50	4	•
M200-4RS-050015	5	1.5	6	13	50	4	•
M200-4RS-060002	6	0.2	6	16	50	4	•
M200-4RS-060005	6	0.5	6	16	50	4	•
M200-4RS-060010	6	1	6	16	50	4	•
M200-4RS-060015	6	1.5	6	16	50	4	•
M200-4RS-080002	8	0.2	8	20	60	4	•
M200-4RS-080003	8	0.3	8	20	60	4	•
M200-4RS-080005	8	0.5	8	20	60	4	•
M200-4RS-080010	8	1	8	20	60	4	•
M200-4RS-080015	8	1.5	8	20	60	4	•
M200-4RS-080020	8	2	8	20	60	4	•
M200-4RS-100002	10	0.2	10	25	75	4	•
M200-4RS-100003	10	0.3	10	25	75	4	•
M200-4RS-100005	10	0.5	10	25	75	4	•
M200-4RS-100010	10	1	10	25	75	4	•
M200-4RS-100015	10	1.5	10	25	75	4	•
M200-4RS-100020	10	2	10	25	75	4	•
M200-4RS-100025	10	2.5	10	25	75	4	•
M200-4RS-100030	10	3	10	25	75	4	•
M200-4RS-120005	12	0.5	12	30	75	4	•
M200-4RS-120010	12	1	12	30	75	4	•
M200-4RS-120015	12	1.5	12	30	75	4	•
M200-4RS-120020	12	2	12	30	75	4	•
M200-4RS-120025	12	2.5	12	30	75	4	•
M200-4RS-120030	12	3	12	30	75	4	•
M200-4RS-140010	14	1	14	34	100	4	•
M200-4RS-140020	14	2	14	34	100	4	•
M200-4RS-160005	16	0.5	16	36	100	4	•
M200-4RS-160010	16	1	16	36	100	4	•
M200-4RS-160020	16	2	16	36	100	4	•
M200-4RS-160030	16	3	16	36	100	4	•


Номер по каталогу	Dc мм h9	R мм ±0.02	d1 мм	Lc MM	L1 MM	Z	Наличие
M200-4RS-160040	16	4	16	36	100	4	•
M200-4RS-180010	18	1	18	40	100	4	•
M200-4RS-180020	18	2	18	40	100	4	•
M200-4RS-180040	18	4	18	40	100	4	•
M200-4RS-200010	20	1	20	45	100	4	•
M200-4RS-200020	20	2	20	45	100	4	•
M200-4RS-200030	20	3	20	45	100	4	•
M200-4RS-200040	20	4	20	45	100	4	•
M200-4RS-200050	20	5	20	45	100	4	•

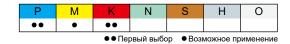
Номер по каталогу	Dc мм h9	R мм ±0.02	d1 мм	Lc MM	L1 MM	Z	Наличие
M200-4RL-030005	3	0.5	4	8	75	4	•
M200-4RL-040002	4	0.2	4	12	75	4	•
M200-4RL-040005	4	0.5	4	12	75	4	•
M200-4RL-040010	4	1	4	12	75	4	•
M200-4RL-060002	6	0.2	6	16	75	4	•
M200-4RL-060005	6	0.5	6	16	75	4	•
M200-4RL-060010	6	1	6	16	75	4	•
M200-4RL-060015	6	1.5	6	16	75	4	•
M200-4RL-080005	8	0.5	8	20	100	4	•
M200-4RL-080010	8	1	8	20	100	4	•
M200-4RL-080015	8	1.5	8	20	100	4	•
M200-4RL-080020	8	2	8	20	100	4	•
M200-4RL-100005	10	0.5	10	25	100	4	•
M200-4RL-100010	10	1	10	25	100	4	•
M200-4RL-100015	10	1.5	10	25	100	4	•
M200-4RL-100020	10	2	10	25	100	4	•
M200-4RL-120005	12	0.5	12	30	100	4	•
M200-4RL-120010	12	1	12	30	100	4	•
M200-4RL-120015	12	1.5	12	30	100	4	•
M200-4RL-120020	12	2	12	30	100	4	•
M200-4RL-120025	12	2.5	12	30	100	4	•
M200-4RL-120030	12	3	12	30	100	4	•
M200-4RL-140020	14	2	14	36	150	4	•
M200-4RL-160005	16	0.5	16	36	150	4	•
M200-4RL-160010	16	1	16	36	150	4	•
M200-4RL-160020	16	2	16	36	150	4	•
M200-4RL-160030	16	3	16	36	150	4	•
M200-4RL-160040	16	4	16	36	150	4	•
M200-4RL-180010	18	1	18	45	150	4	•
M200-4RL-180020	18	2	18	45	150	4	•
M200-4RL-200010	20	1	20	45	150	4	•
M200-4RL-200020	20	2	20	45	150	4	•

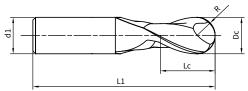
● На складе ○ Уточняйте наличие

Экономичная серия

Фрезы с 4-мя зубьями с радиусом при вершине зубьев для черновой и чистовой обработки

Цельные твёрдосплавные концевые фрезы Твёрдость обрабатываемого материала до 45 HRc





Номер по каталогу	Dc мм h7	d1 мм	R мм ±0.02	Lc mm	L1 MM	Z	Наличие
M200-4RS-060005W	6	6	0.5	16	50	4	•
M200-4RS-060010W	6	6	1	16	50	4	•
M200-4RS-080005W	8	8	0.5	20	60	4	•
M200-4RS-080010W	8	8	1	20	60	4	•
M200-4RS-100005W	10	10	0.5	25	75	4	•
M200-4RS-100010W	10	10	1	25	75	4	•
M200-4RS-100015W	10	10	1.5	25	75	4	•
M200-4RS-100020W	10	10	2	25	75	4	•
M200-4RS-120005W	12	12	0.5	30	75	4	•
M200-4RS-120010W	12	12	1	30	75	4	•
M200-4RS-120015W	12	12	1.5	30	75	4	•
M200-4RS-120020W	12	12	2	30	75	4	•

● На складе ○ Уточняйте наличие

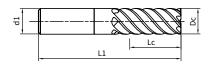
Экономичная серия

Фрезы со сферическим концом с 2-мя зубьями для профильной обработки

Цельные твёрдосплавные концевые фрезы Твёрдость обрабатываемого материала до 45 HRc

Номер по каталогу	Dc мм h7	R мм ±0.02	d1 мм	Lc MM	L1 MM	Z	Наличие
M200-2BS-010	1	R0.5	4	2	50	2	•
M200-2BS-015	1.5	R0.75	4	3	50	2	•
M200-2BS-020	2	R1	4	4	50	2	•
M200-2BS-025	2.5	R1.25	4	5	50	2	•
M200-2BS-030	3	R1.5	4	6	50	2	•
M200-2BS-040	4	R2	4	8	50	2	•
M200-2BS-050	5	R2.5	6	10	50	2	•
M200-2BS-060	6	R3	6	12	50	2	•
M200-2BS-070	7	R3.5	8	14	60	2	•
M200-2BS-080	8	R4	8	14	60	2	•
M200-2BS-100	10	R5	10	18	75	2	•
M200-2BS-110	11	R5.5	12	20	75	2	•
M200-2BS-120	12	R6	12	22	75	2	•
M200-2BS-140	14	R7	14	26	100	2	•
M200-2BS-160	16	R8	16	30	100	2	•
M200-2BS-180	18	R9	18	34	100	2	•
M200-2BS-200	20	R10	20	38	100	2	•

Номер по каталогу	Dc мм h7	R мм ±0.02	d1 мм	Lc MM	L1 MM	Z	Наличие
M200-2BL-010P	1	R0.5	6	2	75	2	•
M200-2BL-015P	1.5	R0.75	6	3	75	2	•
M200-2BL-020	2	R1	4	4	75	2	•
M200-2BL-020P	2	R1	6	4	75	2	•
M200-2BL-030	3	R1.5	4	6	75	2	•
M200-2BL-030P	3	R1.5	6	6	75	2	•
M200-2BL-040	4	R2	4	8	75	2	•
M200-2BL-050	5	R2.5	6	10	75	2	•
M200-2BL-060	6	R3	6	12	75	2	•
M200-2BL-080	8	R4	8	14	75	2	•
M200-2BL-090	9	R4.5	10	16	100	2	•
M200-2BL-100	10	R5	10	18	100	2	•
M200-2BL-110	11	R5.5	12	20	100	2	•
M200-2BL-120	12	R6	12	22	100	2	•
M200-2BL-140	14	R7	14	26	150	2	•
M200-2BL-160	16	R8	16	30	150	2	•
M200-2BL-180	18	R9	18	34	150	2	•
M200-2BL-200	20	R10	20	38	150	2	•


Номер по каталогу	Dс мм h9	d1 мм	R мм ±0.02	Lc MM	L1 MM	Z	Наличие
M200-2BX-040	4	4	R2	8	100	2	•
M200-2BX-060	6	6	R3	12	100	2	•
M200-2BX-070	7	8	R3.5	14	100	2	•
M200-2BX-080	8	8	R4	14	100	2	•
M200-2BX-100	10	10	R5	18	150	2	•
M200-2BX-120	12	12	R6	22	150	2	•

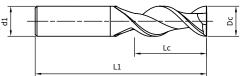
● На складе ○ Уточняйте наличие

Цельные твёрдосплавные фрезы серии М205

Экономичная серия

Фрезы с 6-ю зубьями для чистовой и высокоскоростной обработки

Цельные твёрдосплавные концевые фрезы Твёрдость обрабатываемого материала до 45 HRc


Р	М	K	N	S	Н	0
••	•	••				
		• • Пер	овый выбо	р ● Воз	иожное пр	именение

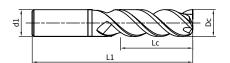
Номер по каталогу	Dс мм h9	d1 мм	Lc MM	L1 MM	Z	Наличие
M205-6ES-060	6	6	16	50	4	•
M205-6ES-080	8	8	20	60	6	•
M205-6ES-100	10	10	25	75	6	•
M205-6ES-120	12	12	30	75	6	•
M205-6ES-140	14	14	34	100	6	•
M205-6ES-160	16	16	36	100	6	•
M205-6ES-180	18	18	40	100	6	•
M205-6ES-200	20	20	45	100	6	•

● На складе ○ Уточняйте наличие

Экономичная серия

Фрезы с 2-мя зубьями для обработки алюминиевых сплавов

Цельные твёрдосплавные концевые фрезы



Номер по каталогу	Dс мм +0.00/-0.02	d1 мм	Lc MM	L1 MM	Z	Наличие
M245-2ES-030	3	4	8	50	2	•
M245-2ES-040	4	4	12	50	2	•
M245-2ES-050	5	6	13	50	2	•
M245-2ES-060	6	6	16	50	2	•
M245-2ES-080	8	8	20	60	2	•
M245-2ES-100	10	10	25	75	2	•
M245-2ES-120	12	12	30	75	2	•
M245-2ES-160	16	16	45	100	2	•
M245-2ES-200	20	20	45	100	2	•

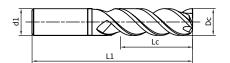
[●] На складе ○ Уточняйте наличие

Экономичная серия

Фрезы с 3-мя зубьями для обработки алюминиевых сплавов

Цельные твёрдосплавные концевые фрезы

Номер по каталогу	Dс мм +0.00/-0.03	d1 мм	Lc MM	L1 MM	Z	Наличие
M245-3ES-015	1.5	4	4	50	3	•
M245-3ES-020	2	4	6	50	3	•
M245-3ES-025	2.5	4	8	50	3	•
M245-3ES-030	3	4	8	50	3	•
M245-3ES-040	4	4	12	50	3	•
M245-3ES-050	5	6	13	50	3	•
M245-3ES-060	6	6	16	50	3	•
M245-3ES-080	8	8	20	60	3	•
M245-3ES-100	10	10	25	75	3	•
M245-3ES-120	12	12	30	75	3	•
M245-3ES-160	16	16	45	100	3	•
M245-3ES-180	18	18	45	100	3	•
M245-3ES-200	20	20	45	100	3	•


[●] На складе ○ Уточняйте наличие

Цельн<mark>ые твёрдоспл</mark>авные

Цельные твёрдосплавные фрезы серии М245

Экономичная серия

Фрезы с 3-мя зубьями для обработки алюминиевых сплавов

Цельные твёрдосплавные концевые фрезы

Номер по каталогу	Dс мм +0.00/-0.03	d1 мм	Lc MM	L1 MM	Z	Наличие
M245-3EL-040	4	4	16	60	3	•
M245-3EL-060	6	6	25	75	3	•
M245-3EL-080	8	8	32	75	3	•
M245-3EL-100	10	10	45	100	3	•
M245-3EL-120	12	12	50	100	3	•
M245-3EL-160	16	16	60	150	3	•
M245-3EL-200	20	20	70	150	3	•

[●] На складе ○ Уточняйте наличие

												в ра	боте		
	ı	Материалы обрабатыва	аемых деталей			M200-2ES	6		Обра	ботка	пазов	1.0 D		1.0 D	
				Твёрдость	_	_	fz (мм/зуб)								
ISO	Описани	е обрабатываемых мате	риалов	по Бринеллю	Предел прочности	Скорость резания				 Диаме ⁻	гр фре:	вы [мм]]		
				(НВ)	(Н/мм2)	Vc (м/мин)	2	4	6	8	10	12	14	16	20
		C≤0.25%	Отожжённые	125	428	45~80	0.01	0.02	0.04	0.06	0.060	0.06	0.07	0.07	0.07
		0.25 < C≤0.55%	Отожжённые	190	639	45~75	0.01	0.02	0.04	0.06	0.060	0.06	0.07	0.07	0.07
	Uluananaaaaaaaa	0.25 < C≤0.55%	Термообработанные	210	708	45~75	0.01	0.02	0.04	0.06	0.060	0.06	0.07	0.07	0.07
	Низкоуглеродистые стали	C>0.55%	Отожжённые	190	639	45~75	0.01	0.02	0.04	0.06	0.060	0.06	0.07	0.07	0.07
		C > 0.55%	Термообработанные	300	1013	40~60	0.01	0.02	0.02 0.04 0.06 0.060 0.06 0.07 0.02 0.04 0.06 0.060 0.06 0.07 0.02 0.04 0.06 0.060 0.06 0.07 0.02 0.04 0.06 0.060 0.06 0.07 0.02 0.03 0.05 0.052 0.05 0.06 0.02 0.04 0.06 0.060 0.06 0.07 0.02 0.04 0.06 0.060 0.06 0.07 0.02 0.04 0.06 0.060 0.06 0.07 0.02 0.03 0.05 0.052 0.05 0.06 0.02 0.03 0.05 0.052 0.05 0.06 0.02 0.03 0.04 0.045 0.05 0.05 0.02 0.04 0.06 0.060 0.06 0.06 0.02 0.04 0.05 0.052 0.05 0.06 0.02 0.04 0.0	0.06	0.06				
		Хорошо обрабатываемые стали (короткая стружка)	Отожжённые	220	745	45~65	0.01	0.02	0.04	0.06	0.060	0.06	0.07	0.07	0.07
Р		Отожжён	ные	175	591	45~75	0.01	0.02	0.04	0.06	0.060	0.06	0.07	0.07	0.07
	Низколегированные	Термообраб		300	1013	40~60	0.01	0.02	_					0.06	0.06
	стали	 Термообраб		380	1282	40~60	0.01	0.02	0.03	0.05		0.05	0.06	0.06	0.06
		Термообраб	отанные	430	1477	30~40	0.01	0.02	0.03	0.04	0.045	0.05	0.05	0.05	0.06
	Высоколегированные	Отожжён	ные	200	675	45~75	0.01	0.02	0.04	0.06	0.060	0.06	0.06	0.06	0.06
	и инструментальные	Закалённые и с	тпущенные	300	1013	40~60	0.01	0.02	0.04	0.05	0.052	0.05	0.06	0.06	0.06
	стали	Закалённые и с	тпущенные	400	1361	40~60	0.01	0.02	0.03	0.04	0.042	0.04	0.05	0.05	0.05
	Нержавеющие стали	Ферритные и мартенситные, отожжённы		200	675	35~40	0.01	0.02	0.04	0.06	0.060	0.06	0.06	0.06	0.06
	Поржавоющие отали	Мартенситные, термообработанные		330	1114	30~35	0.01	0.02	0.04	0.05	0.052	0.05	0.06	0.06	0.06
		Аустени		200	675	30~35	0.01	0.02	0.04	0.04	0.050	0.05	0.06	0.06	0.06
M	Нержавеющие стали	Аустенитные, закалённы стали		300	1013	30	0.01	0.02	0.03	0.03	0.035	0.04	0.04	0.05	0.05
		Аустенитно-ферритн		230	778	30~35	0.01	0.02	0.04	0.04	0.050	0.05	0.06	0.06	0.06
	16	Феррит	ные	200	400	55~60	0.01	0.02	0.04	0.06	0.071	0.07	0.08	0.08	0.09
	Ковкие чугуны	Перлит	ные	260	700	55~60	0.01	0.02	0.04	0.06	0.071	0.07	0.08	0.08	0.09
	Серые чугуны	С низким предел	ом прочности	180	200	55~60	0.01	0.02	0.04	0.06	0.071	0.07	0.08	0.08	0.09
K	Серые чугуны	С высоким пределом про	чности, аустенитный	245	350	55~60	0.01	0.02	0.04	0.06	0.071	0.07	0.08	0.08	0.09
	Чугуны с шаровидным	Феррит	ные	155	400	55~60	0.01	0.02	0.04	0.05	0.060	0.06	0.07	0.08	0.08
	графитом	Перлит		265	700	45~55	0.01	0.01			0.055	0.06		0.07	0.07
	Чугуны с	вермикулярным графито		230	400	55~60	0.01	0.02	0.04	0.05	0.060	0.06	0.07	0.08	0.08
	Деформируемые	Алюминиевые сплавы старен		30	-										
	алюминиевые сплавы	Алюминиевые сплав		100	340										
		старен ≤ 12% Si, не подверг		75	260										
	Литые алюминиевые	≤ 12% Si, не подверг ≤ 12% Si, подвергн		90	310										
N	сплавы	>12% Si, не подверг		130	450										
	Магниевые сплавы	1270 01, 110 11045061	, rais stapetime	70	250										
		Нелегированная электр	олитическая бронза	100	340										
	Медь и сплавы на	Латунь, бронза, к	расная латунь	90	310										
	её основе (бронза, латунь)	Медные сплавы, ко	роткая стружка	110	380										
		Высокопрочные с	плавы Атрсо	300	1010										
		На основе железа (Fe)	Отожжённые	200	680										
	Wansanau	a conobo monesa (1 e)	Отпущенные	280	940										
	Жаропрочные сплавы	На основе никеля (Ni) и	Отожжённые	250	840										
اہا		кобальта (Со)	Отпущенные	350	1180										
S			Литые	320	1080										
		Чистый т		200	680										
	Титановые сплавы	α , β сплавы, со		375 410	1260										
	Вольфрамовые	β спла	DDI		1400										
	сплавы			300	1010										
	Молибденовые сплавы			300	1010										
	CHARGE	Закалённые и с	тпущенные	50HRC	-										
Н	Закалённые стали	Закалённые и с	• •	55HRC	-										
		Закалённые и с		60HRC	-										
	Отбеленные чугуны	Закалённые и с	50HRC	-											

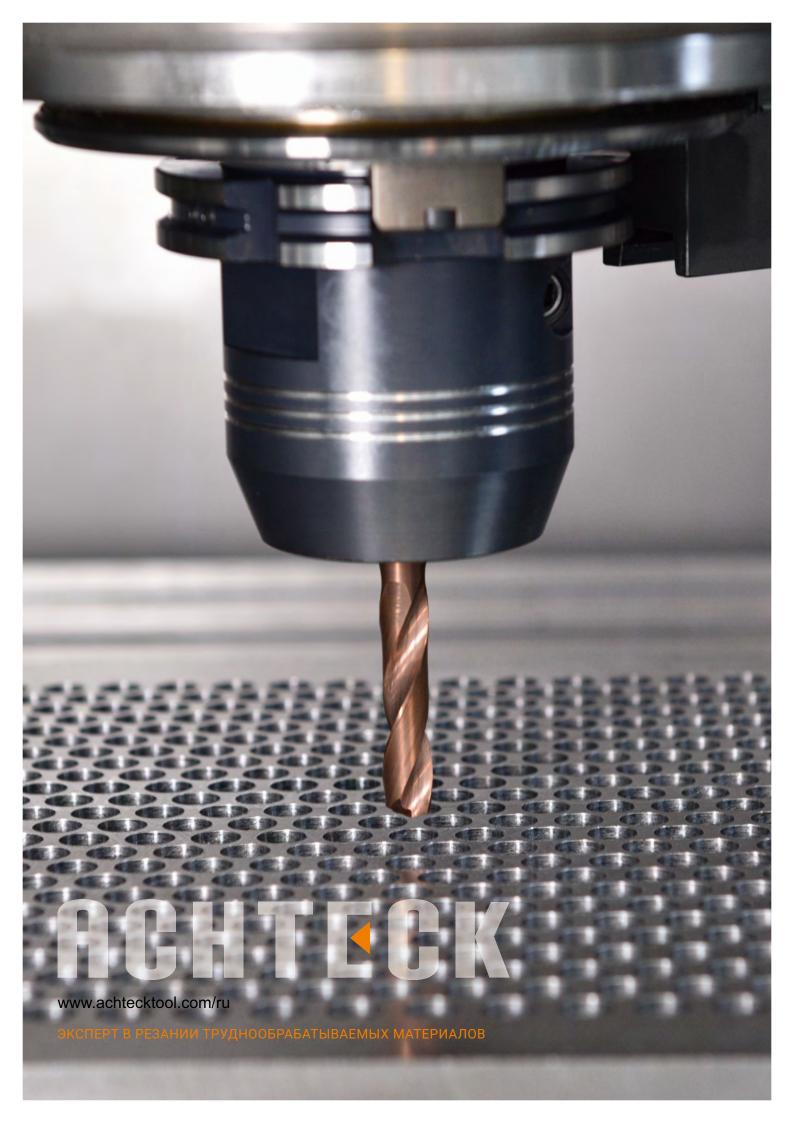
		Материалы обрабатыва	емых деталей			M200-4ES M200-4ED M200-4ED M200-4RI	,M200 (,M200)-4ELP)-4RS,	, .		ая обр		1.0D		- 70.1D
				Твёрдость	Предел	Скорость				fz	(мм/зу	б)			
ISO	Описан	ие обрабатываемых мате	оиалов	по Бринеллю	прочности (Н/мм2)	резания Vc (м/мин)	Диаметр фрезы [мм]								
				(HB)	(1 1/WW/Z)	VC (W/WWH)	2	4	6	8	10	12	14	16	20
		C≤0.25%	Отожжённые	125	428	60~90	0.01	0.02	0.04	0.04	0.05	0.05	0.06	0.07	0.07
		0.25 < C≤0.55%	Отожжённые	190	639	60~85	0.01	0.02	0.04	0.04	0.05	0.05	0.06	0.07	0.07
	Низкоуглеродистые	0.25 < C≤0.55%	Термообработанные	210	708	60~85	0.01	0.02	0.04	0.04	0.05	0.05	0.06	0.07	0.07
	стали	C>0.55%	Отожжённые	190	639	60~85	0.01	0.02	0.04	0.04	0.05	0.05	0.06	0.07	0.07
		C>0.55%	Термообработанные	300	1013	55~65	0.01	0.02	0.03	0.04	0.05	0.05	0.06	0.07	0.07
		Хорошо обрабатываемые стали (короткая стружка)	Отожжённые	220	745	60~85	0.01	0.02	0.04	0.04	0.05	0.05	0.06	0.07	0.07
Р		Отожжён	іные	175	591	60~85	0.01	0.02	0.04	0.04	0.05	0.05	0.06	0.07	0.07
	Низколегированные	Термообраб	отанные	300	1013	45~60	0.01	0.02	0.03	0.04	0.05	0.05	0.06	0.06	0.06
	стали	Термообработанные		380	1282	45~60	0.01	0.02	0.03	0.04	0.05	0.05	0.06	0.06	0.06
		Термообраб	отанные	430	1477	40~45	0.01	0.02	0.03	0.03	0.04	0.05	0.05	0.05	0.06
	Высоколегированные	Отожжён	іные	200	675	60~80	0.01	0.02	0.04	0.04	0.05	0.05	0.06	0.06	0.06
	и инструментальные	Закалённые и с	тпущенные	300	1013	50~60	0.01	0.02	0.04	0.04	0.05	0.05	0.06	0.06	0.06
	стали	Закалённые и с	тпущенные	400	1361	40~45	0.01	0.01	0.03	0.03	0.04	0.04	0.05	0.05	0.05
	Нержавеющие стали	Ферритные и мартенси		200	675	50~70	0.01	0.02	0.04	0.04	0.05	0.05	0.06	0.06	0.06
		Мартенситные, термообработанные		330	1114	35~45	0.01	0.02	0.04	0.04	0.05	0.05	0.06	0.06	0.06
		Аустенитные Аустенитные, закалённые (РН нержавеющие		200	675	35~45	0.01	0.02	0.04	0.04	0.04	0.05	0.06	0.06	0.06
M	Нержавеющие стали	Аустенитные, закаленны стали		300	1013	35	0.01	0.01	0.03	0.03	0.04	0.04	0.04	0.05	0.05
		Аустенитно-ферритные (дуплексные)		230	778	35~45	0.01	0.02	0.04	0.04	0.04	0.05	0.06	0.06	0.06
	Kongro ingnani	вкие чугуны Ферритные		200	400	55~60	0.01	0.02	0.04	0.07	0.07	0.08	0.08	0.08	0.08
	ковкие чугуны	Перлит	ные	260	700	55~60	0.01	0.02	0.04	0.07	0.07	0.08	0.08	0.08	0.08
	Серые чугуны	Серые чугуны		180	200	55~60	0.01	0.02	0.04	0.07	0.07	0.08	0.08	0.08	0.08
K		С высоким пределом про	чности, аустенитный	245	350	55~60	0.01	0.02	0.04	0.07	0.07	0.08	0.08	0.08	0.08
	Чугуны с шаровидным	Феррит	ные	155	400	55~60	0.01	0.02	0.04	0.06	0.06	0.07	0.07	0.08	0.07
	графитом	Перлитные		265	700	45~55	0.01	0.01	0.04	0.05	0.06	0.06	0.07	0.07	0.07
	Чугуны с	с вермикулярным графито		230	400	55~65	0.01	0.02	0.04	0.06	0.06	0.07	0.07	0.08	0.07
	Деформируемые	Алюминиевые сплавы старен		30	-										
	алюминиевые сплавы	Алюминиевые сплав старен		100	340										
	-	≤ 12% Si, не подверг	нутые старению	75	260										
	Литые алюминиевые сплавы	≤ 12% Si, подвергн	утые старению	90	310										
N		>12% Si, не подверг	нутые старению	130	450										
	Магниевые сплавы			70	250										
	Monute	Нелегированная электр		100	340										
	Медь и сплавы на её основе (бронза,	Латунь, бронза, кр	•	90	310										
	латунь)	Медные сплавы, ко		110	380										
		Высокопрочные с		300	1010 680										
		На основе железа (Fe)	Отожжённые Отпущенные	200	940										
	Жаропрочные		Отожжённые	250	840										
	сплавы	На основе никеля (Ni) и	Отпущенные	350	1180										
		кобальта (Со)	Литые	320	1080										
S		Чистый т		200	680										
	Титановые сплавы	α , β сплавы, со		375	1260										
		β спла		410	1400										
	Вольфрамовые сплавы			300	1010										
	Молибденовые сплавы		300	1010											
		Закалённые и с	тпущенные	50HRC	-										
Н	Закалённые стали	Закалённые и с	тпущенные	55HRC	-										
		Закалённые и отпущенные		60HRC	-										
	Отбеленные чугуны Закалённые и отпущенные		тпущенные	50HRC	-										

Материалы обрабатываемых деталей					M200-4ES,M200-4ESP, M200-4EL,M200-4ELP, M200-4EX,M200-4RS, M200-4RL,M200-4CS,M205-6ES							отка _{1.5D}					
			Твёрдость	Предел	Скорость	fz (мм/зуб)											
ISO	Описание обрабатываемых материалов			Бринеллю (НВ)	прочности (Н/мм2)	резания Vc (м/мин)	Диаметр фрезы [мм]										
							2	4	6	8	10	12	14	16	20		
		C≤0.25%	Отожжённые	125	428	80~100	0.01	0.02	0.03	0.04	0.05	0.05	0.06	0.06	0.07		
	Низкоуглеродистые стали	0.25 < C≤0.55%	Отожжённые	190	639	75~90	0.01	0.02	0.03	0.04	0.05	0.05	0.06	0.06	0.07		
		0.25 < C≤0.55%	Термообработанные	210	708	75~90	0.01	0.02	0.03	0.04	0.05	0.05	0.06	0.06	0.07		
		C > 0.55% C > 0.55%	Отожжённые	190 300	639 1013	75~90 60~70	0.01	0.02	0.03	0.04	0.05	0.05	0.06	0.06	0.07		
		Хорошо обрабатываемые	Термообработанные				0.01										
		стали (короткая стружка)	Отожжённые	220	745	75~90	0.01	0.02	0.03	0.04	0.05	0.05	0.06	0.06	0.07		
P		Отожжён	ные	175	591	75~90	0.01	0.02	0.03	0.04	0.05	0.05	0.06	0.06	0.07		
	Низколегированные	Термообработанные		300	1013	60~70	0.01	0.02	0.03	0.04	0.04	0.05	0.06	0.06	0.06		
	стали	Термообработанные		380	1282	60~70	0.01	0.02	0.03	0.04	0.04	0.05	0.06	0.06	0.06		
		Термообработанные		430	1477	55~60	0.01	0.02	0.03	0.03	0.04	0.05	0.05	0.05	0.06		
	Высоколегированные	Отожжён		200	675	75~85	0.01	0.02	0.03	0.04	0.04	0.05	0.06	0.06	0.06		
	и инструментальные стали	Закалённые и отпущенные		300	1013	60~70	0.01	0.02	0.03	0.04	0.04	0.05	0.06	0.06	0.06		
	0.00.00	Закалённые и о	* * * * * * * * * * * * * * * * * * * *	400	1361	55~60	0.01	0.01	0.03	0.03	0.04	0.05	0.05	0.05	0.06		
	Нержавеющие стали	Ферритные и мартенси		200	675	50~70	0.01	0.02	0.03	0.04	0.04	0.05	0.06	0.06	0.06		
		Мартенситные, термообработанные Аустенитные		330 200	1114 675	40~50 40~50	0.01	0.02	0.03	0.03	0.04	0.05	0.05	0.05	0.06		
M	Нержавеющие стали	Аустенитные, закалённы															
IVI		стали	1)	300	1013	40	0.01	0.01	0.03	0.03	0.04	0.04	0.04	0.05	0.05		
		Аустенитно-ферритн	ые (дуплексные)	230	778	40~50	0.01	0.02	0.04	0.04	0.04	0.05	0.06	0.06	0.06		
	Ковкие чугуны	Ферриті	ные	200	400	70~80	0.01	0.02	0.03	0.04	0.05	0.05	0.06	0.06	0.07		
		Перлит		260	700	70~80	0.01	0.02	0.03	0.04	0.05	0.05	0.06	0.06	0.07		
	Серые чугуны	С низким предело		180	200	70~80	0.01	0.02	0.03	0.04	0.05	0.05	0.06	0.06	0.07		
K	Чугуны с	С высоким пределом прочности, аустенитный		245	350	70~80	0.01	0.02	0.03	0.04	0.05	0.05	0.06	0.06	0.07		
	шаровидным	Ферритные Перлитные		155 265	400 700	70~80 65~75	0.01	0.02	0.03	0.04	0.04	0.05	0.05	0.06	0.07		
	графитом	с вермикулярным графитом (CGI)		230	400	70~80	0.01	0.02	0.03	0.04	0.04	0.05	0.05	0.06	0.07		
	чугуны с	Алюминиевые сплавы	· · · ·		400	70-00	0.01	0.02	0.03	0.04	0.04	0.03	0.03	0.00	0.07		
	Деформируемые алюминиевые сплавы	алюминиевые сплавы Алюминиевые спла		100	340												
	оплавы	старен															
	Литые алюминиевые сплавы	≤ 12% Si, не подверг		75	260												
N		≤ 12% Si, подвергнутые старению		90	310												
IN	Магниевые сплавы	>12% Si, не подвергнутые старению		130 70	450 250												
			олитическая бронза	100	340												
	Медь и сплавы на её основе (бронза, латунь)	Латунь, бронза, кр		90	310												
		Медные сплавы, короткая стружка		110	380												
		Высокопрочные с	,	300	1010												
S	Жаропрочные сплавы		Отожжённые	200	680												
		На основе железа (Fe)	Отпущенные	280	940												
			Отожжённые	250	840												
		На основе никеля (Ni) и кобальта (Со)	Отпущенные	350	1180												
		notaribra (oo)	Литые	320	1080												
	Титановые сплавы	Чистый титан		200	680												
		α , β сплавы, состаренные		375	1260												
		β сплавы		410	1400												
	Вольфрамовые сплавы			300	1010												
	Молибденовые сплавы			300	1010												
Н		Закалённые и о	тпущенные	50HRC	-												
	Закалённые стали	Закалённые и отпущенные		55HRC	-												
		Закалённые и отпущенные		60HRC	-												
	Отбеленные чугуны	Закалённые и отпущенные		50HRC	-												

				M200-2BS					Ap_	p Ae Ae					
			Твёрдость	Предел	Скорость	fz (мм/зуб)									
ISO	Описан	по Бринеллю (НВ)	прочности (Н/мм2)	резания Vc (м/мин)	Диаметр фрезы [мм]										
					2	4	6	8	10	12	14	16	20		
		C≤0.25%	Отожжённые	125	428	90 ~100	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.08	0.10
	Низкоуглеродистые стали	0.25 < C≤0.55%	Отожжённые	190	639	90 ~100	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.08	0.10
		0.25 < C≤0.55%	Термообработанные	210	708	90 ~100	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.08	0.10
		C>0.55%	Отожжённые	190	639	90 ~100	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.08	0.10
		C>0.55%	Термообработанные	300	1013	80~90	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.08	0.10
		Хорошо обрабатываемые стали (короткая стружка)	Отожжённые	220	745	90 ~100	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.08	0.10
Р		Отожжён	ные	175	591	90 ~100	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.08	0.10
	Низколегированные	Термообработанные		300	1013	80~90	0.01	0.02	0.04	0.05	0.05	0.06	0.07	0.07	0.09
	стали	Термообработанные		380	1282	80~90	0.01	0.02	0.03	0.04	0.05	0.05	0.06	0.06	0.07
		Термообработанные		430	1477	80~90	0.01	0.02	0.04	0.05	0.05	0.06	0.07	0.07	0.09
	Высоколегированные	Отожжён	ные	200	675	90~100	0.01	0.02	0.04	0.05	0.05	0.06	0.07	0.07	0.09
	и инструментальные стали	Закалённые и с	тпущенные	300	1013	80~90	0.01	0.02	0.04	0.05	0.05	0.06	0.07	0.07	0.09
	стали	Закалённые и с		400	1361	80~90	0.01	0.02	0.03	0.04	0.05	0.05	0.06	0.06	0.07
	Нержавеющие стали	Ферритные и мартенси		200	675	90~100	0.01	0.02	0.04	0.05	0.05	0.06	0.07	0.07	0.09
		Мартенситные, термообработанные		330	1114	80~90	0.01	0.02	0.04	0.05	0.05	0.06	0.07	0.07	0.09
	Нержавеющие стали	Аустени		200	675	90~100	0.01	0.02	0.02	0.03	0.04	0.04	0.05	0.05	0.06
M		Аустенитные, закалённы стали		300	1013	80~90	0.01	0.01	0.02	0.03	0.03	0.04	0.04	0.05	0.05
		Аустенитно-ферритн	ые (дуплексные)	230	778	80~90	0.01	0.02	0.02	0.03	0.04	0.04	0.05	0.05	0.06
	Ковкие чугуны	Феррит	ные	200	400	90 ~100	0.03	0.05	0.06	0.08	0.10	0.12	0.13	0.14	0.16
		Перлиті	ные	260	700	90 ~100	0.03	0.05	0.06	0.08	0.10	0.12	0.13	0.14	0.16
	Серые чугуны	С низким предел	ом прочности	180	200	90 ~100	0.03	0.05	0.06	0.08	0.10	0.12	0.13	0.14	0.16
K		С высоким пределом про	чности, аустенитный	245	350	90 ~100	0.03	0.05	0.06	0.08	0.10	0.12	0.13	0.14	0.16
	Чугуны с шаровидным	Ферритные		155	400	90 ~100	0.02	0.04	0.05	0.06	0.08	0.09	0.11	0.12	0.14
	графитом	Перлитные		265	700	90 ~100	0.02	0.03	0.04	0.05	0.07	0.07	0.09	0.10	0.12
	Чугуны с	ы с вермикулярным графитом (CGI) Алюминиевые сплавы, не подвергнутые		230	400	90 ~100	0.02	0.04	0.05	0.06	0.08	0.09	0.11	0.12	0.14
	Деформируемые	старен		30	-										
	алюминиевые сплавы	Алюминиевые сплавы, подвергнутые старению		100	340										
	Литые алюминиевые сплавы	≤ 12% Si, не подверг	нутые старению	75	260										
		≤ 12% Si, подвергн	утые старению	90	310										
N		>12% Si, не подвергнутые старению		130	450										
	Магниевые сплавы			70	250										
	Медь и сплавы на её основе (бронза, латунь)	Нелегированная электр	•	100	340										
		Латунь, бронза, красная латунь		90	310										
		Медные сплавы, короткая стружка Высокопрочные сплавы Атрсо		300	380 1010										
		рысокопрочные с	плавы Атрсо Отожжённые	200	680										
S	Жаропрочные сплавы	На основе железа (Fe)	Отпущенные	280	940										
			Отожжённые	250	840										
		На основе никеля (Ni) и	Отпущенные	350	1180										
		кобальта (Со)	Литые	320	1080										
	Титановые сплавы	Чистый т		200	680										
		α , β сплавы, состаренные		375	1260										
		β сплавы		410	1400										
	Вольфрамовые сплавы			300	1010										
	Молибденовые сплавы			300	1010										
Н	Закалённые стали	Закалённые и с	тпущенные	50HRC	-										
		Закалённые и отпущенные		55HRC	-										
	0.5	Закалённые и отпущенные		60HRC	-										
	Отбеленные чугуны	Закалённые и отпущенные		50HRC	-										

Рекомендуемые режимы резания для фрез семейства Eco line

	Материалы обрабатываемых деталей					M245-2ES M245-3ES M245-3EL	3		Обраб	отка па		5D		
ISO	Описан	ие обрабатываемых мате	риалов	Твёрдость по Бринеллю	Предел прочности (Н/мм2)	Скорость резания								
		(HB)	(11/1011012)	VC (W//WIVIH)	4	6	8	10	12	14	16	20		
		C≤0.25%	Отожжённые	125	428									
		0.25 < C≤0.55%	Отожжённые	190	639									
	Низкоуглеродистые	0.25 < C≤0.55%	Термообработанные	210	708									
	стали	C>0.55%	Отожжённые	190	639									
		C>0.55%	Термообработанные	300	1013									
		Хорошо обрабатываемые стали (короткая стружка)	Отожжённые	220	745									
Р		Отожжён	ные	175	591									
	Низколегированные	Термообраб	отанные	300	1013									
	стали	Термообраб	отанные	380	1282									
		Термообраб	отанные	430	1477									
	Высоколегированные	Отожжён	ные	200	675									
	и инструментальные	Закалённые и с	тпущенные	300	1013									
	стали	Закалённые и с	тпущенные	400	1361									
		Ферритные и мартенси	тные, отожжённые	200	675									
	Нержавеющие стали	Мартенситные, терм	 иообработанные	330	1114									
		Аустени		200	675									
M	Нержавеющие стали	Аустенитные, закалённь сталь	е (РН нержавеющие	300	1013									
		Аустенитно-ферритн	230	778										
		Ферритные		200	400									
	Ковкие чугуны	Перлит		260	700									
	_	С низким предел		180	200									
K	Серые чугуны	С высоким пределом про	учности, аустенитный	245	350									
	Чугуны с шаровидным	Феррит	ные	155	400									
	графитом	Перлит	ные	265	700									
	Чугуны с	с вермикулярным графито	ом (CGI)	230	400									
	Деформируемые алюминиевые	Алюминиевые сплавь старен		30	-	150~200	0.05	0.07	0.09	0.10	0.12	0.14	0.16	0.18
	сплавы	Алюминиевые сплав старен		100	340	120~150	0.05	0.07	0.09	0.10	0.12	0.14	0.16	0.18
	D	≤ 12% Si, не подверг	нутые старению	75	260	150~200	0.05	0.07	0.09	0.10	0.12	0.14	0.16	0.18
	Литые алюминиевые сплавы	≤ 12% Si, подвергнутые старению		90	310	130~150	0.05	0.07	0.09	0.10	0.12	0.14	0.16	0.18
N		>12% Si, не подверг	нутые старению	130	450	120~130	0.05	0.07	0.09	0.10	0.12	0.14	0.16	0.18
	Магниевые сплавы			70	250	150~200	0.05	0.07	0.09	0.10	0.12	0.14	0.16	0.18
	Медь и сплавы на	Нелегированная электр		100	340	120~150	0.05	0.07	0.09	0.10	0.12	0.14	0.16	0.18
	её основе (бронза,	Латунь, бронза, к		90	310	120~150	0.05	0.07	0.09	0.10	0.12	0.14	0.16	0.18
	латунь)	Медные сплавы, ко		110	380	120~150	0.05	0.07	0.09	0.10	0.12	0.14	0.16	0.18
		Высокопрочные с		300	1010									
		На основе железа (Fe)	Отрушения	200	680 940									
	Жаропрочные		Отпущенные	280										
	сплавы	На основе никеля (Ni) и	Отожжённые	250	840									
		кобальта (Со)	Отпущенные	350	1180									
S		11	Литые	320	1080									
	T	Чистый т		200	680									
	Титановые сплавы	α, β сплавы, со		375	1260									
	Port trace	β спла	ВЫ	410	1400									
	Вольфрамовые сплавы			300	1010									
	Молибденовые сплавы			300	1010									
		Закалённые и с	тпущенные	50HRC	-									
Н	Закалённые стали	Закалённые и с	тпущенные	55HRC	-									
		Закалённые и с	тпущенные	60HRC	-									
	Отбеленные чугуны	Закалённые и с	тпущенные	50HRC	-									


Указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ

Рекомендуемые режимы резания для фрез семейства **Eco line**

											В	раооте		. 752
	Материалы обрабатываемых деталей						M245-2ES M245-3ES Обработка уступов ^{2.5i} M245-3EL			ов ^{2.5Д}	0.15D			
				Твёрдость Предел		Скорость	fz (мм/зуб)							
ISO	ISO Описан	ие обрабатываемых мате	риалов	по Бринеллю	прочности	резания			Ди	аметр с	ррезы [г	им]		
			(HB)	(Н/мм2)	Vc (м/мин)	4	6	8	10	12	14	16	20	
		C≤0.25%	Отожжённые	125	428									
		0.25 < C≤0.55%	Отожжённые	190	639									
	Циокоменованот но	0.25 < C≤0.55%	Термообработанные	210	708									
	Низкоуглеродистые стали	C>0.55%	Отожжённые	190	639									
		C>0.55%	Термообработанные	300	1013									
		Хорошо обрабатываемые стали (короткая стружка)	Отожжённые	220	745									
P		Отожжён	ные	175	591									
	Низколегированные	Термообраб	отанные	300	1013									
	стали	Термообраб		380	1282									
		Термообраб		430	1477									
	Высоколегированные	Отожжён		200	675									
	и инструментальные стали	Закалённые и с	• .	300	1013									
		Закалённые и с		400	1361									
	Нержавеющие стали	Ферритные и мартенси		200	675									
	Мартенситные, термообработанные		330	1114										
M	Нержавеющие стали	Аустенитные Аустенитные, закалённые (РН нерх		300	675 1013									
		Аустенитно-ферритн	,	230	778									
		Аустенитно-ферритные (дуплексные) Ферритные		200	400									
	Ковкие чугуны Перлитные С низким пределом прочности		260	700										
			180	200										
K	Серые чугуны	С высоким пределом про	чности, аустенитный	245	350									
	Чугуны с	Феррит	ные	155	400									
	шаровидным графитом	Перлиті	ные	265	700									
	Чугуны с	вермикулярным графито	рм (CGI)	230	400									
	Деформируемые алюминиевые	Алюминиевые сплавы старен	ию	30	-	150~200	0.04	0.06	0.07	0.09	0.11	0.12	0.14	0.16
	сплавы	Алюминиевые сплав старен	ию	100	340	120~150	0.04	0.06	0.07	0.09	0.11	0.12	0.14	0.16
	Литые алюминиевые	≤ 12% Si, не подверг		75	260	150~200	0.04	0.06	0.07	0.09	0.11	0.12	0.14	0.16
	сплавы	≤ 12% Si, подвергн	· ·	90	310	120~150	0.04	0.06	0.07	0.09	0.11	0.12	0.14	0.16
N	Marinani	>12% Si, не подверг	нутые старению	130	450	120~150	0.04	0.06	0.07	0.09	0.11	0.12	0.14	0.16
	Магниевые сплавы	Нелегированная электр	опитической броиз	70 100	250 340	150~170 120~150	0.04	0.06	0.07	0.09	0.11	0.12	0.14	0.16
	Медь и сплавы на	пелегированная электр Латунь, бронза, к		90	340	120~150	0.04	0.06	0.07	0.09	0.11	0.12	0.14	0.16
	её основе (бронза,	Медные сплавы, ко		110	380	120~150	0.04	0.06	0.07	0.09	0.11	0.12	0.14	0.16
	латунь)	Высокопрочные с	,	300	1010	0 100	2.04	1.00	,	5.50	J,	2		
			Отожжённые	200	680									
		На основе железа (Fe)	Отпущенные	280	940									
	Жаропрочные сплавы		Отожжённые	250	840									
	ынавы	На основе никеля (Ni) и кобальта (Co)	Отпущенные	350	1180									
		ROSaribra (CO)	Литые	320	1080									
S		Чистый т	итан	200	680									
	Титановые сплавы	α , β сплавы, со	старенные	375	1260									
		β спла	вы	410	1400									
	Вольфрамовые сплавы			300	1010									
	Молибденовые сплавы			300	1010									
		Закалённые и с	-	50HRC	-									
Н	Закалённые стали	Закалённые и с	-	55HRC	-									
	0-5	Закалённые и с	-	60HRC	-									
Отбеленные чугуны		Закалённые и с	50HRC	-										

Указаны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости крепления инструмента и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ

основной каталог

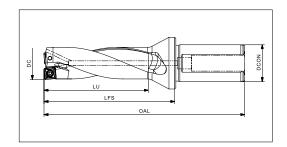
Свёрла со сменными режущими пластинами	326
Система обозначения	329
Ассортимент корпусных свёрл серии НР	330
Режущие пластины для корпусных свёрл	336
Система обозначения режущих пластин для корпусных свёрл	336
Рекомендации по выбору марок сплавов для сверления	338
Ассортимент режущих пластин для сверления	340
Режимы резания для свёрл со сменными режущими пластинами	341
Свёрла системы ВТА для обработки глубоких отверстий	343
Режущие пластины для свёрл системы BTA	345
Режимы резания для свёрл системы ВТА	349
Расточные системы	352
Обзор решений для растачивания отверстий	353
Система ARB для чернового растачивания	354
Система MLR для обработки отверстий большого диаметра	357
Система АFB для чистового растачивания	358
Система MLF для чистового растачивания отверстий большого диаметра	360
Антивибрационная система DFB для чистового растачивания	362
Система SFB для чистового растачивания отверстий небольшого диаметра	363
Система EFB для чистовой обработки наружного диаметра	364
Адаптеры ВТ для расточных систем	365
Усиленные адаптеры ВТ для расточных систем	366
Адаптеры HSK-A для расточных систем	366
Адаптеры ВТ50 для расточных систем мостового типа	367
Адаптеры HSK-A100 для расточных систем мостового типа	367
Удлинители и переходные адаптеры	368
Картриджи ISO	369
Картриджи для чистовой обработки с регулировкой	374
Режущие пластины для растачивания	379
Инструкция по сборке и настройке расточных систем	380
Цельные твёрдосплавные свёрла	381
Система обозначения	382
Обзор решений	382
Сверла серии D106 3xD без каналов для СОЖ	383
Сверла серии D106 5xD без каналов для СОЖ	387
Сверла серии D106 3xD с внутренним подводом СОЖ	391
Сверла серии D106 5xD с внутренним подводом СОЖ	395
Сверла серии D108 8xD с внутренним подводом СОЖ	399
Режимы резания	402
Рекомендуемые значения подач на оборот	403
Значения диаметров отверстия под нарезание резьбы метчиком	404
Значения диаметров отверстия под нарезание резьбы безстружечным метчиком	405

AGHTEGK

www.achtecktool.com/ru

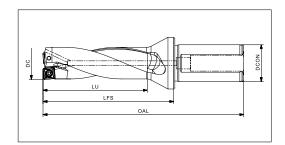
ЭКСПЕРТ В РЕЗАНИИ ТРУДНООБРАБАТЫВАЕМЫХ МАТЕРИАЛОВ

Свёрла со сменными режущими пластинами


Система обозначения свёрл со сменными режущими пластинами

1	HP	Серия свёрл	HP - серия высокопроизводительных корпусных свёрл					
2	2D	Длина режущей части, указанное в диаметрах сверла	2D, 3D, 4D,					
3	255	Диаметр сверла	255 - 25.5 мм, 500 - 50 мм					
4	S32	Диаметр хвостовика	S20 - диаметр 20 мм					
5	S07	Форморазмер режущих пластин	Форма S (квадратная), размер 7 (длина режущей кромки 7 мм)					

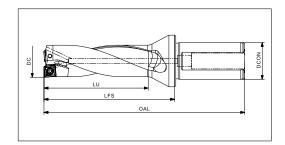
Длина режущей части - 2xD



		Осно	зные размерь	і (мм)			
Номер по каталогу	DC	LU	OAL	DCON	LFS	Пластины	
HP-2D130-S20-S05	13.0	29	99	20	49		
HP-2D135-S20-S05	13.5	30	100	20	50		
HP-2D140-S20-S05	14.0	31	101	20	51	SPMT 050204E-DP	
HP-2D145-S20-S05	14.5	32	102	20	52		
HP-2D150-S20-S05	15.0	33	103	20	53		
HP-2D155-S25-S06	15.5	34	115	25	59		
HP-2D160-S25-S06	16.0	35	116	25	60		
HP-2D165-S25-S06	16.5	36	117	25	61		
HP-2D170-S25-S06	17.0	37	118	25	62		
HP-2D175-S25-S06	17.5	38	119	25	63		
HP-2D180-S25-S06	18.0	39	120	25	64		
HP-2D185-S25-S06	18.5	40	121	25	65	SPMT 060204E-DP	
HP-2D190-S25-S06	19.0	41	122	25	66		
HP-2D195-S25-S06	19.5	42	123	25	67		
HP-2D200-S25-S06	20.0	43	124	25	68		
HP-2D205-S25-S06	20.5	44	125	25	69		
HP-2D210-S25-S06	21.0	45	126	25	70		
HP-2D215-S25-S06	21.5	46	127	25	71		
HP-2D220-S32-S07	22.0	47	137	32	77		
HP-2D225-S32-S07	22.5	48	138	32	78		
HP-2D230-S32-S07	23.0	49	139	32	79		
HP-2D235-S32-S07	23.5	50	140	32	80		
HP-2D240-S32-S07	24.0	51	141	32	81		
HP-2D245-S32-S07	24.5	52	142	32	82	00147.0770005.00	
HP-2D250-S32-S07	25.0	53	143	32	83	SPMT 07T308E-DP	
HP-2D255-S32-S07	25.5	54	144	32	84		
HP-2D260-S32-S07	26.0	55	145	32	85		
HP-2D265-S32-S07	26.5	56	146	32	86		
HP-2D270-S32-S07	27.0	57	147	32	87		
HP-2D275-S32-S07	27.5	58	148	32	88		

Основные размеры (мм)	Запасные части					
Диаметр сверла (мм)	Винт	Ключ				
28						
13-15	ST020043	FT-T06				
15.5-21.5	ST022055	FT-T06				
22-27.5	ST025065	FT-T08				

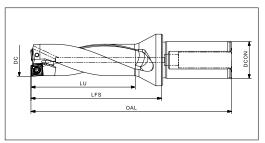
Длина режущей части - 2xD



		Осно					
Номер по каталогу	DC	LU	OAL	DCON	LFS	Пластины	
HP-2D280-S32-S09	28.0	59	149	32	89		
HP-2D285-S32-S09	28.5	60	150	32	90		
HP-2D290-S32-S09	29.0	61	151	32	91		
HP-2D295-S32-S09	29.5	63	153	32	93	SPMT 090408E-DP	
HP-2D300-S32-S09	30.0	65	155	32	95	3FWH 090400L-DF	
HP-2D310-S32-S09	31.0	67	157	32	97		
HP-2D320-S32-S09	32.0	69	159	32	99		
HP-2D330-S32-S09	33.0	71	161	32	101		
HP-2D340-S40-S11	34.0	73	178	40	108		
HP-2D350-S40-S11	35.0	75	180	40	110		
HP-2D360-S40-S11	36.0	77	182	40	112		
HP-2D370-S40-S11	37.0	79	184	40	114	SPMT 110408E-DP	
HP-2D380-S40-S11	38.0	81	186	40	116	3PWH 110400E-DP	
HP-2D390-S40-S11	39.0	83	188	40	118		
HP-2D400-S40-S11	40.0	85	190	40	120		
HP-2D410-S40-S11	41.0	87	192	40	122		
HP-2D420-S40-S14	42.0	89	194	40	124		
HP-2D430-S40-S14	43.0	91	196	40	126		
HP-2D440-S40-S14	44.0	93	198	40	128		
HP-2D450-S40-S14	45.0	95	200	40	130		
HP-2D460-S40-S14	46.0	97	202	40	132	SPMT 140512E-DP	
HP-2D470-S40-S14	47.0	99	204	40	134		
HP-2D480-S40-S14	48.0	101	206	40	136		
HP-2D490-S40-S14	49.0	103	208	40	138		
HP-2D500-S40-S14	50.0	105	210	40	140		

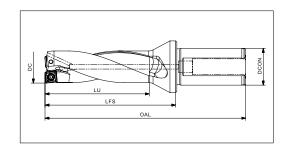
Основные размеры (мм)	Запаснь	ые части			
Диаметр сверла (мм)	Винт	Ключ			
8 0					
28-33	ST035084X	FT-T15			
34-41	ST040100H	FT-T15			
42-50	ST050126	FT-T20			

Длина режущей части - 3хD


		Основ	зные размерь	і (мм)			
Номер по каталогу	DC	LU	OAL	DCON	LFS	Пластины	
HP-3D130-S20-S05	13.0	42	112	20	62		
HP-3D135-S20-S05	13.5	44	114	20	64		
HP-3D140-S20-S05	14.0	45	115	20	65	SPMT 050204E-DP	
HP-3D145-S20-S05	14.5	47	117	20	67		
HP-3D150-S20-S05	15.0	48	118	20	68		
HP-3D155-S25-S06	15.5	50	131	25	75		
HP-3D160-S25-S06	16.0	51	132	25	76		
HP-3D165-S25-S06	16.5	53	134	25	78		
HP-3D170-S25-S06	17.0	54	135	25	79		
HP-3D175-S25-S06	17.5	56	137	25	81		
HP-3D180-S25-S06	18.0	57	138	25	82		
HP-3D185-S25-S06	18.5	59	140	25	84	SPMT 060204E-DP	
HP-3D190-S25-S06	19.0	60	141	25	85		
HP-3D195-S25-S06	19.5	62	143	25	87		
HP-3D200-S25-S06	20.0	63	144	25	88		
HP-3D205-S25-S06	20.5	65	146	25	90		
HP-3D210-S25-S06	21.0	66	147	25	91		
HP-3D215-S25-S06	21.5	68	149	25	93		
HP-3D220-S32-S07	22.0	69	159	32	99		
HP-3D225-S32-S07	22.5	71	161	32	101		
HP-3D230-S32-S07	23.0	72	162	32	102		
HP-3D235-S32-S07	23.5	74	164	32	104		
HP-3D240-S32-S07	24.0	75	165	32	105		
HP-3D245-S32-S07	24.5	77	167	32	107	CDMT 07T200F DD	
HP-3D250-S32-S07	25.0	78	168	32	108	SPMT 07T308E-DP	
HP-3D255-S32-S07	25.5	80	170	32	110		
HP-3D260-S32-S07	26.0	81	171	32	111		
HP-3D265-S32-S07	26.5	83	173	32	113		
HP-3D270-S32-S07	27.0	84	174	32	114		
HP-3D275-S32-S07	27.5	86	176	32	116		

Основные размеры (мм)	Запасные части					
Диаметр сверла (мм)	Винт	Ключ				
13-15	ST020043	FT-T06				
15.5-21.5	ST022055	FT-T06				
22-27.5	ST025065	FT-T08				

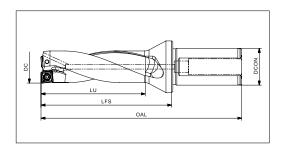
Длина режущей части - 3xD



		Осно	зные размерь	і (мм)		
Номер по каталогу	DC	LU	OAL	DCON	LFS	Пластины
HP-3D280-S32-S09	28.0	87	177	32	117	
HP-3D285-S32-S09	28.5	89	179	32	119	
HP-3D290-S32-S09	29.0	90	180	32	120	
HP-3D295-S32-S09	29.5	93	183	32	123	SPMT 090408E-DP
HP-3D300-S32-S09	30.0	95	185	32	125	3PWH 090408E-DP
HP-3D310-S32-S09	31.0	98	188	32	128	
HP-3D320-S32-S09	32.0	101	191	32	131	
HP-3D330-S32-S09	33.0	104	194	32	134	
HP-3D340-S40-S11	34.0	107	212	40	142	
HP-3D350-S40-S11	35.0	110	215	40	145	
HP-3D360-S40-S11	36.0	113	218	40	148	
HP-3D370-S40-S11	37.0	116	221	40	151	SPMT 110408E-DP
HP-3D380-S40-S11	38.0	119	224	40	154	3PWH 110400E-DP
HP-3D390-S40-S11	39.0	122	227	40	157	
HP-3D400-S40-S11	40.0	125	230	40	160	
HP-3D410-S40-S11	41.0	128	233	40	163	
HP-3D420-S40-S14	42.0	131	236	40	166	
HP-3D430-S40-S14	43.0	134	239	40	169	
HP-3D440-S40-S14	44.0	137	242	40	172	
HP-3D450-S40-S14	45.0	140	245	40	175	
HP-3D460-S40-S14	46.0	143	248	40	178	SPMT 140512E-DP
HP-3D470-S40-S14	47.0	146	251	40	181	
HP-3D480-S40-S14	48.0	149	254	40	184	
HP-3D490-S40-S14	49.0	152	257	40	187	
HP-3D500-S40-S14	50.0	155	260	40	190	

Основные размеры (мм)	Запаснь	ые части
Диаметр сверла (мм)	Винт	Ключ
S O O O O O O O O O O O O O O O O O O O		
28-33	ST035084X	FT-T15
34-41	ST040100H	FT-T15
42-50	ST050126	FT-T20

Длина режущей части - 4xD


Номер по каталогу	DC	LU	OAL	DCON	LFS	Пластины
HP-4D130-S20-S05	13.0	55	125	20	75	
HP-4D135-S20-S05	13.5	57	127	20	77	
HP-4D140-S20-S05	14.0	59	129	20	79	SPMT 050204E-DP
HP-4D145-S20-S05	14.5	61	131	20	81	
HP-4D150-S20-S05	15.0	63	133	20	83	
HP-4D155-S25-S06	15.5	65	146	25	90	
HP-4D160-S25-S06	16.0	67	148	25	92	
HP-4D165-S25-S06	16.5	69	150	25	94	
HP-4D170-S25-S06	17.0	71	152	25	96	
HP-4D175-S25-S06	17.5	73	154	25	98	
HP-4D180-S25-S06	18.0	75	156	25	100	
HP-4D185-S25-S06	18.5	77	158	25	102	SPMT 060204E-DP
HP-4D190-S25-S06	19.0	79	160	25	104	
HP-4D195-S25-S06	19.5	81	162	25	106	
HP-4D200-S25-S06	20.0	83	164	25	108	
HP-4D205-S25-S06	20.5	85	166	25	110	
HP-4D210-S25-S06	21.0	87	168	25	112	
HP-4D215-S25-S06	21.5	89	170	25	114	
HP-4D220-S32-S07	22.0	91	181	32	121	
HP-4D225-S32-S07	22.5	93	183	32	123	
HP-4D230-S32-S07	23.0	95	185	32	125	
HP-4D235-S32-S07	23.5	97	187	32	127	
HP-4D240-S32-S07	24.0	99	189	32	129	
HP-4D245-S32-S07	24.5	101	191	32	131	ODMT 07T000F DD
HP-4D250-S32-S07	25.0	103	193	32	133	SPMT 07T308E-DP
HP-4D255-S32-S07	25.5	105	195	32	135	
HP-4D260-S32-S07	26.0	107	197	32	137	
HP-4D265-S32-S07	26.5	109	199	32	139	
HP-4D270-S32-S07	27.0	111	201	32	141	
HP-4D275-S32-S07	27.5	113	203	32	143	

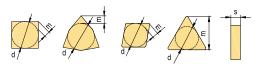
Основные размеры (мм)	Запасные части						
Диаметр сверла (мм)	Винт	Ключ					
2 0							
13-15	ST020043	FT-T06					
15.5-21.5	ST022055	FT-T06					
22-27.5	ST025065	FT-T08					

Длина режущей части - 4xD

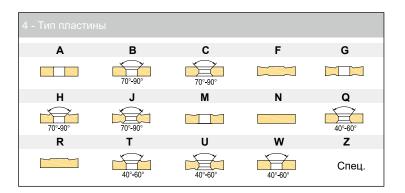
		Основ				
Номер по каталогу	DC	LU	OAL	DCON	LFS	Пластины
HP-4D280-S32-S09	28.0	115	205	32	145	
HP-4D285-S32-S09	28.5	117	207	32	147	
HP-4D290-S32-S09	29.0	120	210	32	150	
HP-4D295-S32-S09	29.5	123	213	32	153	SPMT 090408E-DP
HP-4D300-S32-S09	30.0	125	215	32	155	3PWH 090408E-DP
HP-4D310-S32-S09	31.0	129	219	32	159	
HP-4D320-S32-S09	32.0	133	223	32	163	
HP-4D330-S32-S09	33.0	137	227	32	167	
HP-4D340-S40-S11	34.0	141	246	40	176	
HP-4D350-S40-S11	35.0	145	250	40	180	
HP-4D360-S40-S11	36.0	149	254	40	184	
HP-4D370-S40-S11	37.0	153	258	40	188	SPMT 110408E-DP
HP-4D380-S40-S11	38.0	157	262	40	192	3PWH 110400E-DP
HP-4D390-S40-S11	39.0	161	266	40	196	
HP-4D400-S40-S11	40.0	165	270	40	200	
HP-4D410-S40-S11	41.0	169	274	40	204	
HP-4D420-S40-S14	42.0	173	278	40	208	
HP-4D430-S40-S14	43.0	177	282	40	212	
HP-4D440-S40-S14	44.0	181	286	40	216	
HP-4D450-S40-S14	45.0	185	290	40	220	
HP-4D460-S40-S14	46.0	189	294	40	224	SPMT 140512E-DP
HP-4D470-S40-S14	47.0	193	298	40	228	
HP-4D480-S40-S14	48.0	197	302	40	232	
HP-4D490-S40-S14	49.0	201	306	40	236	
HP-4D500-S40-S14	50.0	205	310	40	240	

Основные размеры (мм)	Запасные части					
Диаметр сверла (мм)	Винт	Ключ				
8						
28-33	ST035084X	FT-T15				
34-41	ST040100H	FT-T15				
42-50	ST050126	FT-T20				


Система обозначения режущих пластин для корпусных свёрл



3-Точності



Класс точности	Ед.	Диаметр впис. окружности d	Размер до вершины m	Толщина s
Α	мм	± 0,025	± 0,005	± 0,025
С	мм	± 0,025	± 0,013	± 0,025
Е	мм	± 0,025	± 0,025	± 0,025
F	мм	± 0,013	± 0,005	± 0,025
G	мм	± 0,025	± 0,025	± 0,13
н	мм	± 0,013	± 0,013	± 0,025
J	мм	*	± 0,005	± 0,025
К	мм	*	± 0,013	± 0,025
L	мм	*	± 0,025	± 0,025
М	мм	*	*	± 0,127
U	мм	*	*	± 0,127
N	мм	*	*	± 0,025

^{*} больше информации в таблицах справа и снизу

Для классов М и N	Форг	ма D	Форі	ма V
IC	d	m	d	m
5.56	± 0,05	± 0,11		
6.35	± 0,05	± 0,11	± 0,05	± 0,16
7.94	± 0,05	± 0,11	± 0,05	± 0,16
9.525	± 0,05	± 0,11	± 0,05	± 0,16
12.7	± 0,08	± 0,15	± 0,08	± 0,2
15.875	± 0,10	± 0,18	± 0,10	± 0,27
19.05	± 0,10	± 0,18	± 0,10	± 0,27

Форма: C, E, H, M, O, P, S, T, R, W									
IC	(t		m					
lC lC	J,K,L,M,N	U	M, N	U					
4.76	± 0,05	± 0,08	± 0,08	± 0,13					
5.56	± 0,05	± 0,08	± 0,08	± 0,13					
6	± 0,05	± 0,08	± 0,08	± 0,13					
6.35	± 0,05	± 0,08	± 0,08	± 0,13					
7.94	± 0,05	± 0,08	± 0,08	± 0,13					
8	± 0,05	± 0,08	± 0,08	± 0,13					
9.525	± 0,05	± 0,08	± 0,08	± 0,13					
10	± 0,05	± 0,08	± 0,08	± 0,13					
12	± 0,08	± 0,13	± 0,13	± 0,2					
12.7	± 0,08	± 0,13	± 0,13	± 0,2					
15.875	± 0,1	± 0,18	± 0,15	± 0,27					
16	± 0,1	± 0,18	± 0,15	± 0,27					
19.05	± 0,1	± 0,18	± 0,15	± 0,27					
20	± 0,1	± 0,18	± 0,15	± 0,27					
25	± 0,13	± 0,25	± 0,18	± 0,38					
25.4	± 0,13	± 0,25	± 0,18	± 0,38					
31.75	± 0,15	± 0,25	± 0,2	± 0,38					
32	± 0,15	± 0,25	± 0,2	± 0,38					

5-Длина режущей кромки									
Диаметр впис. окружности	S	S	w	w					
(мм)	Код	Длина	Код	Длина					
5.56			03	3.8					
6.35	06	6.35	04	4.3					
7.94			05	5.4					
8.0	08	8.0							
9.525	09	9.525	06	6.5					
12.7	12	12.7	08	8.7					

7- Радиус при вершине							
	Г	Іример					
	04	=	0.4				
	80	=	8.0				
	12	=	1.2				

Ε
 8

6 - Толщина							
Описание толщины пластины		ние толщины пастины	Пример				
			00	=	0.79		
		- S - 	T0	=	0.99		
			01	=	1.59		
			T1	=	1.98		
			02	=	2.38		
			T2	=	2.58		
		S	03	=	3.18		
Толщина S обозносевое расстоян			Т3	=	3.97		
режущей кромко			04	=	4.76		
опорной поверхн пластины	остью		T4	=	4.96		
Пластины			05	=	5.56		
		S	T5	=	5.95		
		S	06	=	6.35		
			07	=	7.94		
			09	=	9.53		
		-	11	=	11.11		
				=	12.70		
			14	=	14.29		
			15	=	15.88		

9- Стружколомающая геометрия

DP

- 1. Геометрия DP первый выбор для высокопроизводительного сверления различных материалов.
- 2. Пластины квадратной формы обладают повышенной прочностью и в комбинации с усиленной геометрией режущей кромки обеспечивают отличную прямолинейность обработанного отверстия
- 3. Корпус сверла серии HP с винтовыми стружечными канавками позволяет надёжно отводить стружку из зоны резания и получать готовые отверстия повышенной точности.

DU/DG

- 1. Геометрия и форма пластин обеспечивают отличный баланс прочности и усилий резания
- 2. Универсальная геометрия в комбинации с 2-мя марками сплавов позволяет достигать высоких результатов при сверлении материалов групп ISO P, M, K и S, отлично отводя стружку даже при обработке вязких типов сталей
- 3. Обеспечивает хорошее качество поверхности обработанного отверстия
- 4. Может применяться как на обрабатывающих фрезерных центрах, так и на токарных станках (без вращения сверла)

Рекомендации по выбору марок сплавов для сверления

		06	бласть п	римене	ния спл	авов д	пя свер	пения		,			1
Группа обрабатываемого	Материалы обрабатываемых	ISO					С покр	ытием					Без
материала	деталей		PVD	PVD	PVD	PVD	PVD	PVD	PVD	PVD	CVD	CVD	покрытия
		P01											
		P05											
		P10											
		P15											
	Углеродистые и	P20	\supseteq										
P	легированные	P25	AP301U										
	стали	P30	AP	211									
		P35		AP351M	AP351U								
		P40		A	P3								
		P45											
		P50											
		M01											
		M05											
		M10											
		M15											
M	Нержавеющие	M20											
	стали	M25	>										
		M30	511										
		M35	AP351M	AP351U									
		M40		P3									
		M45		▼									
		K01											
		K05											
		K10											
		K15											
K		K20											
	Чугуны	K25											
		K30											
		K35											
		K40											
		K45											
		K50											
		N01											
		N05											
	Алюминий и	N10											
N	алюминиевые	N15											
	сплавы	N20											
		N25											
		N30											
		S01											
		S05											
		S10											
		S15											
S	Жаропрочные	S20											
3	сплавы	S25	Σ										
		S30	51										
		S35	AP351M	351									
		S40	A	AP351U									
		S45										<u> </u>	

Свёр<mark>ла со сменн</mark>ыми вежу<mark>щими пластин</mark>ами

Описание марок сплавов для сверления

Низкоуглеродистые, углеродистые, легированные и инструментальные стали.

Основные сплавы

AP301U(P15-P35)

Первый выбор для сверления стали.

Ультрамелкозернистая основа средней твёрдости в комбинации с наноструктурным многослойным покрытием PVD наделяют сплав высокой износостойкостью и прочностью.

AP351M(P25-P40)

Первый выбор для сверления нержавеющей стали и жаропрочных сплавов. Ультрамелкозернистая основа высокой прочности и наноструктурное покрытие PVD позволяют сплаву работать даже в нестабильных условиях сверления, сопротивляться возникновению термотрещин и износу по задней поверхности. Может применяться для сверления стали при нестабильных условиях обработки.

AP351U(P30-P45)

Сплав рекомендуется для сверления различных материалов в сложных нестабильных условиях обработки. Отличная сопротивляемость высоким нагрузкам, благодаря очень прочной основе. Современное наноструктурное покрытие PVD придаёт режущим кромками высокую стойкость к износу.

Аустенитные, супераустенитные и дуплексные нержавеющие стали.

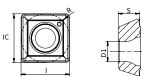
Основные сплавы

AP351M(M25-M40)

Первый выбор для сверления нержавеющей стали и жаропрочных сплавов. Ультрамелкозернистая основа высокой прочности и наноструктурное покрытие PVD позволяют сплаву работать даже в нестабильных условиях сверления, сопротивляться возникновению термотрещин и износу по задней поверхности. Может применяться для сверления стали при нестабильных условиях обработки.

Жаропрочные сплавы

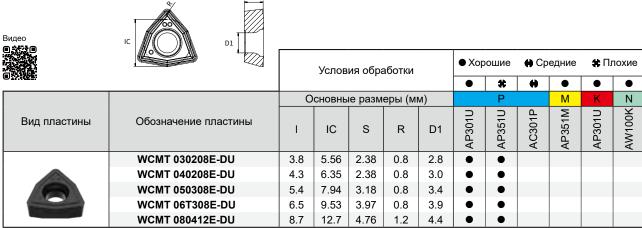
Основные сплавы


AP351M(S25-S40)

Первый выбор для сверления нержавеющей стали и жаропрочных сплавов. Ультрамелкозернистая основа высокой прочности и наноструктурное покрытие PVD позволяют сплаву работать даже в нестабильных условиях сверления, сопротивляться возникновению термотрещин и износу по задней поверхности. Может применяться для сверления стали при нестабильных условиях обработки.

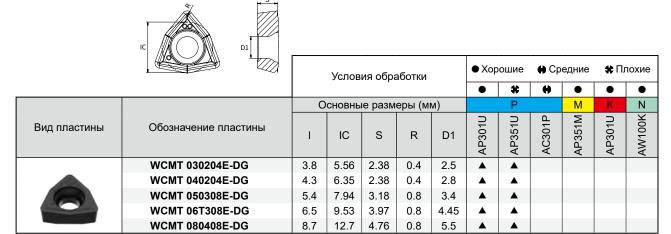
AP351U(S30-S45)

Сплав рекомендуется для сверления различных материалов в сложных нестабильных условиях обработки. Отличная сопротивляемость высоким нагрузкам, благодаря очень прочной основе. Современное наноструктурное покрытие PVD придаёт режущим кромками высокую стойкость к износу.


Режущие пластины SPMT с геометрией DP для свёрл серии HP

			Услов	ия обра	аботки		● Xop	ошие	() Ср	едние	# П	похие
							•	*	H	•	•	•
		0	сновнь	е разм	еры (мі	м)		Р		М	K	N
Вид пластины	Обозначение пластины	I	IC	S	R	D1	AP301U	AP351U	AC301P	AP351M	AP301U	AW100K
	SPMT 050204E-DP	5	5	2.38	0.4	2.25	•	•	•	•	•	
	SPMT 060204E-DP	6	6	2.38	0.4	2.61	•	•	•	•	•	
	SPMT 07T308E-DP	7.94	7.94	3.97	0.8	2.85	•	•	•	•	•	
	SPMT 090408E-DP	9.8	9.8	4.3	0.8	4.05	•	•	•	•	•	
	SPMT 110408E-DP	11.5	11.5	4.8	0.8	4.45	•	•	•	•	•	
	SPMT 140512E-DP	14.3	14.3	5.2	1.2	5.75	•	•	•	•	•	

[●] На складе О Под заказ 🛕 Устаревающий продукт


Режущие пластины WCMT с геометрией DU

Пластины с геометрией DU подходят под различные корпуса свёрл

*	*		
На складе	○ Под заказ	▲ Устаревающи	й пролукт

Режущие пластины WCMT с геометрией DG

[●] На складе О Под заказ 🔺 Устаревающий продукт

Рекомендуемые режимы резания для свёрл со сменными режущими пластинами

_	Months of the state of the stat	× 14000	MODUL									٥	10.00.01	200		TWOS MACHINESCER S OF MACOURING OF STREET	TMOS MINORINITA			
_		DIEGGINIDIA H	2 2									-		2	I THE CECKE					
						ŀ		Ma	Марка сплава	ава										
				,	AP301U		AP	AP351U		AP351M	Σ	*	AC301P	_						
					P15-35		<u>Р</u>	P30-45		P20-35	35		P25-40							
					M15-35		M	M30-45		M20-35	35							,		
	0	0								'							Подача на оборот (мм/об)	а оборот (об)		
180	90	Z	Твёрдость (НВ)				SS	S 30-45		S20-35	35							(2)		
	материалов	(H/MM ²)	<u></u>							'										
										•										
	-								-											
				Макс.	Сред.	Мин.	Макс. Сред. Мин. Макс. Сред. Мин.	ред. М	-	Kc. Cpe,	д.	Макс. Сред. Мин. Макс. Сред. Мин.	Сред.	Мин	Ø13MM∼Ø15 MM	Ø15.5MM~Ø21.5MM	Ø22 MM ~ Ø27.5 MM	Ø28 MM ~Ø33 MM	Ø34 MM ~Ø41 MM	Ø42 mm ~Ø50 mm
							Ď	орость	резани	Скорость резания (м/мин)	ı Î				SPMT 050204E-DP	SPMT 060204E-DP	SPMT 07T308E-DP	SPMT 090408E-DP SPMT 110408E-DP	SPMT 110408E-DP	SPMT 140512E-DP
	;	009>	<180	260	240	224	220	185 1	150 24	240 220	002 0	200	175	150	0.05-0.08	0.06-0.10	0.06-0.12	0.07-0.13	0.08-0.15	0.08-0.16
	углеродистые стали	<950	<280	250	210	170	200	170 1	140 23	230 190	0) 160	190	162.5	135	0.06-0.12	0.08-0.15	0.10-0.18	0.12-0.22	0.12-0.24	0.13-0.25
_		700-950	200-280	240	200	160	190	160 1	130 22	220 180	0 150	180	150	120	0.06-0.10	0.08-0.14	0.10-0.18	0.12-0.22	0.12-0.23	0.13-0.24
	инструментальные	950-1200	280-355	210	170	130	170	130	90 18	190 150	0 110	160	130	100	0.06-0.12	0.08-0.15	0.10-0.18	0.12-0.22	0.12-0.24	0.13-0.25
	стали	1200-1400	355-415	170	140	110	160	120	80 15	150 120	06 (140	110	80	0.06-0.10	0.08-0.14	0.10-0.18	0.12-0.22	0.12-0.23	0.13-0.24
	Дуплексные нержавеющие стали	778	230	260	200	140	180	135	90 24	240 180	0 120	•	•		0.05-0.10	0.06-0.12	0.08-0.15	0.09-0.16	0.10-0.17	0.11-0.18
Σ	Аустенитные нержавеющие стали	675	200	220	170	120	120	65 (60 20	200 150	001 00	•	•		0.05-0.10	0.06-0.12	0.08-0.15	0.09-0.16	0.10-0.17	0.11-0.18
	Аустенитные, закалённые (РН нержавеющие стали)	1013	300	180	140	100	06	65 4	40 16	160 120	80	•	,							
	Серый чугун	200	220		,						1		,			,		•		
Y	Чугун с шаровидным графитом	880	260				,	,		<u>'</u>	'	,		,		•				•
_	Ковкий чугун	800	250	,	,	,		,		_	1		,	,						
	Чистый алюминий	260	75	•				,		'	1		•		•	-		-	-	-
Z	Алюминиевые сплавы	447	130	-	-	-	-	-		<u>'</u>	-	-	•	-	-	-	-	-	-	-
	Сплавы на основе Fe	943	280	-		-	40	30	20 45	5 35	25	•	-					-		-
O	Сплавы на основе Со	1076	320	-		-	35	25	15 4(40 30	20	•	-		-	-		-		-
•	Сплавы на основе Ni	1177	350	-	•	-	35	25	15 40	0 30	20	•	-		-	-		-		-
	Сплавы на основе Ті	1262	370	-	•	-	40	30	20 4	45 35	25	-	-		0.05-0.10	0.06-0.14	0.08-0.18	0.10-0.22	0.14-0.23	0.15-0.24
3	Закалённые стали		50-60HRC				1			1	'		•	•		-		•		•
	Отбеленные чугуны		55HRC	,			-			'	'	1	,	,		•		•		-
, 1	**************************************		0			1 26.0										,				

*аны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости и заготовки, жёсткости станка, конструкции детали и системы подачи и типа применяемой СОЖ.

Рекомендуемые режимы резания для свёрл со сменными режущими пластинами

Σ	Материалы обрабатываемых деталей	ваемых де	талей								Режи∧	Режимы резания для свёрл с пластинами WCMT	рл с пластинами М	/CMT		
							Марка	а сплава								
					AP301U		ΑF	AP351U		AC301P	ИР					
				C IO	С покрытием РVD	DV9	С покрь	С покрытием РVD		С покрытием СVD	1ем СУD					
					P15-35		٦	P30-45		P25-40	40	T				
					M15-35		Σ	M30-45						Подача на оборот		
<u>0</u>	Описание	Предел	Щ											(MM/06)		
<u> </u>	оораоа Бываемых материалов	(H/MM²)	(HB)				S	S 30-45		'						
										'		T				
						ļ										
				Макс.	Сред.	Мин	Макс. С	Сред.	Мин. Ма	Макс. Сред.	д. Мин.	Ø16 MM ∼Ø20 MM	Ø20.5 MM ∼Ø25 MM	$\varnothing 25.5$ NM $\sim \varnothing 30$ MM	Ø31 MM ∼Ø41 MM	Ø41 nm ∼Ø58 nm
						Ó	корость р	Скорость резания (м/мин)	(мин)			WCMT 030204E-DU/DG	WCMT 030204E-DU/DG WCMT 040204E-DU/DG WCMT 050308E-DU/DG WCMT 06T308E-DU/DG WCMT 080408E-DU/DG	WCMT 050308E-DU/DG	WCMT 06T308E-DU/DG	WCMT 080408E-DU/DG
	,	009>	<180	260	240	224	220	185 1	150 200	175	5 150	0.04-0.065	0.07-0.09	0.07-0.10	0.08-0.11	0.09-0.13
	углеродистые стали	<950	<280	250	210	170	200	170 14	140 190	162.5	135	0.05-0.07	0.09-0.09	0.07-0.10	0.08-0.11	0.09-0.13
_	Потимородинго и	700-950	200-280	240	200	160	190	160 13	130 18	180 150	0 120	0.05-0.09	0.065-0.14	0.08-0.16	0.10-0.18	0.10-0.20
	инструментальные	950-1200	280-355	210	170	130	170	130 9	90 16	160 130	0 100	0.04-0.07	0.065-0.11	0.07-0.14	0.09-0.15	0.10-0.18
	стали	1200-1400	355-415	170	140	110	160	120 8	80 14	140 110	0 80	0.04-0.065	0.05-0.9	0.07-0.10	0.08-0.12	0.09-0.13
	Дуплексные нержавеющие стали	778	230	260	200	140	180	135 8	- 06			0.04-0.07	0.065-0.11	0.08-0.14	0.08-0.11	0.09-0.13
Σ	Аустенитные нержавеющие стали	675	200	220	170	120	120	65 6	- 09	'	,	0.04-0.065	0.065-0.10	0.08-0.12	0.08-0.10	0.08-0.11
	Аустенитные, закалённые (РН нержавеющие стали)	1013	300	180	140	100	06	65 4	40							
	Серый чугун	200	220								1		,		,	
2	Чугун с шаровидным графитом	880	260				•				•	,			-	
	Ковкий чугун	800	250	,	,		,				1	,			•	
-	Чистый алюминий	260	75								•					
Z	Алюминиевые сплавы	447	130	•	•						•	-	-	-	-	-
	Сплавы на основе Fe	943	280	٠	٠		40	30 2	20		,			-		
U	Сплавы на основе Со	1076	320		٠		35	25 1	15		•			•	•	•
	Сплавы на основе Ni	1177	350	•		-	35	25 1	15 -		•	-	-	-	-	-
	Сплавы на основе Ті	1262	370		٠	-	40	30 2	- 02	'	•	0.05-0.10	0.06-0.11	0.07-0.12	0.08-0.13	0.08-0.14
1	Закалённые стали		50-60HRC	,	,				<u>'</u>	'	1	•	,	•		
	Отбеленные чугуны		55HRC		•						1					
					[

*аны начальные режимы резания, соответствующие обычным условиям обработки. Режимы резания необходимо корректировать, исходя из настоящих условий обработки, жёсткости детали и кипа применяемой СОЖ.

Свёрла со сменными режущими пластинами

Свёрла системы ВТА для обработки глубоких отверстий

АСНТЕСК изготавливает режущие пластины для высокопроизводительного глубокого сверления заготовок деталей для изделий различных отраслей промышленности: энергетической, общего машиностроения, экструзионной, авиационной, корабельной, военной и др. Головки для глубокого сверления системы ВТА изготавливаются по запросу. Современные режущие геометрии пластин позволяют достигать высокой прямолинейности отверстий, а также низкой шероховатости поверхности. Сплавы в сочетании с представленными геометриями пластин позволяют высокоэффективно вести обработку отверстий в стали, нержавеющей стали и жаропрочных сплавах.

Особенности и рекомендации по применению

- Режущие пластины устанавливаются на головку для глубокого сверления.
- Сплав AP301U(N) является первым выбором для сверления углеродистых, легированных и нержавеющих сталей
- •Все геометрии пластин обеспечивают оптимальные результаты по генерации и эвакуации стружки
- Высокие подачи позволяют достигать высокой производительности и эффективности обработки глубоких отверстий
- Решение позволяет снизить затраты, себестоимость обработки отверстия

Марка сплава	Покрытио			Обрабатывае	мый материал		
імарка сплава	Покрытие	Р	M	K	N	S	Н
AP301U(N)	PVD	•	•			0	

● Первый выбор О Альтернативный выбор

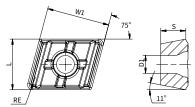
Сплав AP301U(N) (P15-P35, M15-M35) с основой средней твёрдости и современным покрытием PVD обладает высокой прочностью и износостойкостью. Сплав позволяет достигать высоких результатов при обработке различных материалов заготовок. Отличная сопротивляемость возникновению нароста обеспечивает высокую стойкость при обработке нержавеющих сталей и жаропрочных сплавов.

Описание стружколомающих геометрий для глубокого сверления

Геометрия	Профиль режущей кромки	Описание
DH		 Универсальная геометрия. Позволяет работать на высоких скоростях резания и подачах. Отличное формирование стружки при обработке большинства материалов заготовок.
DL		 Первый выбор для обработки материалов, генерирующих длинную сливную стружку, таких как низкоуглеродистые стали и дуплексные нержавеющие стали. Обеспечивает надёжный процесс обработки и решает проблемы с пакетированием стружки.
LH		 Открытый тип геометрии. Подходит для сверления на высоких скоростях резания и подачах.

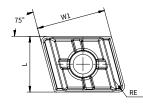
Рекомендации по выбору пластин для глубокого сверления (эжекторная система)

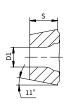
С = Центральная пластина


I = Промежуточная пластина

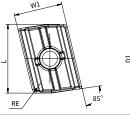
Направляющая опорная пластина 🗸

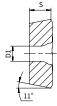
Периферийная пластина


Диапазон диаметров отверстия (мм)	Центральная пластина	Диапазон диаметров отверстия (мм)	Промежуточная пластина	Диапазон диаметров отверстия (мм)	Периферийная пластина	Диапазон диаметров отверстия (мм)	Направляющая опорная пластина
26.00-28.70	EPMT 050308C	26.00-31.00	EPMT 050308I	26.00-31.00	APHT 060308P	26.00-31.00	GPAD-06A
28.71-33.99	ЕРМТ 06Т308С	31.01-34.99	EPMT 06T308I	31.01-38.99	APHT 08T308P	31.01-39.60	GPAD-07A
34.00-43.00	EPMT 08T308C	35.00-54.99	EPMT 08T308I	39.00-49.99	APHT 09T308P	39.61-47.00	GPAD-08A
43.01-47.00	EPMT 10T308C	55.00-65.00	EPMT 12T308I	50.00-65.00	APHT 11T308P	47.01-54.99	GPAD-10A
47.01-49.99	EPMT 12T308C	-	-	-	-	55.00-65.00	GPAD-12A
50.00-57.99	EPMT 10T308C	-	-	-	-	-	-
58.00-65.00	EPMT 12T308C	-	-	-	-	-	-

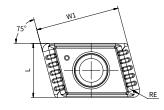

Режущие пластины для глубокого сверления Пластины с геометрией DH

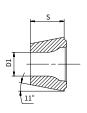
Центральная пластина	Обозначение пластины	L	W1	S	RE	D1	Заменяемые пластины конкурента	Наличие
	EPMT 050308C-DH AP301U(N)	5.56	8	3.18	0.8	2.5	800-050308M-C-G 1025	•
	EPMT 06T308C-DH AP301U(N)	6.35	9.87	3.97	0.8	2.8	800-06T308M-C-G 1025	•
	EPMT 08T308C-DH AP301U(N)	7.94	9.87	3.97	0.8	2.8	800-08T308M-C-G 1025	•
	EPMT 10T308C-DH AP301U(N)	9.53	9.87	3.97	0.8	2.8	800-10T308M-C-G 1025	•
	EPMT 12T308C-DH AP301U(N)	12.7	9.87	3.97	0.8	2.8	800-12T308M-C-G 1025	•


● На складе

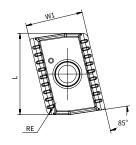


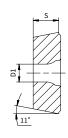
Промежуточная пластина	Обозначение пластины	L	W1	S	RE	D1	Заменяемые пластины конкурента	Наличие
	EPMT 050308I-DH AP301U(N)	5.56	8	3.18	0.8	2.5	800-050308M-I-G 1025	•
	EPMT 06T308I-DH AP301U(N)	6.35	9.87	3.97	0.8	2.8	800-06T308M-I-G 1025	•
	EPMT 08T308I-DH AP301U(N)	7.94	9.87	3.97	0.8	2.8	800-08T308M-I-G 1025	•
	EPMT 12T308I-DH AP301U(N)	12.7	9.87	3.97	0.8	2.8	800-12T308M-I-G 1025	•


• На складе



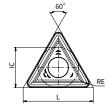
Периферийная пластина	Обозначение пластины	L	W1	S	RE	D1	Заменяемые пластины конкурента	Наличие
	APHT 060308P-DH AP301U(N)	6.5	8	3.18	0.8	2.5	800-060308H-P-G 1025	•
	APHT 08T308P-DH AP301U(N)	8.5	9	3.97	0.8	2.8	800-08T308H-P-G 1025	•
	APHT 09T308P-DH AP301U(N)	9.66	9	3.97	0.8	2.8	800-09T308H-P-G 1025	•
	APHT 11T308P-DH AP301U(N)	12.75	9	3.97	0.8	2.8	800-11T308H-P-G 1025	•

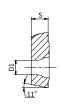

Режущие пластины для глубокого сверления Пластины с геометрией DL



Промежуточная пластина	Обозначение пластины	L	W1	S	RE	D1	Заменяемые пластины конкурента	Наличие
	EPMT 050308I-DL AP301U(N)	5.56	8	3.18	0.8	2.5	800-050308M-I-L 1025	•
0/3	EPMT 06T308I-DL AP301U(N)	6.35	9.87	3.97	0.8	2.8	800-06T308M-I-L 1025	•
	EPMT 08T308I-DL AP301U(N)	7.94	9.87	3.97	0.8	2.8	800-08T308M-I-L 1025	•
	EPMT 12T308I-DL AP301U(N)	12.7	9.87	3.97	0.8	2.8	800-12T308M-I-L 1025	•

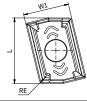
● На складе

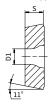



Периферийная пластина	Обозначение пластины	L	W1	S	RE	D1	Заменяемые пластины конкурента	Наличие
	APHT 060308P-DL AP301U(N)	6.5	8	3.18	0.8	2.5	800-060308H-P-L 1025	•
	APHT 08T308P-DL AP301U(N)	8.5	9	3.97	0.8	2.8	800-08T308H-P-L 1025	•
	APHT 09T308P-DL AP301U(N)	9.66	9	3.97	0.8	2.8	800-09T308H-P-L 1025	•
	APHT 11T308P-DL AP301U(N)	12.75	9	3.97	0.8	2.8	800-11T308H-P-L 1025	•

Свёр<mark>ла со сменн</mark>ыми режущими пластинами

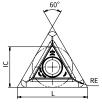
Режущие пластины для глубокого сверления

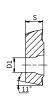

Пластины с геометрией DH



Центр. и промежут. пластина	Обозначение пластины	L	IC	S	RE	D1	Заменяемые пластины конкурента	Наличие
6	TPMT 16T312R-DH AP301U(N)	16.5	9.53	3.97	1.2	3.4	TPMT 16T312R-23 1025	•
	TPMT 220612R-DH AP301U(N)	22	12.7	6.35	1.2	4.4	TPMT 220612R-23 1025	•

● На складе

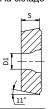



Периферийная пластина	Обозначение пластины	L	W1	S	RE	D1	Заменяемые пластины конкурента	Наличие
07	APMT 13T308-DH AP301U(N)	14.6	10	3.97	0.8	3.4	R424.9-13T308-23 1025	•
	APMT 180608-DH AP301U(N)	20.6	11.5	6.35	0.8	4.4	R424.9-180608-23 1025	•

● На складе

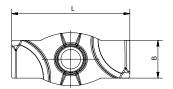
Режущие пластины для глубокого сверления

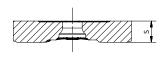

Пластины с геометрией LH



Центр. и промежут. пластина	Обозначение пластины	L	IC	s	RE	D1	Заменяемые пластины конкурента	Наличие
	TPMT 16T312R-LH AP301U(N)	16.5	9.525	3.97	1.2	3.4	TPMT 16T312R-22 1025	•
	TPMT 220612R-LH AP301U(N)	22	12.7	6.35	1.2	4.4	TPMT 220612R-22 1025	•

• На складе

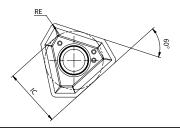


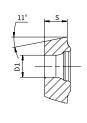


								_
Периферийная пластина	Обозначение пластины	L	W1	S	RE	D1	Заменяемые пластины конкурента	Наличие
40	APMT 13T308-LH AP301U(N)	14.6	10	3.97	0.8	3.4	R424.9-13T308-22 1025	•
	APMT 180608-LH AP301U(N)	20.6	11.5	6.35	0.8	4.4	R424.9-180608-22 1025	•

Режущие пластины для глубокого сверления

Направляющая опорная пластина





Направляющая опорная пластина	Обозначение пластины	В	L	S	Заменяемые пластины конкурента	Наличие
	GPAD-06A AC301K	6.00	18.00	3.00	800-06A PM1	•
	GPAD-07A AC301K	7.00	20.00	3.50	800-07A PM1	•
	GPAD-08A AC301K	8.00	25.00	4.50	800-08A PM1	•
	GPAD-10A AC301K	10.00	30.00	4.50	800-10A PM1	•
	GPAD-12A AC301K	12.00	35.00	5.50	800-12A PM1	•

● На складе

Пластины ТРМХ с геометрией DH

Вид пластины	Обозначение пластины	S	IC	RE	D1	Заменяемые пластины конкурента	Наличие
	TPMX 1403R-DH AP301U(N)	3.50	8.45	0.80	2.87	TPMX 1403RG TT9030	•
	TPMX 1704R-DH AP301U(N)	4.00	10.30	0.80	3.90	TPMX 1704RG TT9030	•
	TPMX 2405R-DH AP301U(N)	5.50	14.20	1.20	4.40	TPMX 2405RG TT9030	•
	TPMX 2405L-DH AP301U(N)	5.50	14.20	1.20	4.40	TPMX 2405LG TT9030	•
	TPMX 2807R-DH AP301U(N)	7.50	17.00	1.60	5.50	TPMX 2807RG TT9030	•

Свёр<mark>ла со сменн</mark>ыми режу<mark>щими пластин</mark>ами

Рекомендуемые режимы резания для сверления отверстий диаметром от 25 до 65 мм

			Твёрдость по	Ma	арка спла	ва	Скорость	Подача на оборот fn (мм/об)	
	Обрабатывае	мые материалы	Бринеллю	Tν	п пластин	НЫ	резания Vc	Диаметр с	верла (мм)
			(HB)	Периф.	Промеж.	Центр.	(м/мин)	25.00-43.00	43.01-65.00
		C=0.05-0.10%	125				70-130	0.11-0.41	0.14-0.45
		C=0.10-0.25%	125		4 D0041141		70-130	0.11-0.41	0.14-0.45
	Углеродистые стали	C=0.25-0.55%	150		AP301U(N)		70-130	0.11-0.41	0.14-0.45
		C=0.55-0.80%	170				70-130	0.11-0.41	0.14-0.45
	Высокоуглеродистые стали	Углеродистые инструментальные стали	210		AP301U(N)		70-120	0.11-0.41	0.20-0.45
P		Без термообработки	180				55-110	0.11-0.41	0.20-0.45
	Низколегированные стали	Термообработанные	275		AP301U(N)		70-120	0.11-0.41	0.20-0.45
	ora	Термообработанные	350				70-120	0.11-0.41	0.20-0.45
	Высоколегированные	Отожжённые	200		A D2041 I/NI)		55-110	0.11-0.38	0.20-0.40
	стали	Закалённые инструментальные стали	325		AP301U(N)		55-110	0.20-0.38	0.20-0.40
	_	Углеродистые нелегированные	180		4 D0041141		55-110	0.11-0.41	0.20-0.45
	Литые стали	Низколегированные (легир. < 5%)	200		AP301U(N)		55-110	0.11-0.41	0.20-0.45
		Ферритные, мартенситные без термообработки	200				40-110	0.11-0.41	0.20-0.45
		Аустенитные	200		4 D0041 1/41)		40-110	0.11-0.41	0.20-0.45
M	Нержавеющие стали	Аустенитные, закалённые (РН нержавеющие стали)	300		AP301U(N)		40-110	0.11-0.33	0.20-0.35
		Аустенитно-ферритные, дуплексные	230				40-80	0.11-0.33	0.20-0.35
	Vanua in muu i	Ферритные	200		A D2041 (AI)		80-120	0.11-0.38	0.24-0.41
	Ковкие чугуны	Перлитные	260		AP301U(N)		80-120	0.11-0.38	0.24-0.41
	0	С низким пределом прочности	180		A D00411(NI)		60-110	0.11-0.38	0.24-0.41
K	Серые чугуны	С повышенным пределом прочности	245		AP301U(N)		60-110	0.11-0.38	0.24-0.41
	Чугуны с шаровидным	Ферритные	160		A D20411/NI)		50-110	0.11-0.38	0.24-0.41
	графитом	Перлитные	250		AP301U(N)		50-110	0.11-0.38	0.24-0.41
İ	С верми	ікулярным графитом	230						
	Деформируемые	Не подвергнутые старению	30		AP301U(N)		65-150	0.09-0.33	0.20-0.33
	алюминиевые сплавы	Подвергнутые старению	100		AF 30 TO(N)		65-150	0.09-0.33	0.20-0.33
		≤ 12% Si, не подвергнутые старению	75				65-150	0.09-0.33	0.20-0.33
	Литые алюминиевые сплавы	≤ 12% Si, подвергнутые старению	90		AP301U(N)		65-150	0.09-0.33	0.20-0.33
4		> 12% Si, не подвергнутые старению	130				65-150	0.09-0.33	0.20-0.33
N	Магниевые сплавы		70						
		Нелегированная, электролитическая бронза	100		AP301U(N)		65-150	0.09-0.33	0.20-0.33
	Медь и сплавы на основе меди (бронза, латунь)	Латунь, бронза, красная латунь	90				65-150	0.09-0.33	0.20-0.33
	оди (орогоа, латупь)	Медные сплавы, короткая стружка	110		AP301U(N)		65-150	0.09-0.33	0.20-0.33
		Высокопрочные сплавы Атрсо	300				65-150	0.09-0.33	0.20-0.33
		На основе железа (Fe), отожжённые	200				10-55	0.09-0.30	0.20-0.33
		На основе железа (Fe), состаренные	280				10-55	0.09-0.30	0.20-0.33
	Жаропрочные сплавы	На основе никеля (Ni) или кобальта (Co), отожжённые	250		AP301U(N)		10-55	0.09-0.30	0.20-0.33
S		На основе никеля (Ni) или кобальта (Co), состаренные	350		,		10-55	0.09-0.30	0.20-0.33
		На основе никеля (Ni) или кобальта (Co), литые	320	AP301U(N)			10-55	0.09-0.30	0.20-0.33
		Чистый титан	200			30-60	0.09-0.30	0.20-0.33	
	Титановые сплавы	α сплавы	375				30-60	0.09-0.30	0.20-0.33
	TWITCHIODDIC CHITCODS	α + β сплавы	375				30-60	0.09-0.30	0.20-0.33
		β сплавы	410				30-60	0.09-0.30	0.20-0.33
Н	Закалённые стали	Закалённые и отпущенные	43-47 HRC						
	Отбеленные чугуны		47-60 HRC						

Рекомендуемые режимы резания для сверления отверстий диаметром более 63,5 мм

			T	Ma	арка спла	за	0	Подача на оборот fn (мм/об)
	Обрабатывае	мые материалы	Твёрдость по Бринеллю	Tν	п пластин	Ы	Скорость резания Vc	Диаметр сверла (мм)
		·	(HB)	Периф.	Промеж.	Центр.	(м/мин)	≥63.50
		C=0.05-0.10%	125				80-100	0.18-0.35
	V	C=0.10-0.25%	125		AP301U(N)		80-100	0.18-0.35
	Углеродистые стали	C=0.25-0.55%	150	AF 3010(N)			80-100	0.18-0.35
		C=0.55-0.80%	170				80-100	0.18-0.35
	Высокоуглеродистые стали	Углеродистые инструментальные стали	210		AP301U(N)		70-100	0.18-0.35
		Без термообработки	180		AP301U(N) AP301U(N)		60-100	0.16-0.35
	Низколегированные стали	Термообработанные	275				70-100	0.18-0.30
	o a m	Термообработанные	350				70-100	0.18-0.30
	Высоколегированные	Отожжённые	200				60-100	0.16-0.30
	стали	Закалённые инструментальные стали	325				60-100	0.16-0.30
		Углеродистые нелегированные	180				50-100	0.15-0.30
	Литые стали	Низколегированные (легир. < 5%)	200		AP301U(N)		50-100	0.15-0.30
		Ферритные, мартенситные без термообработки	200				50-90	0.16-0.35
M		Аустенитные	200		4 D00411/NI)		50-90	0.16-0.35
IVI	Нержавеющие стали	Аустенитные, закалённые (РН нержавеющие стали)	300		AP301U(N)			
		Аустенитно-ферритные, дуплексные	230					
	Vanua in muni	Ферритные	200		A D20411/NI)			
	Ковкие чугуны	Перлитные	260		AP301U(N)			
	0	С низким пределом прочности	180		A D00411/NI)			
K	Серые чугуны	С повышенным пределом прочности	245		AP301U(N)			
	Чугуны с шаровидным	Ферритные	160		A D00 41 1/A 1)			
	графитом	Перлитные	250		AP301U(N)			
	С верми	кулярным графитом	230					
	Деформируемые	Не подвергнутые старению	30		4 D00 411 (41)		65-130	0.10-0.30
	алюминиевые сплавы	Подвергнутые старению	100		AP301U(N)		65-130	0.10-0.30
		≤ 12% Si, не подвергнутые старению	75				65-130	0.10-0.30
	Литые алюминиевые сплавы	≤ 12% Si, подвергнутые старению	90		AP301U(N)		65-130	0.10-0.30
	Сплавы	> 12% Si, не подвергнутые старению	130				65-130	0.10-0.30
N	Магниевые сплавы		70					
		Нелегированная, электролитическая бронза	100		AP301U(N)		65-130	0.10-0.30
	Медь и сплавы на основе	Латунь, бронза, красная латунь	90				65-130	0.10-0.30
	меди (бронза, латунь)	Медные сплавы, короткая стружка	110		AP301U(N)		65-130	0.10-0.30
		Высокопрочные сплавы Атрсо	300				65-130	0.10-0.30
		На основе железа (Fe), отожжённые	200				20-65	0.15-0.30
		На основе железа (Fe), состаренные	280				20-65	0.15-0.30
	Жаропрочные сплавы	На основе никеля (Ni) или кобальта (Co), отожжённые	250		AP301U(N)		20-65	0.15-0.30
S		На основе никеля (Ni) или кобальта (Co), состаренные	350		22.00(.1)		20-65	0.15-0.30
5		На основе никеля (Ni) или кобальта (Co), литые	320					
		Чистый титан	200				30-100	0.15-0.30
	Титоновический	α сплавы	375		AD20411(N)		30-100	0.15-0.30
	Титановые сплавы	α + β сплавы	375		AP301U(N)	J(N)	30-100	0.15-0.30
		β сплавы	410			30-100		0.15-0.30
Н	Закалённые стали	Закалённые и отпущенные	43-47 HRC					
П	Отбеленные чугуны		47-60 HRC					

Заметки

ACHTECK

www.achtecktool.com/ru

ЭКСПЕРТ В РЕЗАНИИ ТРУДНООБРАБАТЫВАЕМЫХ МАТЕРИАЛОВ

Обзор решений для растачивания отверстий

Система ARB для чернового растачивания

- Двузубая расточная система для черновой обработки глухих отверстий
- Двузубая расточная система для черновой обработки сквозных отверстий
- Система для обратного растачивания

Система MLR для обработки отверстий большого диаметра

- Мостовая система из стали
- Облегчённая мостовая система из алюминия

Система AFB для чистового растачивания

- Расточная система с картриджем типа А
- Расточная система с картриджем типа В
- Расточная система с картриджем типа С

Система MLF для чистового растачивания отверстий большого диаметра - Мостовая система из стали - Облегчённая мостовая система из алюминия

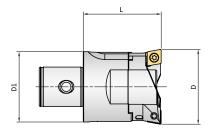
Антивибрационная система DFB для чистового растачивания

- Цельная антивибрационная расточная система с адаптером

Система EFB для чистовой обработки наружного диаметра

- Система для обработки наружных диаметров обычного размера
- Система для обработки наружных диаметров большого размера




Система ARB для чернового растачивания

Диапазон диаметров: 20 - 203 мм Универсальность в применении

Высокая точность, жёсткость, гибкость в выборе режущих пластин Шкала нанесена на корпус системы, легкость в эксплуатации

- 1 Серия расточной системы
- 2 Минимальный диаметр отверстия
- 3 Максимальный диаметр отверстия
- 4 типоразмер крепления к адаптеру AK1/AK2/AK3/AK4/AK5/AK6/AK7
- 5 W картридж не включён в поставку, без W включён)
 - L сверхдлинное исполнение

Диапазон диаметров D	Номер по каталогу	Типоразмер крепления	D1	L	Картридж (● в поставке	Винт	Вес (кг)
20-26	ARB-020-026-AK1	AK1	19	32.5	RC-020-CC06 ●	SH040160	0.07
20-20	ARD-020-020-ART	ANI	19	32.5	RC-020-SC06 O	3H040100	0.07
25-33	ARB-025-033-AK2	033-AK2 AK2 24 35.5		RC-025-CC06 ●	SH050200	0.12	
20-33	ARD-020-033-ARZ	ANZ	24	33.3	RC-025-SC06 O	3H050200	0.12
32-42	ARB-032-042-AK3	AK3	31	40	RC-032-CC09 ●	SH060200	0.2
32-42	AND-032-042-AN3	ANS	31	40	RC-032-SC09 O	SH000200	0.2
41-54	ARB-041-054-AK4	AK4	39	47	RC-041-CC09 ●	SH080250	0.38
41-04	ARD-041-034-AR4	AN4	39	47	RC-041-SC09 O	3HU0U25U	0.36
53-70	ARB-053-070-AK5	AK5	50	57	RC-053-CC12 ●	SH100300	0.75
55-70	ARD-000-070-AR0	AND	50	37	RC-053-SC12 O	SH 100300	0.75
68-90	ARB-068-110-AK6	AK6	63	71	RC-068-CC12 ●		1.6
08-90	ARB-008-110-AR0	ANO	03	'	RC-068-SC12 O	SH100350	1.0
88-110	ARB-068-110-AK6-L	AK6	63	71	RC-088-CC12 ●	SH 100350	1.8
00-110	ARD-000-110-AR0-L	ANO	03	'	RC-088-SC12 O		1.0
98-126	ARB-098-153-AK6	AK6	63	71	RC-098-CC12 ●	SH120400	2.3
90-120	ARD-090-133-AR0	ANO	03	'	RC-098-SC12 O	3H120400	2.3
125-153	ADD 000 452 AVC I	AK6	63	71	RC-125-CC12 ●		2.6
125-153	ARB-098-153-AK6-L	ANO	03	'	RC-125-SC12 O		2.0
00.400	ADD 000 450 AK7				RC-098-CC12 ●		2.0
98-126	ARB-098-153-AK7	AK7	90	87	RC-098-SC12 O		3.9
405.450	ADD 000 450 AK7 I	AK/	90	87	RC-125-CC12 ●	011400400	4.4
125-153	ARB-098-153-AK7-L				RC-125-SC12 O	SH120400	4.1
440.470	ADD 440 000 AKC				RC-098-CC12 ●		0.0
148-176	ARB-148-203-AK6	A1/0		7.4	RC-098-SC12 O		2.9
475.000	ADD 440 202 AKC I	AK6	63	71	RC-125-CC12 ●		
175-203	ARB-148-203-AK6-L				RC-125-SC12 O		3.2

- В стандартную поставку входит корпус системы и картриджи для обработки глухих отверстий. При заказе системы с картриджами для сквозных отверстий корпус должен быть заказан с указанием -W, а картриджи отдельно. Пример: ARB-148-203-AK6-W 1 шт. и RC-098-SC12 2 шт.
- Корпус расточной системы по вашему желанию может быть заказан без картриджей. Пример: ARB-020-026-AK1-W.
- В стандартную поставку обязательно включены: центральный болт, ключ, уплотнительное кольцо. Режущие пластины должны быть заказаны отдельно.
- Система ARB позволяет работать в внутренней подачей СОЖ.
- Перед началом работы требуется аккуратно собрать системы и затянуть все болты и крепёжные винты.
- Для получения минимального биения рекомендуется менять режущие кромки на двух зубьях одновременно.

Система ARB для чернового растачивания

В стандартной поставке - картриджи для чернового растачивания глухих отверстий (с пластинами СС)

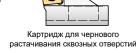
Обозначение картриджа

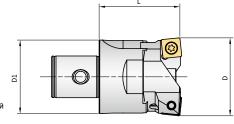
RC-___-CC___B 1 2 3 4

- 1 картридж для черновой обработки
- 2 Минимальный диаметр отверстия 3 форморазмер пластины
- 4 В для обратного растачивания, без В - для обычного

Картридж для чернового растачивания глухих отверстий

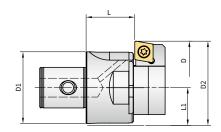
Картридж	Корпус системы без картриджей	Пластина	Винт и ключ
RC-020-CC06	ARB-020-026-AK1-W	00 0000	ST025060
RC-025-CC06	ARB-025-033-AK2-W	CC0602	FT-T8
RC-032-CC09	ARB-032-042-AK3-W	CC 00T2	ST040100
RC-041-CC09	ARB-041-054-AK4-W	CC09T3	FT-T15
RC-053-CC12	ARB-053-070-AK5-W		
RC-068-CC12	ARB-068-110-AK6-W		
RC-088-CC12	ARB-068-110-AK6-W		
	ARB-098-153-AK6-W		
RC-098-CC12	ARB-098-153-AK7-W	CC1204	ST050120 FT-T20
	ARB-148-203-AK6-W		77.120
	ARB-098-153-AK6-W		
RC-125-CC12	ARB-098-153-AK7-W		
	ARB-148-203-AK6-W		


Система ARB для чернового растачивания


Картриджи для чернового растачивания сквозных отверстий (с пластинами SC)

- Обозначение картриджа 1 картридж для черновой обработки 2 Минимальный диаметр отверстия

 - 3 форморазмер пластины
 4 В для обратного растачивания,
 без В для обычного



Картридж	Корпус системы без картриджей	Пластина	Винт и ключ		
RC-020-SC06	RC-020-SC06 ARB-020-026-AK1-W		ST025060		
RC-025-SC06	ARB-025-033-AK2-W	SC0602	FT-T8		
RC-032-SC09	ARB-032-042-AK3-W	SC 00T2	ST040100		
RC-041-SC09	ARB-041-054-AK4-W	SC09T3	FT-T15		
RC-053-SC12	ARB-053-070-AK5-W				
RC-068-SC12	ARB-068-110-AK6-W				
RC-088-SC12	ARB-068-110-AK6-W				
	ARB-098-153-AK6-W				
RC-098-SC12	ARB-098-153-AK7-W	SC1204	ST050120 FT-T20		
	ARB-148-203-AK6-W				
	ARB-098-153-AK6-W				
RC-125-SC12	ARB-098-153-AK7-W				
	ARB-148-203-AK6-W				

Система ARB для обратного растачивания

Мин. диаметр для входа в сквозное отверстие: D2 = L1 + (диаметр обр. растачивания)/2

Диапазон диаметров D	Номер по каталогу	Типоразмер крепления	Картридж для обратного растачивания (заказ. отдельно)	D1	L	Винт	L1	Вес (кг)	Пластина	Винт и ключ
25-31	ARB-020-026-AK1-W	AK1	RC-025-CC06-B	10 7	24 5	SH040160	10.0	0.06		
30-35	ARD-020-020-ART-VV	ANI	RC-030-CC06-B	10.7	21.5	SH040100	10.0	0.06	CC 0603	ST025060
32-40	ARB-025-033-AK2-W	AK2	RC-032-CC06-B	23.5	22.5	SH050200	12.5	0.11	CC0602	FT-T8
39-47	ARD-025-033-ARZ-VV	ANZ	RC-039-CC06-B	23.5	20.0	SH030200	12.5	0.11		
41-51	ADD 022 042 AV2 W	AK3	RC-041-CC09-B	20.5	22 5	SH060200	16.0	0.18		
50-60	ARB-032-042-AK3-W	ANS	RC-05060-CC09-B	30.5	23.5	311000200	10.0	0.19	CC 09T3	ST040100
50-63	ADD 044 054 AK4 W	A164	RC-05063-CC09-B	20.5	20.5	CLIODOSEO	20.0	0.36	0913	FT-T15
61-74	ARB-041-054-AK4-W	AK4	RC-061-CC09-B	36.5	28.5	SH080250	20.0	0.38		
65-82	ADD 052 070 AVE W	AVE	RC-065-CC12-B	40.5	22.5	C11400200	25.5	0.7		
78-95	ARB-053-070-AK5-W	AK5	RC-078-CC12-B	49.5	33.5	SH100300	25.5	0.75		
80-102	ADD 000 440 AKC W	ALCO	RC-080-CC12-B	00.0	45.5	011400050	20.5	1.5	00 4004	ST050120
100-122	ARB-068-110-AK6-W	AK6	RC-100-CC12-B	63.0	45.5	SH100350	32.5	1.6	CC1204	FT-T20
98-126	ARB-098-153-AK6-W	AK6	RC-098-CC12-B	63.0 45.5 SH120400 46.5	5 5 011400400	45.5 SH120400 46.5	11400400 40.5			
125-153	ARD-090-153-AR0-W	AND	RC-125-CC12-B	03.0	45.5	5.5 SH120400			2.45	

[●] Для обратного растачивания необходимо заказать расточную систему без картриджей (-W) и дозаказать картриджи для обратного растачивания отдельно. Пример: ARB-020-026-AK1-W и RC-025-CC06-B .

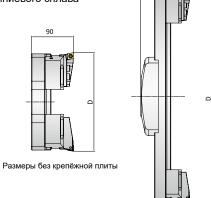
Пример подбора расточной системы: Необходимо обработать цековку диметром 26 мм. Выбираем корпус ARB-020-026-AK1-W (без картриджа) и один картридж RC-025-CC06-B (для обр. растачивания). Минимальный диаметр отверстия для прохода системы: D2 = 10 + 26/2 = 23 мм.

125

Растачивание

Система MLR для черновой обработки отверстий большого диаметра

Диапазон диаметров: 150 - 850 мм.


Модульная конструкция. Гибкость в применении, простота в эксплуатации.

Для уменьшения веса сборки возможно выбрать облегчённую конструкцию из алюминиевого сплава

Обозначение расточного инструмента

- 1 Серия расточной системы
- 2 Минимальный диаметр отверстия
- 3 Максимальный диаметр отверстия
- 4 LD облегчённая AL конструкция, без LD стальная

Размеры с крепёжной плитой

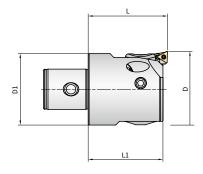
Расточная система MLR с мостом из стали

Диапазон диаметров D	Номер по каталогу	Вес (кг)	Крепёжная плита	Стальной мост	Ползун	Картридж	Пластина
150-210	MLR-150-210	5.5		BS-150-210		RC-150	CC1204
210-290	MLR-210-290	6.7	,	BS-210-290	RB-150		
290-370	MLR-290-370	8.1		BS-290-370			
370-450	MLR-370-450	9.8		BS-370-450			
450-530	MLR-450-530	11.4		BS-450-530			
530-610	MLR-530-610	17.2	LP40-200	BS-530-610			
610-690	MLR-610-690	18.7		BS-610-690			
690-770	MLR-690-770	20.4		BS-690-770			
770-850	MLR-770-850	22.7		BS-770-850			

Расточная система MLR с мостом из алюминиевого сплава

Диапазон диаметров D	Номер по каталогу	Вес (кг)	Крепёжная плита	Мост из алюм. сплава	Ползун	Картридж	Пластина
150-210	MLR-150-210-LD	3.9		BS-150-210-LD		RC-150	CC1204
210-290	MLR-210-290-LD	4.3	/ - LP40-200	BS-210-290-LD	RB-150		
290-370	MLR-290-370-LD	5.0		BS-290-370-LD			
370-450	MLR-370-450-LD	5.5		BS-370-450-LD			
450-530	MLR-450-530-LD	6.0		BS-450-530-LD			
530-610	MLR-530-610-LD	11.2		BS-530-610-LD			
610-690	MLR-610-690-LD	12.0		BS-610-690-LD			
690-770	MLR-690-770-LD	13.2		BS-690-770-LD			
770-850	MLR-770-850-LD	13.9		BS-770-850-LD			

- В стандартную поставку входят картриджи, мост, ползун, крепёжная плита (для бол. диаметров). Режущие пластины заказываются отдельно.
- Для получения минимального биения рекомендуется менять режущие кромки на двух зубьях одновременно.


Система АГВ для чистового растачивания

Диапазон диаметров: 20 - 203 мм

Возможно применять картриджи с различными пластинами для различных операций Регулировочный винт расположен внутри корпуса для избегания контакта со стружкой, возникновения коррозии, увеличивая долговечность системы

Обозначение расточного инструмента

- 1 Серия расточной системы
- 2 Минимальный диаметр отверстия
- 3 Максимальный диаметр отверстия
- 4 типоразмер крепления к адаптеру
- 5 W картридж не включён в поставку, без W - поставляется с картриджем типа A.

Номер по каталогу	Типоразмер крепления	Картридж (● в поставке ○ по запросу)	Диапазон диаметров D	L	L1	D1	Вес (кг)	Пластина
	AK1	FCT-10A ●	20-26		30.5	19	0.07	TP0802
AFB-020-036-AK1		FCT-10B ○	25-31	32.5				
		FCT-10C ○	30-36					
	AK2	FCT-20A ●	25-33	35.5	33	24	0.12	
AFB-025-047-AK2		FCT-20B ○	35-40					
		FCT-20C ○	39-47					
		FCT-30A ●	32-42	40	37	31	0.22	
AFB-032-060-AK3	AK3	FCT-30B ○	41-51					
		FCT-30C ○	50-60					
	AK4	FCT-40A ●	41-54	47	43	40	0.42	TC1102
AFB-041-074-AK4		FCT-40B ○	50-63					
		FCT-40C ○	61-74					
	AK5	FCT-50A ●	53-70	57	52	50	0.85	- TC1102
AFB-053-095-AK5		FCT-50B ○	65-82					
		FCT-50C ○	78-95					
	AK6	FCT-60A ●	68-100	71	67	64	1.85	
AFB-068-150-AK6		FCT-60B ○	94-126					
		FCT-60C ○	118-150]				
AFB-100-203-AK6	AK6	FCT-60A ●	100-153	71	67	64	2.7	
		FCT-60B ○	126-179					
		FCT-60C ○	150-203					
	AK7	FCT-60A ●	100-153		83	90	4.05	
AFB-100-203-AK7		FCT-60B ○	126-179	87				
		FCT-60C ○	150-203]				

- Минимальная цена деления для настройки 0.002 мм.
- Для поставки системы с картриджами В или С необходимо корпус системы и картриджи заказывать отдельно. Пример: AFB-020-026-AK1-W и FCT-10B.
- Режущие пластины необходимо заказывать отдельно.
- Система AFB позволяет работать в внутренней подачей СОЖ.
- Рекомендуется регулярно наносить смазку на внутренние части системы для увеличения срока службы.

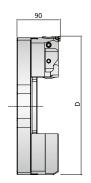
^растачивани

Картриджи для системы АГВ для чистовой обработки

Картридж	Номер по каталогу	Корпус расточной системы	Диапазон диаметров D	Пластина	Винт и ключ	
	FCT-10A		20-26			
	FCT-10B	AFB-020-036-AK1	25-31		ST020040 FT-T6	
	FCT-10C		30-36			
	FCT-20A		25-33			
	FCT-20B	AFB-025-047-AK2	35-40	TP0802		
	FCT-20C		39-47			
	FCT-30A		32-42			
	FCT-30B	AFB-032-060-AK3	41-51			
	FCT-30C		50-60			
	FCT-40A		41-54		ST025060 FT-T8	
	FCT-40B	AFB-041-074-AK4	50-63	TC1102		
	FCT-40C		61-74			
	FCT-50A		53-70			
	FCT-50B	AFB-053-095-AK5	65-82			
	FCT-50C		78-95			
	FCT-60A	AFB-068-150-AK6	68-153			
	FCT-60B	AFB-100-203-AK6	94-179			
	FCT-60C	AFB-100-203-AK7	150-203			
	FCT-40A00	AFB-041-074-AK4	41-54			
	FCT-50A00	AFB-053-095-AK5	53-70	TC1102	07007000	
	FCT-60A00	AFB-068-150-AK6	68-100			
		AFB-100-203-AK6	100-153		ST025060 FT-T8	
		AFB-100-203-AK7	100-153			
	FCC-40A00	AFB-041-074-AK4	41-54	CC0602		
	FCC-50A00	AFB-053-095-AK5	53-70	000002		
00		AFB-068-150-AK6	68-100		OT040400	
	FCC-60A00	AFB-100-203-AK6	100-153	CC09T3	ST040100 FT-T15	
		AFB-100-203-AK7	100-153			
45°	FCT-40A45	AFB-041-074-AK4	41-54]		
	FCT-50A45	AFB-053-095-AK5	53-70]	CT025000	
		AFB-068-150-AK6	68-100	TC1102	ST025060 FT-T8	
	FCT-60A45	AFB-100-203-AK6	100-153			
		AFB-100-203-AK7	100-153			
25°/	FCT-30A25	AFB-032-060-AK3	32-42		CT000040	
	FCT-40A25	AFB-041-074-AK4	41-54	TP0802	ST020040 FT-T6	
	FCT-50A25	AFB-053-095-AK5	53-70			
		AFB-068-150-AK6	68-100]	ST025060 - FT-T8	
_0.50	FCT-60A25	AFB-100-203-AK6	100-153	TC1102		
		AFB-100-203-AK7	100-153			

Система MLF для чистового растачивания отверстий большого диаметра

Диапазон диаметров: 150 - 850 мм


Модульная конструкция - для лучшего баланса сборки и высокой точности обработки

Гибкость в применении, простота в эксплуатации На базе моста из стали или алюминиевого сплава

Обозначение расточного инструмента

- 1 Серия расточной системы
- 2 Минимальный диаметр отверстия
- 3 Максимальный диаметр отверстия
- 4 LD облегчённая AL конструкция, без LD стальная

Размеры с крепёжной плитой

Расточная система MLF с мостом из стали

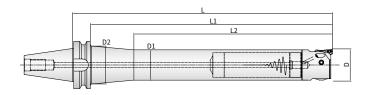
Диапазон диаметров D	Номер по каталогу	Вес (кг)	Типоразмер крепления	Steel boring bridge	Ползун	Балансировочный блок	Картридж	Пластина
150-210	MLF-150-210	6.2		BS-150-210		BB-150		
210-290	MLF-210-290	7.5		BS-210-290			FCT-60A	
290-370	MLF-290-370	8.5	/	BS-290-370	FB-150	BB 200	(в поставке) FCT-60B	TC 1102
370-450	MLF-370-450	10.2		BS-370-450		BB-200	FCT-60C	1102
450-530	MLF-450-530	11.6		BS-450-530	1			

Расточная система MLF с мостом из алюминиевого сплава

Диапазон диаметров D	Номер по каталогу	Вес (кг)	Типоразмер крепления	Мост из алюм. сплава	Ползун	Балансировочный блок	Картридж	Пластина
150-210	MLF-150-210-LD	4.6		BS-150-210-LD		BB-150		
210-290	MLF-210-290-LD	5.1		BS-210-290-LD				
290-370	MLF-290-370-LD	5.5	/	BS-290-370-LD			FCT-60A (в поставке) FCT-60B FCT-60C	TC 1102
370-450	MLF-370-450-LD	5.9		BS-370-450-LD				
450-530	MLF-450-530-LD	6.2		BS-450-530-LD	FB-150	BB-200		
530-610	MLF-530-610-LD	11.5		BS-530-610-LD		BB-200		
610-690	MLF-610-690-LD	12.3	LP40-200	BS-610-690-LD				
690-770	MLF-690-770-LD	13.6	LF4U-2UU	BS-690-770-LD				
770-850	MLF-770-850-LD	14.2		BS-770-850-LD				

[●] В стандартную поставку входят: мост, ползун, картридж FCT-60A, крепёжная плита (для бол. диаметров). Режущие пластины не включены в

При необходимости обрабатывать отверстия увеличенных диаметров, требуется применить картриджи типа В или С, которые нужно заказать отдельно, как и сам корпус расточной системы без картриджей. Пример: MLF-150-210-W и FCT-60B


астачивани

Система MLF для чистового растачивания отверстий большого диаметра

Диапазон диаметров	Номер по каталогу	Картридж
150-210		FCT-60A
176-236	MLF-150-210-W	FCT-60B
200-260		FCT-60C
210-290		FCT-60A
236-315	MLF-210-290-W	FCT-60B
260-340		FCT-60C
290-370		FCT-60A
316-396	MLF-290-370-W	FCT-60B
340-420		FCT-60C
370-450		FCT-60A
396-476	MLF-370-450-W	FCT-60B
420-500		FCT-60C
450-530		FCT-60A
476-556	MLF-450-530-W	FCT-60B
500-580		FCT-60C
530-610		FCT-60A
556-636	MLF-530-610-W	FCT-60B
580-660		FCT-60C
610-690		FCT-60A
636-716	MLF-610-690-W	FCT-60B
660-740		FCT-60C
690-770		FCT-60A
716-746	MLF-690-770-W	FCT-60B
740-820		FCT-60C
770-850		FCT-60A
796-876	MLF-770-850-W	FCT-60B
820-900		FCT-60C

Антивибрационная система DFB для чистового растачивания

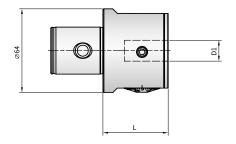
- Серия расточной системы
 Минимальный диаметр отверстия
 Максимальный диаметр отверстия
 Типоразмер крепёжной части (ВВТ50)
 эффективная длина расточной системы L2

DFB-__-3_-BBT50-L_5

Номер по каталогу	Картридж	Диапазон диаметров D	L2	L1	L	Вес (кг)	D1	D2	Пластина
	FCT-40A	41-54		320					
DFB-041-074-BBT50-L280	FCT-40B	50-63	280		358	7.4	40	55	
	FCT-40C	61-74							- TC 1102
	FCT-50A	53-70		400	438	11	50		
DFB-053-095-BBT50-L350	FCT-50B	65-82	350					56	
	FCT-50C	78-95							
	FCT-60A	68-100			550				
DFB-068-150-BBT50-L450	FCT-60B	94-126	450	512		18.9	64	80	
	FCT-60C	118-150							
DFB-100-203-BBT50-L525	FCT-60A	100-153							
	FCT-60B	126-179	525	525	563	563 23.5	70	85	
	FCT-60C	150-203							

- В стандартную поставку входит корпус расточной системы в сборе с картриджем типа А..
- Если необходимо применить картриджи типа В или С, их необходимо заказать отдельно. Пример: DFB-041-074-BBT50-L280 и FCT-40B.
- Режущие пластины необходимо заказывать отдельно.

астачивание

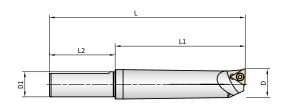

Система SFB для чистового растачивания отверстий небольшого диаметра

Головка для растачивания отверстий небольшого диаметра

Обозначение расточного инструмента

SFB-016-AK6 1 2 3

- 1 Серия расточной системы
- 2 Крепёжный диаметр под вставку, D1
- 3 Типоразмер крепления к адаптеру


Номер по каталогу	Типоразмер крепления	D	D1	L	Вес (кг)
SFB-016-AK6	AK6	64	16	50	1.25

Стальные вставки для растачивания отверстий небольшого диаметра

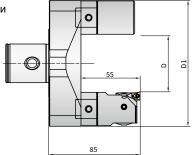
Обозначение вставки

BAR-16 __-1 2 3 4

- 1 Серия вставки
- 2 Диаметр хвостовика вставки
- 3 Минимальный диаметр отверстия
- 4 Максимальный диаметр отверстия

Номер по каталогу	Диапазон диаметров	D	D1	L	L1	L2	Пластина	Винт и ключ	Вес (кг)
BAR1608-32	8-11	8	16	80	32	48	TBET 0601	ST020040	0.08
BAR1610-40	10-13	10	16	87	40	47	1001	FT-T6	0.08
BAR1612-53	12-17	12	16	98	53	45	TDELL 0002	ST025060	0.11
BAR1616-68	16-21	16	16	110	68	42	TPEH 0902 FT-T8		0.14
BAR1620-83	20-26	20	16	125	83	42	TPEH 1103	ST030070 FT-T10	0.21

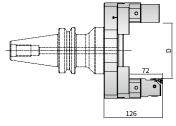
● При применении пластин TP__0902 диаметр отверстия должен быть не менее 2,8 мм (разные стандарты у разных производителей)

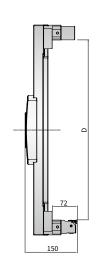

Система EFB для чистовой обработки наружного диаметра

Модульная конструкция - для лучшего баланса сборки и высокой точности обработки Гибкость в применении, простота в эксплуатации

Диапазон диаметров: 25 - 102 мм

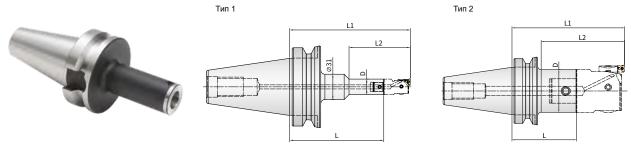
Необходимо задать вращение шпинделя против часовой стрелки для операций обработки наружного диаметра расточной системой


Диапазон	Корпус системы	без картрі	иджей	Корпус расточной	системы	Balance	block	Cartridge	
диаметров D	Номер по каталогу	Вес (кг)	D1	Номер по каталогу	Вес (кг)	Номер по каталогу	Вес (кг)	(Option)	Пластина
25-34								FCT-30C	
34-43	EFB-025-052-AK6	1.5	118					FCT-30B	
43-52								FCT-30A	
50-59								FCT-30C	
59-68	EFB-050-077-AK6	1.8	143	AFB-032-060-AK3	0.22	EB-AK3	0.22	FCT-30B	TP0802
68-77								FCT-30A	
75-84								FCT-30C	
84-93	EFB-075-102-AK6	1.9	168					FCT-30B	
93-102								FCT-30A	


Для обработки необходимо отдельно заказать все 3 составляющие. Например: для обработки наружного диаметра в диапазоне 25-34 мм требуется заказать корпус расточной системы EFB-025-052-AK6, корпус системы AFB-032-060-AK3, балансировочный блок EB-AK3 и картридж FCT30C Для обработки диаметров 34-43 мм: EFB-025-052-AK6, AFB-032-060-AK3-W, FCT-30B, EB-AK3

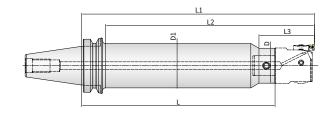
Расточные системы для обработки наружных диаметров поставляются без внутреннего подвода СОЖ

Система EFB для чистовой обработки наружного диаметров от 41 до 720 мм



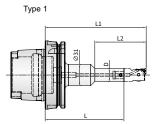
Диапазон	Типора крепле	•	Мост	Ползун	Корпус расточной	Кортридук	Балансировочный	Пластина	
диаметров D	Номер по каталогу	Вес (кг)	IVIOCI	Ползун	системы	Картридж	блок		
41-96			BS-150-210						
80-160			BS-210-290						
160-240	1	/	BS-290-370					1	
240-320			BS-370-450						
320-400			BS-450-530	EB-150-AK4	AFB-041-074-AK4	FCT-40A	EB-AK4	TC 1102	
400-480			BS-530-610						
480-560	LP40-200	4.7	BS-610-690						
560-640	LF4U-2UU	4.7	BS-690-770						
640-720			BS-770-850						

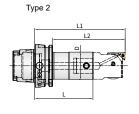
^растачивани

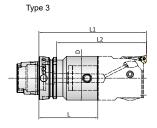

Базовые держатели ВТ для расточных систем

Номер по каталогу	Типоразмер крепления	D	L	L1	L2	Вес (кг)	Тип
BT30-AK1-70	AK1	19	70	102	80	0.5	2
BT30-AK2-80	AK2	24	80	115	93	0.6	2
BT30-AK3-80	AK3	31	80	120	98	0.7	2
BT30-AK4-70	AK4	39	70	117	95	0.8	2
BT30-AK5-70	AK5	50	70	127	105	0.8	2
BT30-AK6-70	AK6	64	70	141	119	1.2	2
BT40-AK1-75	AK1	19	75	107	80	1.0	2
BT40-AK1-105	AK1	19	105	137	110	1.2	2
BT40-AK2-85	AK2	24	85	120	93	1.1	2
BT40-AK2-115	AK2	24	115	150	123	1.4	2
BT40-AK3-95	AK3	31	95	135	108	1.2	2
BT40-AK3-125	AK3	31	125	165	138	1.5	2
BT40-AK4-85	AK4	39	85	132	105	1.3	2
BT40-AK4-130	AK4	39	130	177	150	1.9	2
BT40-AK4-175	AK4	39	175	222	195	2.2	2
BT40-AK5-50	AK5	50	50	107	80	1.2	2
BT40-AK5-75	AK5	50	75	132	105	1.3	2
BT40-AK5-125	AK5	50	125	182	155	2.4	2
BT40-AK5-175	AK5	50	175	232	205	3.0	2
BT40-AK6-65	AK6	64	65	136	109	1.3	2
BT40-AK6-115	AK6	64	115	186	159	2.7	2
BT40-AK6-165	AK6	64	165	236	209	3.9	2
BT50-AK1-115	AK1	19	115	147	75	4.0	1
BT50-AK2-85	AK2	24	85	120	82	3.8	2
BT50-AK2-110	AK2	24	110	145	107	3.9	2
BT50-AK3-90	AK3	31	90	130	92	3.9	2
BT50-AK3-125	AK3	31	125	165	127	4.1	2
BT50-AK4-115	AK4	39	115	162	124	4.3	2
BT50-AK4-145	AK4	39	145	192	154	4.5	2
BT50-AK4-175	AK4	39	175	222	184	4.8	2
BT50-AK5-65	AK5	50	65	122	84	3.9	2
BT50-AK5-105	AK5	50	105	162	124	4.5	2
BT50-AK5-150	AK5	50	150	207	169	5.1	2
BT50-AK5-180	AK5	50	180	237	199	5.5	2
BT50-AK5-240	AK5	64	240	297	259	6.2	2
BT50-AK6-95	AK6	64	95	166	128	4.5	2
BT50-AK6-170	AK6	64	170	241	203	6.3	2
BT50-AK6-230	AK6	64	230	301	263	7.7	2
BT50-AK6-290	AK6	64	290	361	323	9.0	2
BT50-AK7-170	AK7	90	170	257	219	6.1	2
BT50-AK7-230	AK7	90	230	317	279	11.8	2
BT50-AK7-290	AK7	90	290	377	339	14.6	2
BT50-AK7-350	AK7	90	350	437	399	17.4	2

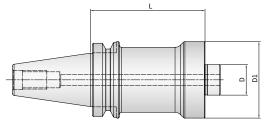
Усиленные удлинённые базовые держатели ВТ для расточных систем






Номер по каталогу	Типоразмер крепления	D	D1	L	L1	L2	L3	Вес (кг)
BT50-AK4-190-P46	AK4	39	46	190	237	194	65	5.6
BT50-AK4-235-P46	AK4	39	46	235	282	239	65	6.2
BT50-AK5-240-P61	AK5	50	61	240	297	254	80	8.2
BT50-AK5-300-P61	AK5	50	61	300	357	314	80	9.6
BT50-AK6-260-P72	AK6	64	72	260	332	289	100	10.3
BT50-AK6-315-P72	AK6	64	72	315	386	343	100	12.2
BT50-AK6-290-P80	AK6	64	80	290	361	318	100	13.2
BT50-AK6-350-P80	AK6	64	80	350	421	378	100	15.2

Базовые держатели HSK-A для расточных систем


Номер по каталогу	Типоразмер крепления	D	L	L1	L2	Вес (кг)	Тип
HSK-A63-AK1-75	AK1	19	75	107	81	0.9	2
HSK-A63-AK1-100	AK1	19	100	132	106	1.3	2
HSK-A63-AK2-85	AK2	24	85	120	94	1.7	2
HSK-A63-AK2-100	AK2	24	100	135	109	2.2	2
HSK-A63-AK3-95	AK3	31	95	135	109	2.3	2
HSK-A63-AK3-125	AK3	31	125	165	139	2.6	2
HSK-A63-AK4-85	AK4	39	85	132	106	2.1	2
HSK-A63-AK4-130	AK4	39	130	177	151	2.7	2
HSK-A63-AK5-75	AK5	50	75	132	106	2.3	2
HSK-A63-AK5-135	AK5	50	135	192	166	2.8	2
HSK-A63-AK6-75	AK6	64	75	146	120	2.3	3
HSK-A63-AK6-115	AK6	64	115	186	160	2.8	3
HSK-A63-AK6-165	AK6	64	165	236	210	3.1	3
HSK-A100-AK1-105	AK1	19	105	137	75	2.6	1
HSK-A100-AK2-115	AK2	24	115	150	121	2.7	2
HSK-A100-AK3-125	AK3	31	125	165	136	2.9	2
HSK-A100-AK4-120	AK4	39	120	167	138	3.1	2
HSK-A100-AK4-180	AK4	39	180	227	198	3.7	2
HSK-A100-AK5-110	AK5	50	110	167	138	3.5	2
HSK-A100-AK5-185	AK5	50	185	242	213	4.6	2
HSK-A100-AK6-95	AK6	64	95	166	137	3.6	2
HSK-A100-AK6-170	AK6	64	170	241	212	5.5	2
HSK-A100-AK6-230	AK6	64	230	301	272	7.1	2

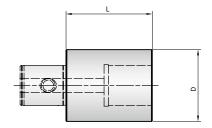
Также доступны базовые держатели под конуса SK40 и SK50

Базовые держатели ВТ для расточных систем мостового типа

Держатели на конусе BT50

Номер по каталогу	Типоразмер крепления	D1	D	L	Винт	Вес (кг)
BT40-BA40-70	BA40	100	40	70		2.8
BT50-BA40-100	BA40	100	40	100		6.1
BT50-BA40-150	BA40	100	40	150		7.9
BT50-BA40-200	BA40	100	40	200	SH120350	9.7
BT50-BA40-250	BA40	100	40	250		10.9
BT50-BA40-300	BA40	100	40	300		12.5
BT50-BA40-350	BA40	100	40	350		13.9

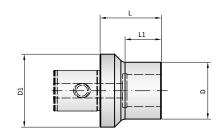
Базовые держатели HSK-A100 для расточных систем мостового типа



Номер по каталогу	Типоразмер крепления	D1	D	L	Винт	Вес (кг)
HSK-A100-BA40-80	BA40	100	40	80	SH120350	5.1
HSK-A100-BA40-150	BA40	100	40	150	3H120330	7.3

Также доступны базовые держатели под конуса SK40 и SK50

Удлинитель



Номер по каталогу	Типоразмер адаптера	Типоразмер инструмента	D	L	Вес (кг)
AK11-30	AK1	AK1	19	30	0.07
AK22-30	AK2	AK2	24	30	0.10
AK33-30	AK3	AK3	31	30	0.15
AK44-45	AK4	AK4	39	45	0.40
AK44-60	AK4	AK4	39	60	0.53
AK55-60	AK5	AK5	50	60	0.80
AK55-90	AK5	AK5	50	90	1.25
AK66-60	AK6	AK6	64	60	1.40
AK66-100	AK6	AK6	64	100	2.33

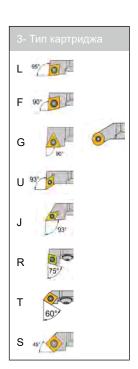
Переходник

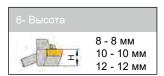
Номер по каталогу	Типоразмер адаптера	Типоразмер инструмента	D1	D	L	L1	Вес (кг)
AK21-36	AK2	AK1	24	19	36	30	0.10
AK31-41	AK3	AK1	31	19	41	30	0.15
AK32-37	AK3	AK2	31	24	37	25	0.15
AK41-58	AK4	AK1	39	19	58	40	0.30
AK42-50	AK4	AK2	39	24	50	36	0.30
AK43-50	AK4	AK3	39	31	50	37	0.35
AK51-60	AK5	AK1	50	19	60	40	0.45
AK52-54	AK5	AK2	50	24	54	35	0.45
AK52-75	AK5	AK2	50	24	75	55	0.47
AK53-47	AK5	AK3	50	31	47	29	0.50
AK53-75	AK5	AK3	50	31	75	55	0.57
AK54-42	AK5	AK4	50	39	42	25	0.50
AK54-75	AK5	AK4	50	39	75	55	0.66
AK61-70	AK6	AK1	64	19	70	40	0.90
AK62-63	AK6	AK2	64	24	63	45	0.70
AK62-90	AK6	AK2	64	24	90	72	0.72
AK63-56	AK6	AK3	64	31	56	39	0.75
AK63-90	AK6	AK3	64	31	90	73	0.88
AK64-51	AK6	AK4	64	39	51	35	0.85
AK64-90	AK6	AK4	64	39	90	75	1.08
AK65-41	AK6	AK5	64	50	41	25	0.85
AK65-90	AK6	AK5	64	50	90	74	1.45

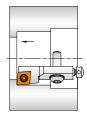
астачивание

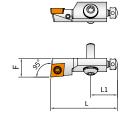
Система обозначения картриджей ISO






1- Тип крепления режущих пластин
S - крепление винтом
M - крепление за отверстие и прижимом сверху

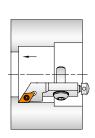


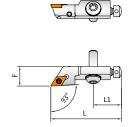

7- Тип инструмента
СА - картридж для точения и растачивания

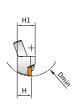
8-Длина	реж	ущей	кром	ІКИ				
			Форма	а режуц	цей пла	стины		
Диаметр вписанной окружности (мм)	С	D	R	S	Т	V	W	K
(MINI)								
3.97					06		02	
5.0			05					
5.56					09			
6.0		06						
6.35	06	07			11	11	04	
8.0			80					
9.525	09	11	09	09	16	16	06	16
10.0			10					
12.0			12					
12.7	12	15	12	12	22	22	80	
15.875	16		15	15	27			
16.0			16					
L		L					L	
				L_				

Картридж ISO с креплением пластин винтом

Kr=95° SCL.R/L

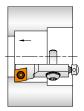


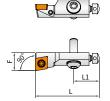



Правостороннее			Осно	вные р	азмеры	(мм)		Пластины	R	
исполнение	исполнение	Н	F	L	H1	L1	Dmin	Пластины	K	L
SCLCR08CA-06	SCLCL08CA-06	8	10	32	10	17	25	CC0602	•	•
SCLCR10CA-09	SCLCL10CA-09	10	14	50	15	20	40	CC09T3	0	0
SCLCR12CA-12	SCLCL12CA-12	12	20	55	20	20	50	CC 1204	0	0
SCLCR16CA-12	SCLCL16CA-12	16	25	63	21	25	60	CC 1204	0	0

● : На складе ○ : Под заказ

Kr=93° SDJ.R/L

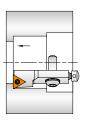


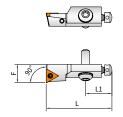


Правостороннее	Правостороннее Левостороннее		Осно	овные р	азмеры	(MM)		Пластины	R	
исполнение	исполнение	Н	F	L	H1	L1	Dmin	Пластины		L
SDJCR08CA-07	SDJCL08CA-07	8	14	50	15	20	25	DC0702	0	0
SDJCR10CA-07	SDJCL10CA-07	10	14	50	15	20	40	DC 0702	•	0
SDJCR10CA-11	SDJCL10CA-11	10	14	50	15	20	40	DC 11T3	0	0
SDJCR12CA-11	SDJCL12CA-11	12	20	55	20	20	50	DC 11T3	0	0

астачивание

Kr=90° SCF.R/L

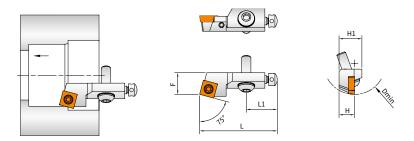




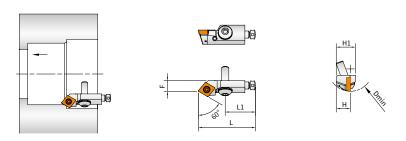
Правостороннее	Левостороннее		Осно	овные р	азмеры	Пластины	R	-		
исполнение	исполнение	Н	F	L	H1	L1	Dmin	пластины	K	_
SCFCR08CA-06	SCFCL08CA-06	8	10	32	10	17	25	CC0602	•	•
SCFCR10CA-06	SCFCL10CA-06	10	14	50	15	20	40	CC0602	•	•
SCFCR10CA-09	SCFCL10CA-09	10	14	50	15	20	40	CC09T3	•	•
SCFCR12CA-09	SCFCL12CA-09	12	20	55	20	20	50	CC09T3	0	0
SCFCR12CA-12	SCFCL12CA-12	12	20	55	20	20	50	CC 1204	•	•
SCFCR16CA-12	SCFCL16CA-12	16	25	63	20	25	60	CC 1204	0	0

● : На складе ○ : Под заказ

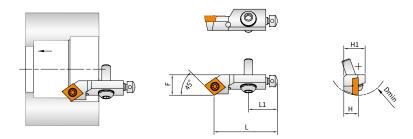
Kr=90° STF.R/L



Правостороннее			Осно	овные р	азмеры	(мм)		Пластины	R	
исполнение	исполнение	Н	F	L	H1	L1	Dmin		K	L
STFCR08CA-09	STFCL08CA-09	8	10	32	10	17	25	TC 0902	•	•
STFCR10CA-11	STFCL10CA-11	10	14	50	15	20	40	TC 1102	•	•
STFCR12CA-16	STFCL12CA-16	12	20	55	20	20	50	TC 16T3	•	•
STFCR16CA-16	STFCL16CA-16	16	25	63	21	25	60	TC 16T3	•	•

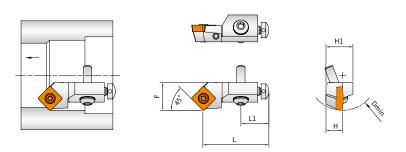

Kr=75° SSR.R/L

Правостороннее	Правостороннее исполнение исполнение		Осно	овные р	азмеры	(MM)		Пластины	R	
исполнение		Н	F	L	H1	L1	Dmin	пластины		<u> </u>
SSRCR10CA-09	SSRCL10CA-09	10	14	50	15	20	40	SC09T3	•	•
SSRCR12CA-09	SSRCL12CA-09	12	20	55	20	20	50	SC09T3	0	0
SSRCR12CA-12	SSRCL12CA-12	12	20	55	20	20	50	SC 1204	•	•
SSRCR16CA-12	SSRCL16CA-12	16	25	63	21	25	55	SC 1204	•	•


● : На складе ○ : Под заказ

Kr=60° SCT.R/L

Правостороннее Левостороннее		Осно	овные р	азмеры	Пластины	P	_			
исполнение	исполнение	Н	F	L	H1	L1	Dmin	Пластины	K	L
SCTCR08CA-06	SCTCL08CA-06	8	6	32	10	17	25	CC0602	•	•
SCTCR10CA-09	SCTCL10CA-09	10	9	50	15	20	40	CC 09T3	•	0


Kr=45° SCS.R/L

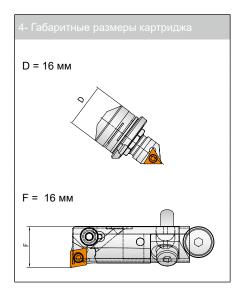
Правостороннее	Правостороннее Левостороннее исполнение исполнение		Осно	овные р	азмеры	(мм)		Пластины	В	
исполнение		Н	F	L	H1	L1	Dmin	Пластины	K	_
SCSCR08CA-06	SCSCL08CA-06	8	10	28	10	17	25	CC0602	0	0
SCSCR10CA-09	SCSCL10CA-09	10	14	44	44	20	40	CC09T3	0	0

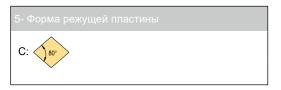
● : На складе ○ : Под заказ

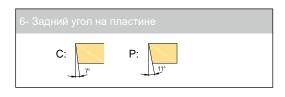
Kr=45° SSS.R/L

Правостороннее	Левостороннее		Осно	овные р	азмеры	(MM)		Пластины	R	
исполнение	исполнение	Н	F	L	H1	L1	Dmin	Пластины		_
SSSCR10CA-09	SSSCL10CA-09	10	14	44	15	20	40	SC09T3	•	0
SSSCR12CA-09	SSSCL12CA-09	12	20	47	20	20	50	SC09T3	0	0
SSSCR12CA-12	SSSCL12CA-12	12	20	47	20	20	50	SC 1204	•	0
SSSCR16CA-12	SSSCL16CA-12	16	25	53	21	25	60	SC 1204	0	0

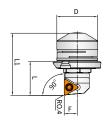
Система обозначения картриджей для чистовой обработки



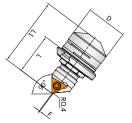

- Серия


AFB - Achteck Fine Boring Чистовое растачивание от Актек

7- Длина	пежу	шей	KDOMK	и				
Дина	рожу	щои			цей пла	стины		
Диаметр вписанной окружности (мм)	С	D	R	S	Т	V	W	K
3.97					06		02	
5.0			05					
5.56					09			
6.0		06						
6.35	06	07			11	11	04	
8.0			08					
9.525	09	11	09	09	16	16	06	16
10.0			10					
12.0			12					
12.7	12	15	12	12	22	22	80	
15.875	16		15	15	27			
16.0			16					
L			L		L		L	-
			L		L.	1		•-



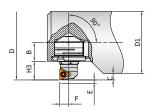
астачивание

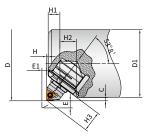

Картриджи типа А и В для чистовой обработки с регулировкой

Картридж типа А для чистовой обработки с регулировкой

Картридж типа В с перпендикулярной установкой

Картридж типа A с установкой под углом


Метод установки	Правостороннее исполнение	Левостороннее исполнение	Угол в плане	Dmin	D	L1	L	F	Пластина	Винт и ключ
	AFB-A9016-CC06R	AFB-A9016-CC06L		25.5	16	25.15	14.3	0.45	CC0602	ST025060 FT-T8
	AFB-A9016-TB06R	AFB-A9016-TB06L		24.8	16	25.0	14.3	0.49	TB 0601	ST020040 FT-T6
	AFB-A9020-TC09R	AFB-A9020-TC09L		32.5	20	33.7	19.1	0.9	TC0902	ST022055 FT-T6
	AFB-A9020-TP09R	AFB-A9020-TP09L	90°		20	33.7	19.1	0.9	TP 0902	ST025060 FT-T8
Установка под	AFB-A9022-TC11R	AFB-A9022-TC11L		42.0	22	45.3	23.0	1.1	TC 1102	ST025060 FT-T8
углом	AFB-A9022-TP11R	AFB-A9022-TP11L		42.0	22	45.3	23.0	1.1	TP 1103	ST030070 FT-T10
	AFB-A9032-TC16R	AFB-A9032-TC16L		59.5	32	62.3	33.3	1.2	TC 16T3	ST040100 FT-T15

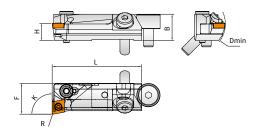

Метод установки	Правостороннее исполнение	Левостороннее исполнение	Угол в плане	Dmin	D	L1	L	F	Пластина	Винт и ключ
	AFB-B9016-CC06R	AFB-B9016-CC06L		27.0	16	24.2	13.3	5.1	CC 0602	ST025060 FT-T8
	AFB-B9016-TB06R	AFB-B9016-TB06L		27.0	16	24.2	13.3	5.1	TB 0601	ST020040 FT-T6
	AFB-B9020-TC09R	AFB-B9020-TC09L		36.5	20	32.9	18.3	6.3	TC 0902	ST022055 FT-T6
	AFB-B9020-TP09R	AFB-B9020-TP09L	90°		20	32.9	18.3	6.3	TP 0902	ST025060 FT-T8
	AFB-B9022-TC11R	AFB-B9022-TC11L		40.5	22	44.3	22.1	7.2	TC 1102	ST025060 FT-T8
Терпендикулярная установка	AFB-B9022-TP11R	AFB-B9022-TP11L	48.5	22	44.3	22.1	7.2	TP 1103	ST030070 FT-T10	
	AFB-B9032-TC16R	AFB-B9032-TC16L	-	68.4	32	62.7	32.0	10.3	TC 16T3	ST040100 FT-T15

- Для картриджей с установкой под углом осевое перемещение = радиальное перемещение / tan53°8′
- Никогда не устанавливайте картридж вне диапазона настройки, иначе вы можете повредить устройство картриджа
- Картриджи типа A и B фиксируют настройку автоматически (система автоблокировки), нет необходимости раскреплять картридж перед настройкой на размер и закреплять после.
- Гайка для настройки на размер с циферблатом. Размер радиальной настройки составляет 0,02 на диаметр на минутной шкале

Инструкция по настройке картриджей для чистовой обработки

Диапазоны настройки картриджей типа А и В для чистовой обработки

Тип В - с перпендикулярной установкой

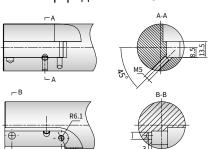

Тип А - с установкой под углом

Метод	Пластины		D1	D	С	E	E1	Н3	Н	H1	H2	F
установки	Номер по каталогу	R	Мин.	Мин.	Мин.	Макс.	Макс.	Мин.	П	пі	П	r
		0.2		26.2	1.70			11.0				0.40
	CC 06	0.4		25.9	1.65		1.5	10.7			9.55	0.40
		8.0	22.0	25.3	1.60	2.0		10.1		6.6		0.45
		0.2	22.0	25.7	1.50	2.0	1.5	10.9		0.0	9.55	0.40
	TB 06	0.4		25.4	1.45			10.6				0.40
		8.0		24.8	1.40			10.0				0.45
		0.2		33.4	2.45			14.9				0.95
	T 09	0.4	28.5	33.1	2.30	2.8	2.1	14.5	0.5	9.4	12.15	1.00
Установка под		8.0		32.5	2.00			13.7				1.10
углом		0.2		42.9	2.45			17.6				1.15
	T 11	0.4	38.0	42.6	2.30	4.8	3.6	17.2		11.2	14.85	1.20
		8.0		42.0	2.00			16.4				1.30
		0.2		60.6	2.80			26.2				1.30
	TC 16		55.0 60.0	60.0	2.50	8.0	6.0	25.4		16.65	12.70	1.40
		8.0		59.4	2.20			24.6				1.50

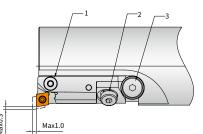
N4	Пластины		D1	D	С	Е	В	НЗ	_
Метод установки	Номер по каталогу	R	Мин.	Мин.	Мин.	Макс.	Мин.	Мин.	F
		0.2		27.9	0.60			9.80	
	CC 06	0.4	26.0	27.6	0.55	2.5		9.60	
		8.0		27.0	0.50		3.6	9.10	E 1
7	TB 06	0.2		25.9	0.60	2.5	3.0	8.80	5.1
		0.4	24.0	25.6	0.55			8.60	
		8.0		25.0	0.50			8.10	
		0.2		37.4	1.45	3.5	4.55	13.95	6.3
	T09	0.4	34.5	37.1	1.30			13.60	
Перпендикулярная установка		8.0		36.5	1.00			12.90	
,		0.2		49.7	1.45			16.75	
	T11	0.4	46.5	49.1	1.30	6.0	7.75	16.40	7.2
		8.0		48.5	1.00			15.70	
		0.2		69.6	1.30			25.00	10.3
	TC 16	0.4	67.0	69.0	1.00	10.0	9.4	24.30	
	1016	0.8		68.4	0.70			23.60	

Тип С - картридж для точной настройки на размер

На изображении - правостороннее исполнение


Правостороннее исполнение	Левостороннее исполнение	Dmin	L	F	В	Н	К	Пластина	Винт и ключ
AFB-C9016-CC06R	AFB-C9016-CC06L						90°	CC 060204	
AFB-C9516-CC06R	AFB-C9516-CC06L	28	45.0	45.8 16			95°	CC 060204	
AFB-C9016-TP09R	AFB-C9016-TP09L	20	45.6	10			90°	TP 090204	
AFB-C9516-TP09R	AFB-C9516-TP09L						95°	TP 090204	ST025060 FT-T8
AFB-C12016-DC07R	AFB-C12016-DC07L	28	47.5	16	13.5	8.5	120°	DC 070204	
AFB-C9020-TC11R	AFB-C9020-TC11L						90°	TC 110204	
AFB-C9520-TC11R	AFB-C9520-TC11L	36	45.0	20			95°	TC 110204	
AFB-C9020-TP11R	AFB-C9020-TP11L	36	45.8	_ ∠0			90°	TP 110304	ST030070
AFB-C9520-TP11R	AFB-C9520-TP11L						95°	TP 110304	FT-T10

- Пожалуйста, прочтите инструкцию по регулировке картриджей типа C перед настройкой для того, чтобы избежать повреждения деталей.
- При применении пластин TP__0902 диаметр отверстия должен быть не менее 2,8 мм (разные стандарты у разных производителей)
- Точность установки размера составляет 0,01 мм на диаметр.
- Диапазон осевой регулировки составляет 0-1 мм, радиальной 0-0,6 мм на диаметр


Клин для осевой регулировки	Винт для осевой регулировки	Винт для крепления картриджа	Ключ для крепления картриджа	Ключ для радиальной регулировки	Ключ для осевой регулировки
ASV-12H	AH050200	SH050200	LT-H4	LT-H2.5	LT-H3

Инструкция по настройке картриджей для чистовой обработки

Диапазоны регулировки для картриджей типа С

Установка размера на картриджах типа C

- 1. Винт радиальной регулировки
- 2. Винт крепления картриджа
- 3. Винт осевой регулировки

Осевая регулировка.

- Слегка ослабьте крепёжный винт картриджа 2
- Поверните винт осевой регулировки 3 по часовой стрелке, сдвигая картридж вперёд до желаемого размера Закрепите картридж, закрутив винт 2
- Если необходимо переместить картридж назад, ослабьте крепёжный винт, переместите картридж на предыдущую позицию и после отрегулируйте точное положение винтом 3.

Радиальная регулировка.

- Поверните винт радиальной регулировки 1 по часовой стрелке, диаметр инструмент увеличится на 0,01 мм на оборот
- Повернув винт радиальной регулировки 1 против часовой стрелки, диаметр инструмент уменьшится на 0,01 мм на оборот

Режущие пластины для растачивания

	Nº	Номер по каталогу	Обрабатываемый материал	Марка сплава	Тип пластины	Наличие
	1	CCMT 060204E-PC2	Сталь	AC152P	Твёрдый сплав с покрытием (Р05-Р15)	•
	2	CCMT 060204E-PC2	Сталь	AC252P	Твёрдый сплав с покрытием (Р20-Р35)	•
	3	CCMT 060204E-PC2	Низколегированная или нержавеющая сталь	AP301M	Твёрдый сплав с покрытием (М15-М35)	•
CC0602	4	CCMT 060204E-KC2		AC102K	Твёрдый сплав с покрытием (K05-K15)	•
	5	CCMT 060204E-KC2	Чугун	AC202K	Твёрдый сплав с покрытием (К10-К30)	•
	6	CCGW 060204-S01020-SL-1		PB90	CBN (K01-K20)	0
	7	CCGT 060204F-NC2	Алюминий	AW100K	Твёрдый сплав без покрытия	•
	8	CCGW 060204-1-NL-05	Алюминии	PD20	PCD	0

	Nº	Номер по каталогу	Обрабатываемый материал	Марка сплава	Тип пластины	Наличие
	1	CCMT 09T308-M2T	'	AT202	Кермет (Р10-Р20)	•
	2	CCMT 09T308E-PC2	Сталь	AC152P	Твёрдый сплав с покрытием (Р05-Р15)	•
	3	CCMT 09T308E-PC2		AC252P	Твёрдый сплав с покрытием (P20-P35)	•
	4	CCMT 09T308E-PC2	Низколегированная или нержавеющая сталь	AP301M	Твёрдый сплав с покрытием (M15-M35)	•
CC 09T3	5	CCMT 09T308E-KC2		AC102K	Твёрдый сплав с покрытием (K05-K15)	•
	6	CCMT 09T308E-KC2	Чугун	AC202K	Твёрдый сплав с покрытием (К10-К30)	•
	7	CCGW 09T308-S01020-SL-1		PB90	CBN (K01-K20)	0
	8	8 CCGT 09T308F-NC2		AW100K	Твёрдый сплав без покрытия	•
	9	CCGW 09T308-1-NL-05	Алюминий	PD20	PCD	0
	10	CCGW 09T308-1-LL-05	,	PD20	PCD с прямой режущей кромкой	0
	Nº	Номер по каталогу	Обрабатываемый материал	Марка сплава	Тип пластины	Наличие
	1	CCMT 120408E-PC2		AT202	Кермет (Р10-Р20)	•
	2	CCMT 120408E-PC2	Сталь	AC152P	Твёрдый сплав с покрытием (Р05-Р15)	•
	3	CCMT 120408E-PC2		AC252P	Твёрдый сплав с покрытием (Р20-Р35)	•
CC 1204	4 CCMT 120408E-PC2 5 CCMT 120408E-KC2 6 CCMT 120408E-KC2	CCMT 120408E-PC2	Низколегированная или нержавеющая сталь	AP301M	Твёрдый сплав с покрытием (M15-M35)	•
001204			AC102K	Твёрдый сплав с покрытием (К05-К15)	•	
		Чугун	AC202K	Твёрдый сплав с покрытием (K10-K30)	•	

	Nº	Номер по каталогу	Обрабатываемый материал	Марка сплава	Тип пластины	Наличие
	1	TPGT 080204FL-F	Сталь	AT200	Кермет (Р10-Р20)	•
TP0802	2	TPEH 080204FL-F	Низколегированная или нержавеющая сталь	AP301M	Твёрдый сплав с покрытием (М15-М35)	•
	3	TPGT 080202-1-NL-05	A =10.44.44.44	PD20	PCD	0
	4	TPGT 080204-1-NL-05	Алюминий	PD20	PCD	0

Алюминий

PB90

AW100K

PD20

CBN (K01-K20)

Твёрдый сплав без покрытия

PCD

0

ullet

CCGW 120408-S01020-SL-1

CCGT 120408F-NC2

CCGW 120408-1-NL-05

8

9

	Nº	Номер по каталогу	Обрабатываемый материал	Марка сплава	Тип пластины	Наличие
	1	TCMT 110204-M2T		AT202	Кермет (Р10-Р20)	•
	2	TCGT 110204FL-F		AT200	Кермет (Р10-Р20)	•
	3	TCMT 110202E-PB1	Сталь	AC250P	Твёрдый сплав с покрытием (P20-P35)	•
	4	TCMT 110204E-PB1		AC250P	Твёрдый сплав с покрытием (Р20-Р35)	•
TC1102	5	TCGT 110204F-UF	Низколегированная	AP301M	Твёрдый сплав с покрытием (M15-M35)	•
	6	TCGT 110204E-UF	или нержавеющая сталь	AP301M	Твёрдый сплав с покрытием (M15-M35)	•
	7	TCMT 110204E-KC2	Чугун	AC202K	Твёрдый сплав с покрытием (K10-K30)	•
	8	TCGT 110204F-NC2		AW100K	Твёрдый сплав без покрытия	•
	9	TCGW 110202-1-NL-05	Алюминий	PD20	PCD	0
	10	TCGW 110204-1-NL-05		PD20	PCD	0

●: На складе ▲: На складе, устаревающий продукт, скоро будет замена

Состав расточной системы

для чистовой обработки

Инструкция по настройке и работе расточных систем АГВ для чистовой обработки

Подготовка...

1. Проверьте, что диаметр обрабатываемого отверстия попадает в диапазон диаметров для расточной системы

2. Удостоверьтесь, что все компоненты расточной системы на месте и крепёжные винты пластины и картриджи затянуты.

3. Очистите отверстие на адаптере для крепление расточной головки, поместите головку в адаптер и затяните крепёжный винт на адаптере

4. Удостоверьтесь, что размеры сборки и положение режущей кромки подходят для снятия необходимого припуска на надлежащем диаметра на желаемую глубину обработки...

Шаг 1. Ослабьте винт крепления картриджа 🗇

Проверьте положение в установке настройки на размер.

Шаг 4. Затяните крепёжный винт 🦪

5 Пластин

6 Картрид

Внимание!

1. Перед началом обработки проверьте затянуты ли все крепёжные винты.

2. Расточная головка при настройке поворачивает внутренний винт для достижения точного радиального позиционирования. В случае, если циферблат не поворачивается, остановите процедуру и проверьте на предмет ослабленного винта крепления картриджа или установки размера вне диапазона диаметров.

3. Для обратного растачивания установите картридж в обратном направлении и установите обратное вращение шпинделя, проверьте припуск и положение режущей кромки.

4. При вылете более 4xD рекомендуется применять антивибрационную расточную систему DFB.

5. Увеличенный радиус при вершине пластины позволяет получить лучшее качество обработанной поверхности и повышает надёжность режущей кромки, однако повышает вероятность возникновения вибраций. При чистовой обработке не рекомендуется работать пластинами с радиусом при вершине более 0,4 мм.

Инструкция по настройке и работе расточных систем ARB для черновой обработки

Подготовка.

1. Проверьте, что диаметр обрабатываемого отверстия попадает в диапазон диаметров для расточной системы

2. Удостоверьтесь, что все компоненты расточной системы на месте и крепёжные винты пластины и картриджи затянуты.

3. Удостоверьтесь, что размеры сборки и положение режущей кромки подходят для снятия необходимого припуска на надлежащем диаметра на желаемую глубину обработки

4. Проверьте возможность эвакуации стружки, подвода СОЖ, настройки на глубину и другие условия обработки.

Шаг 1. На установке настройки вне станка ослабьте винт крепления картриджа ⑥

Шаг 2. Поворачивайте винт радиальной настройки ⑦ до желаемого положения режущей кромки (диаметра расточной системы).

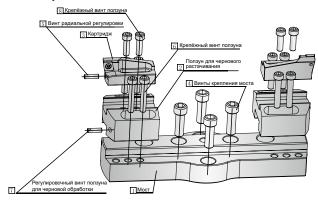
Шаг 3. Затяните крепёжный винт картриджа 6 .

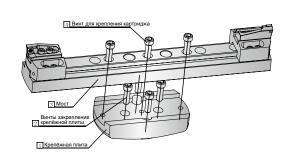
Внимание!

1. Перед началом обработки проверьте затянуты ли все крепёжные винты.


2. Расточные системы ARB сконструированы так, чтобы усилия при обработке были сбалансированы, благодаря работе 2-х зубьев. Достигаемая точность выше или равна точности по квалитету IT9 на режимах максимальной производительности.

3. При больших припусках удостоверьтесь, что имеется достаточно пространства для эвакуации стружки, чтобы избежать её пакетирования.


4. При вылете более 4xD рекомендуется применять антивибрационную расточную систему DFB.


5. Увеличенный радиус при вершине пластины позволяет получить лучшее качество обработанной поверхности и повышает надёжность режущей кромки, однако повышает вероятность возникновения вибраций. При черновой обработке рекомендуется начинать работу пластинами с радиусом 0,8 мм.

Состав расточной системы для черновой обработки

Состав расточной системы мостового типа

ACHTECK

www.achtecktool.com/ru

ЭКСПЕРТ В РЕЗАНИИ ТРУДНООБРАБАТЫВАЕМЫХ МАТЕРИАЛОВ

Система обозначения цельных твёрдосплавных свёрл

2-Поколение	е
	1

3-Обрабатываемые материалы					
06	Различные материалы				
08	Различные материалы				

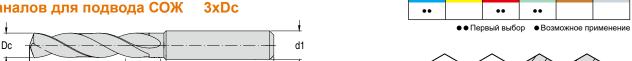
4-Длина реж	уущей части
03	~3xDc по DIN 6537K
05	~5хDс по DIN 6537L
08	~8xDc по стандарту АКТЕК

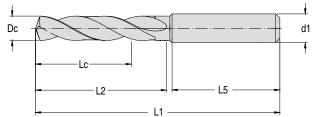
5-Диаметр сверла							
03000	3.0 мм						
12100	12.1мм						

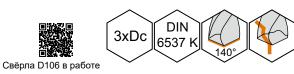
6-Тип	хвостовика
Α	Цилиндрический по DIN 6535HA

7-Каналы для внутр. подвода СОЖ						
0	Без каналов					
1	С каналами					

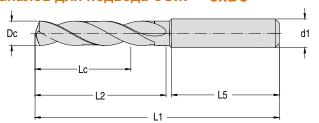
AP30P1
Сплав может не указываться для некоторых типов свёрл и спец. сверл




Обзор решений



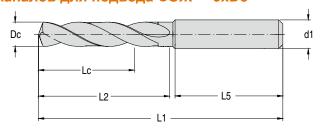
Цельные твёрдосплавные свёрла серии D106 без каналов для подвода **CO**Ж **3**xDc



Номер по катало	огу	Dc (m7) мм	Dc дюйм	Lc MM	L1 мм	L2 MM	L5 MM	d1(h6) мм	Наличие
D106-03-03000A0 AI	P30P1U	3		14	62	20	36	4	•
D106-03-03100A0 AI	P30P1U	3.1		14	62	20	36	4	•
D106-03-03175A0 AI	P30P1U	3.175	1/8"	14	62	20	36	4	0
D106-03-03200A0 AI	P30P1U	3.2		14	62	20	36	4	•
D106-03-03250A0 AI	P30P1U	3.25		14	62	20	36	4	0
D106-03-03300A0 AI	P30P1U	3.3		14	62	20	36	4	•
D106-03-03400A0 AI	P30P1U	3.4		14	62	20	36	4	0
D106-03-03500A0 AI	P30P1U	3.5		14	62	20	36	4	•
D106-03-03572A0 AI	P30P1U	3.572	9/64"	14	62	20	36	4	0
D106-03-03600A0 AI	P30P1U	3.6		14	62	20	36	4	•
D106-03-03650A0 AI	P30P1U	3.65		14	62	20	36	4	0
D106-03-03700A0 AI	P30P1U	3.7		14	62	20	36	4	•
D106-03-03800A0 AI	P30P1U	3.8		17	66	24	36	4	0
D106-03-03900A0 AI	P30P1U	3.9		17	66	24	36	4	•
D106-03-03969A0 AI	P30P1U	3.969	5/32"	17	66	24	36	4	0
D106-03-04000A0 AI	P30P1U	4		17	66	24	36	4	•
D106-03-04100A0 AI	P30P1U	4.1		17	66	24	36	6	0
D106-03-04200A0 AI	P30P1U	4.2		17	66	24	36	6	•
D106-03-04300A0 AI	P30P1U	4.3		17	66	24	36	6	0
D106-03-04366A0 AI	P30P1U	4.366	11/64"	17	66	24	36	6	0
D106-03-04400A0 AI	P30P1U	4.4		17	66	24	36	6	0
D106-03-04500A0 AI	P30P1U	4.5		17	66	24	36	6	•
D106-03-04600A0 AI	P30P1U	4.6		17	66	24	36	6	0
D106-03-04650A0 AI	P30P1U	4.65		17	66	24	36	6	0
D106-03-04700A0 AI	P30P1U	4.7		17	66	24	36	6	0
D106-03-04763A0 AI	P30P1U	4.763	3/16"	20	66	28	36	6	0
D106-03-04800A0 AI	P30P1U	4.8		20	66	28	36	6	•
D106-03-04900A0 AI	P30P1U	4.9		20	66	28	36	6	•
D106-03-05000A0 AI	P30P1U	5		20	66	28	36	6	•
D106-03-05100A0 AI	P30P1U	5.1		20	66	28	36	6	•
D106-03-05159A0 AI	P30P1U	5.159	13/64"	20	66	28	36	6	0
D106-03-05200A0 AI	P30P1U	5.2		20	66	28	36	6	•
D106-03-05300A0 AI	P30P1U	5.3		20	66	28	36	6	0
D106-03-05400A0 AI	P30P1U	5.4		20	66	28	36	6	0
D106-03-05500A0 AI	P30P1U	5.5		20	66	28	36	6	•
D106-03-05550A0 AI	P30P1U	5.55		20	66	28	36	6	0
D106-03-05556A0 AI	P30P1U	5.556	7/32"	20	66	28	36	6	0
D106-03-05600A0 AI	P30P1U	5.6		20	66	28	36	6	0
D106-03-05700A0 AI		5.7		20	66	28	36	6	0
D106-03-05750A0 AI		5.75		20	66	28	36	6	0
D106-03-05800A0 AI		5.8		20	66	28	36	6	•
D106-03-05900A0 AI		5.9		20	66	28	36	6	•
D106-03-05953A0 AI		5.953	15/64"	20	66	28	36	6	0
D106-03-06000A0 AI	P30P1U	6		20	66	28	36	6	•

Цельные твёрдосплавные свёрла серии D106 без каналов для подвода СОЖ

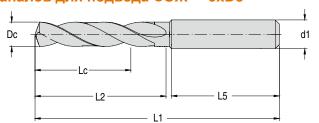
P papare	3xDc	DIN 6537 K	140°	
в работе	~	•	•	•


Номер по кат	алогу	Dc(m7) MM	Dc дюйм	Lc MM	L1 MM	L2 MM	L5 мм	d1(h6) мм	Наличие
D106-03-06100A0	AP30P1U	6.1		24	79	41	36	8	0
D106-03-06200A0	AP30P1U	6.2		24	79	41	36	8	0
D106-03-06300A0	AP30P1U	6.3		24	79	41	36	8	0
D106-03-06350A0	AP30P1U	6.35	1/4"	24	79	41	36	8	0
D106-03-06400A0	AP30P1U	6.4		24	79	41	36	8	0
D106-03-06500A0	AP30P1U	6.5		24	79	41	36	8	•
D106-03-06600A0	AP30P1U	6.6		24	79	41	36	8	0
D106-03-06700A0	AP30P1U	6.7		24	79	41	36	8	0
D106-03-06747A0	AP30P1U	6.747	17/64"	24	79	41	36	8	0
D106-03-06800A0	AP30P1U	6.8		24	79	41	36	8	•
D106-03-06900A0	AP30P1U	6.9		24	79	41	36	8	•
D106-03-07000A0	AP30P1U	7		24	79	41	36	8	•
D106-03-07100A0	AP30P1U	7.1		29	79	41	36	8	0
D106-03-07144A0		7.144	9/32"	29	79	41	36	8	0
D106-03-07200A0	AP30P1U	7.2		29	79	41	36	8	0
D106-03-07250A0	AP30P1U	7.25		29	79	41	36	8	0
D106-03-07300A0	AP30P1U	7.3		29	79	41	36	8	0
D106-03-07400A0	AP30P1U	7.4		29	79	41	36	8	•
D106-03-07450A0	AP30P1U	7.45		29	79	41	36	8	0
D106-03-07500A0	AP30P1U	7.5		29	79	41	36	8	•
D106-03-07541A0	AP30P1U	7.541	19/64"	29	79	41	36	8	0
D106-03-07550A0	AP30P1U	7.55		29	79	41	36	8	0
D106-03-07600A0	AP30P1U	7.6		29	79	41	36	8	0
D106-03-07700A0	AP30P1U	7.7		29	79	41	36	8	0
D106-03-07800A0	AP30P1U	7.8		29	79	41	36	8	•
D106-03-07900A0	AP30P1U	7.9		29	79	41	36	8	•
D106-03-07938A0	AP30P1U	7.938	5/16"	29	79	41	36	8	0
D106-03-08000A0	AP30P1U	8		29	79	41	36	8	•
D106-03-08100A0	AP30P1U	8.1		35	89	47	40	10	0
D106-03-08200A0	AP30P1U	8.2		35	89	47	40	10	0
D106-03-08300A0	AP30P1U	8.3		35	89	47	40	10	0
D106-03-08334A0	AP30P1U	8.334	21/64"	35	89	47	40	10	0
D106-03-08400A0	AP30P1U	8.4		35	89	47	40	10	0
D106-03-08500A0	AP30P1U	8.5		35	89	47	40	10	•
D106-03-08600A0	AP30P1U	8.6		35	89	47	40	10	•
D106-03-08700A0	AP30P1U	8.7		35	89	47	40	10	0
D106-03-08731A0	AP30P1U	8.731	11/32"	35	89	47	40	10	0
D106-03-08750A0	AP30P1U	8.75		35	89	47	40	10	0
D106-03-08800A0	AP30P1U	8.8		35	89	47	40	10	•
D106-03-08900A0	AP30P1U	8.9		35	89	47	40	10	•
D106-03-09000A0	AP30P1U	9		35	89	47	40	10	•
D106-03-09100A0	AP30P1U	9.1		35	89	47	40	10	0
D106-03-09128A0	AP30P1U	9.128	23/64"	35	89	47	40	10	0
D106-03-09200A0	AP30P1U	9.2		35	89	47	40	10	0
D106-03-09300A0	AP30P1U	9.3		35	89	47	40	10	•
D106-03-09400A0	AP30P1U	9.4		35	89	47	40	10	0
D106-03-09500A0	AP30P1U	9.5		35	89	47	40	10	0
D106-03-09525A0	AP30P1U	9.525	3/8"	35	89	47	40	10	0

Свёрла других размеров и геометрий могут быть изготовлены по запросу, включая свёрла - г.... других резиверов и геометрии могут быть изготовлены по зак для глубокого сверления, обработки композитных материалов и др. ◀ 384

Цельные твёрдосплавные

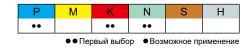
Цельные твёрдосплавные свёрла серии D106 без каналов для подвода COЖ 3xDc

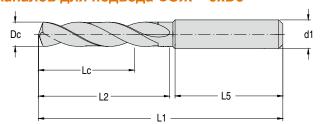

Свёрла D106 в работе

3xDc DIN 6537 K 140°

Номер по каталогу	Dc(m7)	Dc дюйм	Lc MM	L1 MM	L2 MM	L5 мм	d1(h6) мм	Наличие
D106-03-09550A0 AP30P1U	9.55		35	89	47	40	10	0
D106-03-09600A0 AP30P1U	9.6		35	89	47	40	10	0
D106-03-09700A0 AP30P1U	9.7		35	89	47	40	10	0
D106-03-09800A0 AP30P1U	9.8		35	89	47	40	10	•
D106-03-09900A0 AP30P1U	9.9		35	89	47	40	10	•
D106-03-09922A0 AP30P1U	9.922	25/64"	35	89	47	40	10	0
D106-03-10000A0 AP30P1U	10		35	89	47	40	10	•
D106-03-10100A0 AP30P1U	10.1		40	102	55	45	12	•
D106-03-10200A0 AP30P1U	10.2		40	102	55	45	12	•
D106-03-10300A0 AP30P1U	10.3		40	102	55	45	12	•
D106-03-10319A0 AP30P1U	10.319	13/32"	40	102	55	45	12	0
D106-03-10400A0 AP30P1U	10.4		40	102	55	45	12	0
D106-03-10500A0 AP30P1U	10.5		40	102	55	45	12	•
D106-03-10600A0 AP30P1U	10.6		40	102	55	45	12	•
D106-03-10700A0 AP30P1U	10.7		40	102	55	45	12	0
D106-03-10716A0 AP30P1U	10.716	27/64"	40	102	55	45	12	0
D106-03-10800A0 AP30P1U	10.8		40	102	55	45	12	•
D106-03-10900A0 AP30P1U	10.9		40	102	55	45	12	0
D106-03-11000A0 AP30P1U	11		40	102	55	45	12	•
D106-03-11100A0 AP30P1U	11.1		40	102	55	45	12	0
D106-03-11113A0 AP30P1U	11.113	7/16"	40	102	55	45	12	0
D106-03-11200A0 AP30P1U	11.2		40	102	55	45	12	0
D106-03-11300A0 AP30P1U	11.3		40	102	55	45	12	0
D106-03-11400A0 AP30P1U	11.4		40	102	55	45	12	0
D106-03-11500A0 AP30P1U	11.5		40	102	55	45	12	0
D106-03-11509A0 AP30P1U	11.509	29/64"	40	102	55	45	12	0
D106-03-11550A0 AP30P1U	11.55		40	102	55	45	12	0
D106-03-11600A0 AP30P1U	11.6		40	102	55	45	12	0
D106-03-11700A0 AP30P1U	11.7		40	102	55	45	12	0
D106-03-11800A0 AP30P1U	11.8		40	102	55	45	12	•
D106-03-11900A0 AP30P1U	11.9		40	102	55	45	12	0
D106-03-11906A0 AP30P1U	11.906	15/32"	40	102	55	45	12	0
D106-03-12000A0 AP30P1U	12		40	102	55	45	12	•
D106-03-12100A0 AP30P1U	12.1		43	107	60	45	14	0
D106-03-12200A0 AP30P1U	12.2		43	107	60	45	14	0
D106-03-12250A0 AP30P1U	12.25		43	107	60	45	14	0
D106-03-12300A0 AP30P1U	12.3		43	107	60	45	14	0
D106-03-12303A0 AP30P1U	12.303	31/64"	43	107	60	45	14	0
D106-03-12400A0 AP30P1U	12.4		43	107	60	45	14	0
D106-03-12500A0 AP30P1U	12.5		43	107	60	45	14	•
D106-03-12600A0 AP30P1U	12.6	4/0"	43	107	60	45	14	0
D106-03-12700A0 AP30P1U	12.7	1/2"	43	107	60	45	14	0
D106-03-12750A0 AP30P1U	12.75		43	107	60	45	14	0
D106-03-12800A0 AP30P1U	12.8		43	107	60	45	14	0

Цельные твёрдосплавные свёрла серии D106 без каналов для подвода COЖ 3xDc

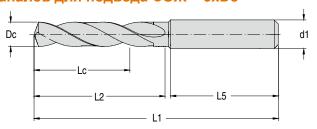


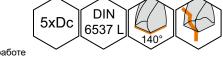

Номер по кат	алогу	Dc(m7)	Dc дюйм	Lc MM	L1 MM	L2 MM	L5 мм	d1(h6) мм	Наличие
D106-03-12900A0	AP30P1U	12.9		43	107	60	45	14	0
D106-03-13000A0	AP30P1U	13		43	107	60	45	14	•
D106-03-13100A0	AP30P1U	13.1		43	107	60	45	14	0
D106-03-13200A0	AP30P1U	13.2		43	107	60	45	14	•
D106-03-13300A0	AP30P1U	13.3		43	107	60	45	14	0
D106-03-13400A0	AP30P1U	13.4		43	107	60	45	14	0
D106-03-13494A0	AP30P1U	13.494	17/32"	43	107	60	45	14	0
D106-03-13500A0	AP30P1U	13.5		43	107	60	45	14	0
D106-03-13600A0	AP30P1U	13.6		43	107	60	45	14	0
D106-03-13700A0	AP30P1U	13.7		43	107	60	45	14	0
D106-03-13800A0	AP30P1U	13.8		43	107	60	45	14	0
D106-03-13900A0	AP30P1U	13.9		43	107	60	45	14	0
D106-03-14000A0	AP30P1U	14		43	107	60	45	14	•
D106-03-14100A0	AP30P1U	14.1		45	115	65	48	16	•
D106-03-14200A0	AP30P1U	14.2		45	115	65	48	16	•
D106-03-14288A0	AP30P1U	14.288	9/16"	45	115	65	48	16	0
D106-03-14300A0	AP30P1U	14.3		45	115	65	48	16	0
D106-03-14400A0	AP30P1U	14.4		45	115	65	48	16	0
D106-03-14500A0	AP30P1U	14.5		45	115	65	48	16	•
D106-03-14600A0	AP30P1U	14.6		45	115	65	48	16	•
D106-03-14700A0	AP30P1U	14.7		45	115	65	48	16	•
D106-03-14750A0	AP30P1U	14.75		45	115	65	48	16	0
D106-03-14800A0	AP30P1U	14.8		45	115	65	48	16	0
D106-03-15000A0	AP30P1U	15		45	115	65	48	16	•
D106-03-15100A0	AP30P1U	15.1		45	115	65	48	16	0
D106-03-15200A0	AP30P1U	15.2		45	115	65	48	16	0
D106-03-15300A0	AP30P1U	15.3		45	115	65	48	16	0
D106-03-15500A0		15.5		45	115	65	48	16	•
D106-03-15600A0		15.6		45	115	65	48	16	0
D106-03-15700A0		15.7		45	115	65	48	16	•
D106-03-15800A0		15.8		45	115	65	48	16	•
D106-03-15875A0		15.875	5/8"	45	115	65	48	16	0
D106-03-15900A0		15.9		45	115	65	48	16	0
D106-03-16000A0		16		45	115	65	48	16	•
D106-03-16500A0		16.5		51	123	73	48	18	•
D106-03-17000A0		17		51	123	73	48	18	•
D106-03-17500A0		17.5		51	123	73	48	18	•
D106-03-18000A0		18		51	123	73	48	18	•
D106-03-18500A0		18.5		55	131	79	50	20	•
D106-03-19000A0		19		55	131	79	50	20	•
D106-03-20000A0	AP30P1U	20		55	131	79	50	20	•

Свёрла других размеров и геометрий могут быть изготовлены по запросу, включая свёрла для глубокого сверления, обработки композитных материалов и др.

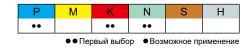
Цельн<mark>ые твёрдосп</mark>лавные

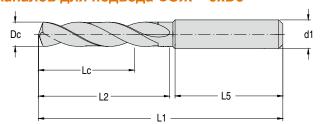
Цельные твёрдосплавные свёрла серии D106 без каналов для подвода COЖ 5xDc



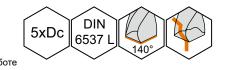

Номер по каталогу	Dc(m7)	Dc дюйм	Lc MM	L1 MM	L2 MM	L5 мм	d1(h6) мм	Наличие
D106-05-03000A0 AP30P1U	3		23	66	28	36	4	•
D106-05-03100A0 AP30P1U	3.1		23	66	28	36	4	•
D106-05-03175A0 AP30P1U	3.175	1/8"	23	66	28	36	4	0
D106-05-03200A0 AP30P1U	3.2		23	66	28	36	4	•
D106-05-03250A0 AP30P1U	3.25		23	66	28	36	4	0
D106-05-03300A0 AP30P1U	3.3		23	66	28	36	4	•
D106-05-03400A0 AP30P1U	3.4		23	66	28	36	4	0
D106-05-03500A0 AP30P1U	3.5		23	66	28	36	4	•
D106-05-03572A0 AP30P1U	3.572	9/64"	23	66	28	36	4	0
D106-05-03600A0 AP30P1U	3.6		23	66	28	36	4	•
D106-05-03650A0 AP30P1U	3.65		23	66	28	36	4	0
D106-05-03700A0 AP30P1U	3.7		23	66	28	36	4	•
D106-05-03800A0 AP30P1U	3.8		29	74	36	36	4	0
D106-05-03900A0 AP30P1U	3.9		29	74	36	36	4	•
D106-05-03969A0 AP30P1U	3.969	5/32"	29	74	36	36	4	0
D106-05-04000A0 AP30P1U	4		29	74	36	36	4	•
D106-05-04100A0 AP30P1U	4.1		29	74	36	36	6	0
D106-05-04200A0 AP30P1U	4.2		29	74	36	36	6	•
D106-05-04300A0 AP30P1U	4.3		29	74	36	36	6	0
D106-05-04366A0 AP30P1U	4.366	11/64"	29	74	36	36	6	0
D106-05-04400A0 AP30P1U	4.4		29	74	36	36	6	0
D106-05-04500A0 AP30P1U	4.5		29	74	36	36	6	•
D106-05-04600A0 AP30P1U	4.6		29	74	36	36	6	0
D106-05-04650A0 AP30P1U	4.65		29	74	36	36	6	0
D106-05-04700A0 AP30P1U	4.7		29	74	36	36	6	0
D106-05-04763A0 AP30P1U	4.763	3/16"	35	82	44	36	6	0
D106-05-04800A0 AP30P1U	4.8		35	82	44	36	6	•
D106-05-04900A0 AP30P1U	4.9		35	82	44	36	6	•
D106-05-05000A0 AP30P1U	5		35	82	44	36	6	•
D106-05-05100A0 AP30P1U	5.1		35	82	44	36	6	•
D106-05-05159A0 AP30P1U	5.159	13/64"	35	82	44	36	6	0
D106-05-05200A0 AP30P1U	5.2		35	82	44	36	6	•
D106-05-05300A0 AP30P1U	5.3		35	82	44	36	6	0
D106-05-05400A0 AP30P1U	5.4		35	82	44	36	6	0
D106-05-05500A0 AP30P1U	5.5		35	82	44	36	6	•
D106-05-05550A0 AP30P1U	5.55		35	82	44	36	6	0
D106-05-05556A0 AP30P1U	5.556	7/32"	35	82	44	36	6	0
D106-05-05600A0 AP30P1U	5.6		35	82	44	36	6	0
D106-05-05700A0 AP30P1U	5.7		35	82	44	36	6	0
D106-05-05800A0 AP30P1U	5.8		35	82	44	36	6	•
D106-05-05900A0 AP30P1U	5.9		35	82	44	36	6	•
D106-05-05953A0 AP30P1U	5.953	15/64"	35	82	44	36	6	0
D106-05-06000A0 AP30P1U	6		35	82	44	36	6	•
D106-05-06100A0 AP30P1U	6.1		43	91	53	36	8	0

Цельные твёрдосплавные свёрла серии D106 без каналов для подвода СОЖ 5хDс

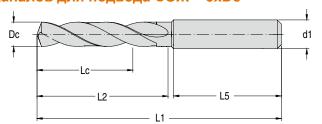


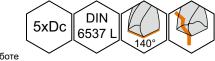

Свёрл	ви В : а D106 в раб		′ ∥6537 L∥	140°	\
Lc им	L1 MM	L2 MM	L5 MM	d1(h6)	На

Номер по кат	алогу	Dc(m7)	Dc дюйм	Lc MM	L1 MM	L2 MM	L5 MM	d1(h6) мм	Наличие
D106-05-06200A0	AP30P1U	6.2		43	91	53	36	8	0
D106-05-06300A0	AP30P1U	6.3		43	91	53	36	8	0
D106-05-06350A0	AP30P1U	6.35	1/4"	43	91	53	36	8	0
D106-05-06400A0	AP30P1U	6.4		43	91	53	36	8	0
D106-05-06500A0	AP30P1U	6.5		43	91	53	36	8	•
D106-05-06600A0	AP30P1U	6.6		43	91	53	36	8	0
D106-05-06700A0	AP30P1U	6.7		43	91	53	36	8	0
D106-05-06747A0	AP30P1U	6.747	17/64"	43	91	53	36	8	0
D106-05-06800A0	AP30P1U	6.8		43	91	53	36	8	•
D106-05-06900A0	AP30P1U	6.9		43	91	53	36	8	•
D106-05-07000A0	AP30P1U	7		43	91	53	36	8	•
D106-05-07100A0	AP30P1U	7.1		43	91	53	36	8	0
D106-05-07144A0	AP30P1U	7.144	9/32"	43	91	53	36	8	0
D106-05-07200A0	AP30P1U	7.2		43	91	53	36	8	0
D106-05-07300A0	AP30P1U	7.3		43	91	53	36	8	0
D106-05-07400A0	AP30P1U	7.4		43	91	53	36	8	•
D106-05-07500A0	AP30P1U	7.5		43	91	53	36	8	•
D106-05-07541A0	AP30P1U	7.541	19/64"	43	91	53	36	8	0
D106-05-07550A0	AP30P1U	7.55		43	91	53	36	8	0
D106-05-07600A0	AP30P1U	7.6		43	91	53	36	8	0
D106-05-07700A0	AP30P1U	7.7		43	91	53	36	8	0
D106-05-07800A0	AP30P1U	7.8		43	91	53	36	8	•
D106-05-07900A0	AP30P1U	7.9		43	91	53	36	8	•
D106-05-07938A0	AP30P1U	7.938	5/16"	43	91	53	36	8	0
D106-05-08000A0	AP30P1U	8		43	91	53	36	8	•
D106-05-08100A0	AP30P1U	8.1		49	103	61	40	10	0
D106-05-08200A0	AP30P1U	8.2		49	103	61	40	10	0
D106-05-08300A0	AP30P1U	8.3		49	103	61	40	10	0
D106-05-08334A0	AP30P1U	8.334	21/64"	49	103	61	40	10	0
D106-05-08400A0	AP30P1U	8.4		49	103	61	40	10	0
D106-05-08500A0	AP30P1U	8.5		49	103	61	40	10	•
D106-05-08600A0	AP30P1U	8.6		49	103	61	40	10	•
D106-05-08700A0	AP30P1U	8.7		49	103	61	40	10	0
D106-05-08731A0	AP30P1U	8.731	11/32"	49	103	61	40	10	0
D106-05-08800A0		8.8		49	103	61	40	10	•
D106-05-08900A0	AP30P1U	8.9		49	103	61	40	10	•
D106-05-09000A0		9		49	103	61	40	10	•
D106-05-09100A0		9.1		49	103	61	40	10	0
D106-05-09128A0		9.128	23/64"	49	103	61	40	10	0
D106-05-09200A0		9.2		49	103	61	40	10	0
D106-05-09300A0		9.3		49	103	61	40	10	•
D106-05-09400A0		9.4		49	103	61	40	10	0
D106-05-09500A0		9.5	0/0"	49	103	61	40	10	0
D106-05-09525A0	AP30P1U	9.525	3/8"	49	103	61	40	10	0

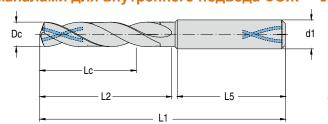

Свёрла других размеров и геометрий могут быть изготовлены по запросу, включая свёрла для глубокого сверления, обработки композитных материалов и др.

Цельные твёрдосплавные свёрла серии D106 без каналов для подвода **CO**Ж **5**xDc

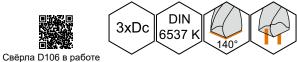



Номер по ката	алогу	Dc(m7) MM	Dc дюйм	Lc MM	L1 MM	L2 MM	L5 MM	d1(h6) мм	Наличие
D106-05-09550A0	AP30P1U	9.55		49	103	61	40	10	0
D106-05-09600A0	AP30P1U	9.6		49	103	61	40	10	0
D106-05-09700A0	AP30P1U	9.7		49	103	61	40	10	0
D106-05-09800A0	AP30P1U	9.8		49	103	61	40	10	•
D106-05-09900A0	AP30P1U	9.9		49	103	61	40	10	•
D106-05-09922A0	AP30P1U	9.922	25/64"	49	103	61	40	10	0
D106-05-10000A0	AP30P1U	10		49	103	61	40	10	•
D106-05-10100A0	AP30P1U	10.1		56	118	71	45	12	•
D106-05-10200A0	AP30P1U	10.2		56	118	71	45	12	•
D106-05-10300A0	AP30P1U	10.3		56	118	71	45	12	•
D106-05-10319A0	AP30P1U	10.319	13/32"	56	118	71	45	12	0
D106-05-10400A0	AP30P1U	10.4		56	118	71	45	12	0
D106-05-10500A0	AP30P1U	10.5		56	118	71	45	12	•
D106-05-10600A0	AP30P1U	10.6		56	118	71	45	12	•
D106-05-10700A0	AP30P1U	10.7		56	118	71	45	12	0
D106-05-10716A0	AP30P1U	10.716	27/64"	56	118	71	45	12	0
D106-05-10800A0	AP30P1U	10.8		56	118	71	45	12	•
D106-05-10900A0	AP30P1U	10.9		56	118	71	45	12	0
D106-05-11000A0	AP30P1U	11		56	118	71	45	12	•
D106-05-11100A0	AP30P1U	11.1		56	118	71	45	12	0
D106-05-11113A0	AP30P1U	11.113	7/16"	56	118	71	45	12	0
D106-05-11200A0	AP30P1U	11.2		56	118	71	45	12	0
D106-05-11300A0	AP30P1U	11.3		56	118	71	45	12	0
D106-05-11400A0	AP30P1U	11.4		56	118	71	45	12	0
D106-05-11500A0	AP30P1U	11.5		56	118	71	45	12	0
D106-05-11509A0	AP30P1U	11.509	29/64"	56	118	71	45	12	0
D106-05-11550A0		11.55		56	118	71	45	12	0
D106-05-11600A0		11.6		56	118	71	45	12	0
D106-05-11700A0		11.7		56	118	71	45	12	0
D106-05-11800A0		11.8		56	118	71	45	12	•
D106-05-11900A0		11.9		56	118	71	45	12	0
D106-05-11906A0		11.906	15/32"	56	118	71	45	12	0
D106-05-12000A0		12		56	118	71	45	12	•
D106-05-12100A0		12.1		60	124	77	45	14	0
D106-05-12200A0		12.2		60	124	77	45	14	0
D106-05-12250A0		12.25		60	124	77	45	14	0
D106-05-12300A0		12.3		60	124	77	45	14	0
D106-05-12303A0		12.303	31/64"	60	124	77	45	14	0
D106-05-12400A0		12.4		60	124	77	45	14	0
D106-05-12500A0		12.5		60	124	77	45	14	•
D106-05-12600A0		12.6	4/0"	60	124	77	45	14	0
D106-05-12700A0		12.7	1/2"	60	124	77	45	14	0
D106-05-12750A0		12.75		60	124	77	45	14	0
D106-05-12800A0	AP30P1U	12.8		60	124	77	45	14	0

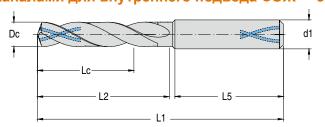
Цельные твёрдосплавные свёрла серии D106 без каналов для подвода COЖ 5xDc


Свёрла D106	В	работе
-------------	---	--------

Номер по каталогу	Dc(m7)	Dc дюйм	Lc MM	L1 MM	L2 MM	L5 мм	d1(h6) MM	Наличие
D106-05-12900A0 AP30	P1U 12.9		60	124	77	45	14	0
D106-05-13000A0 AP30	P1U 13		60	124	77	45	14	•
D106-05-13100A0 AP30	P1U 13.1		60	124	77	45	14	0
D106-05-13200A0 AP30	P1U 13.2		60	124	77	45	14	•
D106-05-13300A0 AP30	P1U 13.3		60	124	77	45	14	0
D106-05-13400A0 AP30	P1U 13.4		60	124	77	45	14	0
D106-05-13494A0 AP30	P1U 13.494	17/32"	60	124	77	45	14	0
D106-05-13500A0 AP30	P1U 13.5		60	124	77	45	14	0
D106-05-13600A0 AP30	P1U 13.6		60	124	77	45	14	0
D106-05-13700A0 AP30	P1U 13.7		60	124	77	45	14	•
D106-05-13800A0 AP30	P1U 13.8		60	124	77	45	14	0
D106-05-13900A0 AP30	P1U 13.9		60	124	77	45	14	0
D106-05-14000A0 AP30	P1U 14		60	124	77	45	14	•
D106-05-14100A0 AP30	P1U 14.1		63	133	83	48	16	•
D106-05-14200A0 AP30	P1U 14.2		63	133	83	48	16	•
D106-05-14288A0 AP30	P1U 14.288	9/16"	63	133	83	48	16	0
D106-05-14300A0 AP30	P1U 14.3		63	133	83	48	16	0
D106-05-14400A0 AP30	P1U 14.4		63	133	83	48	16	0
D106-05-14500A0 AP30	P1U 14.5		63	133	83	48	16	•
D106-05-14600A0 AP30	P1U 14.6		63	133	83	48	16	•
D106-05-14700A0 AP30	P1U 14.7		63	133	83	48	16	•
D106-05-14750A0 AP30	P1U 14.75		63	133	83	48	16	0
D106-05-14800A0 AP30	P1U 14.8		63	133	83	48	16	0
D106-05-15000A0 AP30	P1U 15		63	133	83	48	16	•
D106-05-15100A0 AP30	P1U 15.1		63	133	83	48	16	0
D106-05-15200A0 AP30	P1U 15.2		63	133	83	48	16	0
D106-05-15300A0 AP30	P1U 15.3		63	133	83	48	16	0
D106-05-15500A0 AP30	P1U 15.5		63	133	83	48	16	•
D106-05-15600A0 AP30	P1U 15.6		63	133	83	48	16	0
D106-05-15700A0 AP30	P1U 15.7		63	133	83	48	16	•
D106-05-15800A0 AP30	P1U 15.8		63	133	83	48	16	•
D106-05-15875A0 AP30	P1U 15.875	5/8"	63	133	83	48	16	0
D106-05-15900A0 AP30	P1U 15.9		63	133	83	48	16	0
D106-05-16000A0 AP30	P1U 16		63	133	83	48	16	•
D106-05-16500A0 AP30	P1U 16.5		71	143	93	48	18	•
D106-05-17000A0 AP30	P1U 17		71	143	93	48	18	•
D106-05-17500A0 AP30	P1U 17.5		71	143	93	48	18	•
D106-05-18000A0 AP30	P1U 18		71	143	93	48	18	•
D106-05-18500A0 AP30	P1U 18.5		77	153	101	50	20	•
D106-05-19000A0 AP30	P1U 19		77	153	101	50	20	•
D106-05-20000A0 AP30	P1U 20		77	153	101	50	20	•


Свёрла других размеров и геометрий могут быть изготовлены по запросу, включая свёрла для глубокого сверления, обработки композитных материалов и др.

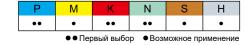
Цельные твёрдосплавные свёрла серии D106 с каналами для внутреннего подвода СОЖ

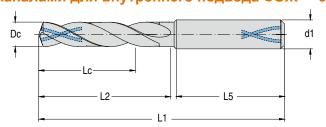


Номер по катал	погу	Dc(m7) мм	Dc дюйм	Lc MM	L1 MM	L2 MM	L5 мм	d1(h6) мм	Наличие
D106-03-03000A1 A	AP30P1U	3		14	62	20	36	4	•
D106-03-03100A1 A	AP30P1U	3.1		14	62	20	36	4	•
D106-03-03175A1 A	AP30P1U	3.175	1/8"	14	62	20	36	4	0
D106-03-03200A1 A	AP30P1U	3.2		14	62	20	36	4	•
D106-03-03250A1 A	AP30P1U	3.25		14	62	20	36	4	0
D106-03-03300A1 A	AP30P1U	3.3		14	62	20	36	4	•
D106-03-03400A1 A	AP30P1U	3.4		14	62	20	36	4	0
D106-03-03500A1 A	AP30P1U	3.5		14	62	20	36	4	•
D106-03-03572A1 A	AP30P1U	3.572	9/64"	14	62	20	36	4	0
D106-03-03600A1 A	AP30P1U	3.6		14	62	20	36	4	•
D106-03-03650A1 A	AP30P1U	3.65		14	62	20	36	4	0
D106-03-03700A1 A	AP30P1U	3.7		14	62	20	36	4	•
D106-03-03800A1 A	AP30P1U	3.8		17	66	24	36	4	0
D106-03-03900A1 A	AP30P1U	3.9		17	66	24	36	4	•
D106-03-03969A1 A	AP30P1U	3.969	5/32"	17	66	24	36	4	0
D106-03-04000A1 A	AP30P1U	4		17	66	24	36	4	•
D106-03-04100A1 A	AP30P1U	4.1		17	66	24	36	6	0
D106-03-04200A1 A	AP30P1U	4.2		17	66	24	36	6	•
D106-03-04300A1 A	AP30P1U	4.3		17	66	24	36	6	0
D106-03-04366A1 A	AP30P1U	4.366	11/64"	17	66	24	36	6	0
D106-03-04400A1 A	AP30P1U	4.4		17	66	24	36	6	0
D106-03-04500A1 A	AP30P1U	4.5		17	66	24	36	6	•
D106-03-04600A1 A	AP30P1U	4.6		17	66	24	36	6	0
D106-03-04650A1 A	AP30P1U	4.65		17	66	24	36	6	0
D106-03-04700A1 A	AP30P1U	4.7		17	66	24	36	6	0
D106-03-04763A1 A	AP30P1U	4.763	3/16"	20	66	28	36	6	0
D106-03-04800A1 A	AP30P1U	4.8		20	66	28	36	6	•
D106-03-04900A1 A	AP30P1U	4.9		20	66	28	36	6	•
D106-03-05000A1 A	AP30P1U	5		20	66	28	36	6	•
D106-03-05100A1 A	AP30P1U	5.1		20	66	28	36	6	•
D106-03-05159A1 A	AP30P1U	5.159	13/64"	20	66	28	36	6	0
D106-03-05200A1 A	AP30P1U	5.2		20	66	28	36	6	•
D106-03-05300A1 A	AP30P1U	5.3		20	66	28	36	6	0
D106-03-05400A1 A	AP30P1U	5.4		20	66	28	36	6	0
D106-03-05500A1 A	AP30P1U	5.5		20	66	28	36	6	•
D106-03-05550A1 A	AP30P1U	5.55		20	66	28	36	6	0

Свёрла других размеров и геометрий могут быть изготовлены по запросу, включая свёрла для глубокого сверления, обработки композитных материалов и др.

Цельные твёрдосплавные свёрла серии D106 с каналами для внутреннего подвода СОЖ 3xDc

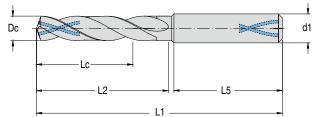



Свёрла D106 в	в работе
---------------	----------

Номер по кат	алогу	Dc(m7)	Dc дюйм	Lc MM	L1 MM	L2 MM	L5 мм	d1(h6) мм	Наличие
D106-03-05556A1	AP30P1U	5.556	7/32"	20	66	28	36	6	0
D106-03-05600A1	AP30P1U	5.6		20	66	28	36	6	0
D106-03-05700A1	AP30P1U	5.7		20	66	28	36	6	0
D106-03-05750A1	AP30P1U	5.75		20	66	28	36	6	0
D106-03-05800A1	AP30P1U	5.8		20	66	28	36	6	•
D106-03-05900A1	AP30P1U	5.9		20	66	28	36	6	•
D106-03-05953A1	AP30P1U	5.953	15/64"	20	66	28	36	6	0
D106-03-06000A1	AP30P1U	6		20	66	28	36	6	•
D106-03-06100A1	AP30P1U	6.1		24	79	41	36	8	0
D106-03-06200A1	AP30P1U	6.2		24	79	41	36	8	0
D106-03-06300A1	AP30P1U	6.3		24	79	41	36	8	0
D106-03-06350A1	AP30P1U	6.35	1/4"	24	79	41	36	8	0
D106-03-06400A1	AP30P1U	6.4		24	79	41	36	8	0
D106-03-06500A1	AP30P1U	6.5		24	79	41	36	8	•
D106-03-06600A1	AP30P1U	6.6		24	79	41	36	8	0
D106-03-06700A1	AP30P1U	6.7		24	79	41	36	8	0
D106-03-06747A1	AP30P1U	6.747	17/64"	24	79	41	36	8	0
D106-03-06800A1	AP30P1U	6.8		24	79	41	36	8	•
D106-03-06900A1	AP30P1U	6.9		24	79	41	36	8	•
D106-03-07000A1	AP30P1U	7		24	79	41	36	8	•
D106-03-07100A1	AP30P1U	7.1		29	79	41	36	8	0
D106-03-07144A1	AP30P1U	7.144	9/32"	29	79	41	36	8	0
D106-03-07200A1	AP30P1U	7.2		29	79	41	36	8	0
D106-03-07250A1	AP30P1U	7.25		29	79	41	36	8	0
D106-03-07300A1	AP30P1U	7.3		29	79	41	36	8	0
D106-03-07400A1	AP30P1U	7.4		29	79	41	36	8	•
D106-03-07450A1	AP30P1U	7.45		29	79	41	36	8	0
D106-03-07500A1	AP30P1U	7.5		29	79	41	36	8	•
D106-03-07541A1	AP30P1U	7.541	19/64"	29	79	41	36	8	0
D106-03-07550A1	AP30P1U	7.55		29	79	41	36	8	0
D106-03-07600A1	AP30P1U	7.6		29	79	41	36	8	0
D106-03-07700A1	AP30P1U	7.7		29	79	41	36	8	0
D106-03-07800A1	AP30P1U	7.8		29	79	41	36	8	•
D106-03-07900A1	AP30P1U	7.9		29	79	41	36	8	•
D106-03-07938A1	AP30P1U	7.938	5/16"	29	79	41	36	8	0
D106-03-08000A1	AP30P1U	8		29	79	41	36	8	•
D106-03-08100A1	AP30P1U	8.1		35	89	47	40	10	0
D106-03-08200A1	AP30P1U	8.2		35	89	47	40	10	0
D106-03-08300A1		8.3		35	89	47	40	10	0
D106-03-08334A1		8.334	21/64"	35	89	47	40	10	0
D106-03-08400A1		8.4		35	89	47	40	10	0
D106-03-08500A1		8.5		35	89	47	40	10	•
D106-03-08600A1		8.6		35	89	47	40	10	•
D106-03-08700A1	AP30P1U	8.7		35	89	47	40	10	0
D106-03-08731A1		8.731	11/32"	35	89	47	40	10	0
D106-03-08750A1		8.75		35	89	47	40	10	0
D106-03-08800A1	AP30P1U	8.8		35	89	47	40	10	•
D106-03-08900A1		8.9		35	89	47	40	10	•

Свёрла других размеров и геометрий могут быть изготовлены по запросу, включая свёрла для глубокого сверления, обработки композитных материалов и др.

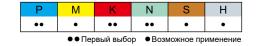
Цельные твёрдосплавные свёрла серии D106 с каналами для внутреннего подвода СОЖ 3xDc

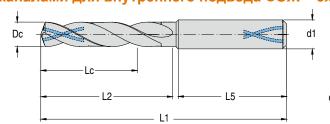


3xDc	DIN 6537 K	140°	
~	~	~	~

Номер по каталогу	Dc(m7)	Dc дюйм	Lc MM	L1 MM	L2 MM	L5 мм	d1(h6) мм	Наличие
D106-03-09000A1 AP30P1U	9		35	89	47	40	10	•
D106-03-09100A1 AP30P1U	9.1		35	89	47	40	10	0
D106-03-09128A1 AP30P1U	9.128	23/64"	35	89	47	40	10	0
D106-03-09200A1 AP30P1U	9.2		35	89	47	40	10	0
D106-03-09300A1 AP30P1U	9.3		35	89	47	40	10	•
D106-03-09400A1 AP30P1U	9.4		35	89	47	40	10	0
D106-03-09500A1 AP30P1U	9.5		35	89	47	40	10	0
D106-03-09525A1 AP30P1U	9.525	3/8"	35	89	47	40	10	0
D106-03-09550A1 AP30P1U	9.55		35	89	47	40	10	0
D106-03-09600A1 AP30P1U	9.6		35	89	47	40	10	0
D106-03-09700A1 AP30P1U	9.7		35	89	47	40	10	0
D106-03-09800A1 AP30P1U	9.8		35	89	47	40	10	•
D106-03-09900A1 AP30P1U	9.9		35	89	47	40	10	•
D106-03-09922A1 AP30P1U	9.922	25/64"	35	89	47	40	10	0
D106-03-10000A1 AP30P1U	10		35	89	47	40	10	•
D106-03-10100A1 AP30P1U	10.1		40	102	55	45	12	•
D106-03-10200A1 AP30P1U	10.2		40	102	55	45	12	•
D106-03-10300A1 AP30P1U	10.3		40	102	55	45	12	•
D106-03-10319A1 AP30P1U	10.319	13/32"	40	102	55	45	12	0
D106-03-10400A1 AP30P1U	10.4		40	102	55	45	12	0
D106-03-10500A1 AP30P1U	10.5		40	102	55	45	12	•
D106-03-10600A1 AP30P1U	10.6		40	102	55	45	12	•
D106-03-10700A1 AP30P1U	10.7		40	102	55	45	12	0
D106-03-10716A1 AP30P1U	10.716	27/64"	40	102	55	45	12	0
D106-03-10800A1 AP30P1U	10.8		40	102	55	45	12	•
D106-03-10900A1 AP30P1U	10.9		40	102	55	45	12	0
D106-03-11000A1 AP30P1U	11		40	102	55	45	12	•
D106-03-11100A1 AP30P1U	11.1		40	102	55	45	12	0
D106-03-11113A1 AP30P1U	11.113	7/16"	40	102	55	45	12	0
D106-03-11200A1 AP30P1U	11.2		40	102	55	45	12	0
D106-03-11300A1 AP30P1U	11.3		40	102	55	45	12	0
D106-03-11400A1 AP30P1U	11.4		40	102	55	45	12	0
D106-03-11500A1 AP30P1U	11.5		40	102	55	45	12	0
D106-03-11509A1 AP30P1U	11.509	29/64"	40	102	55	45	12	0
D106-03-11550A1 AP30P1U	11.55		40	102	55	45	12	0
D106-03-11600A1 AP30P1U	11.6		40	102	55	45	12	0
D106-03-11700A1 AP30P1U	11.7		40	102	55	45	12	0
D106-03-11800A1 AP30P1U	11.8		40	102	55	45	12	•
D106-03-11900A1 AP30P1U	11.9	4=/	40	102	55	45	12	0
D106-03-11906A1 AP30P1U	11.906	15/32"	40	102	55	45	12	0
D106-03-12000A1 AP30P1U	12		40	102	55	45	12	•
D106-03-12100A1 AP30P1U	12.1		43	107	60	45	14	0
D106-03-12200A1 AP30P1U	12.2		43	107	60	45	14	0
D106-03-12250A1 AP30P1U	12.25		43	107	60	45	14	0

Цельные твёрдосплавные свёрла серии D106 с каналами для внутреннего подвода СОЖ 3xDc

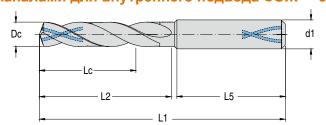




Номер по кат	алогу	Dc(m7) MM	Dc дюйм	Lc MM	L1 MM	L2 MM	L5 MM	d1(h6) мм	Наличие
D106-03-12300A1	AP30P1U	12.3		43	107	60	45	14	0
D106-03-12303A1	AP30P1U	12.303	31/64"	43	107	60	45	14	0
D106-03-12400A1	AP30P1U	12.4		43	107	60	45	14	0
D106-03-12500A1	AP30P1U	12.5		43	107	60	45	14	•
D106-03-12600A1	AP30P1U	12.6		43	107	60	45	14	0
D106-03-12700A1	AP30P1U	12.7	1/2"	43	107	60	45	14	0
D106-03-12750A1	AP30P1U	12.75		43	107	60	45	14	0
D106-03-12800A1	AP30P1U	12.8		43	107	60	45	14	0
D106-03-12900A1	AP30P1U	12.9		43	107	60	45	14	0
D106-03-13000A1	AP30P1U	13		43	107	60	45	14	•
D106-03-13100A1	AP30P1U	13.1		43	107	60	45	14	0
D106-03-13200A1	AP30P1U	13.2		43	107	60	45	14	•
D106-03-13300A1	AP30P1U	13.3		43	107	60	45	14	0
D106-03-13400A1	AP30P1U	13.4		43	107	60	45	14	0
D106-03-13494A1	AP30P1U	13.494	17/32"	43	107	60	45	14	0
D106-03-13500A1	AP30P1U	13.5		43	107	60	45	14	0
D106-03-13600A1	AP30P1U	13.6		43	107	60	45	14	0
D106-03-13700A1	AP30P1U	13.7		43	107	60	45	14	0
D106-03-13800A1	AP30P1U	13.8		43	107	60	45	14	0
D106-03-13900A1	AP30P1U	13.9		43	107	60	45	14	0
D106-03-14000A1	AP30P1U	14		43	107	60	45	14	•
D106-03-14100A1	AP30P1U	14.1		45	115	65	48	16	•
D106-03-14200A1	AP30P1U	14.2		45	115	65	48	16	•
D106-03-14288A1	AP30P1U	14.288	9/16"	45	115	65	48	16	0
D106-03-14300A1	AP30P1U	14.3		45	115	65	48	16	0
D106-03-14400A1	AP30P1U	14.4		45	115	65	48	16	0
D106-03-14500A1	AP30P1U	14.5		45	115	65	48	16	•
D106-03-14600A1	AP30P1U	14.6		45	115	65	48	16	•
D106-03-14700A1	AP30P1U	14.7		45	115	65	48	16	•
D106-03-14750A1	AP30P1U	14.75		45	115	65	48	16	0
D106-03-14800A1	AP30P1U	14.8		45	115	65	48	16	0
D106-03-15000A1	AP30P1U	15		45	115	65	48	16	•
D106-03-15100A1	AP30P1U	15.1		45	115	65	48	16	0
D106-03-15200A1	AP30P1U	15.2		45	115	65	48	16	0
D106-03-15300A1	AP30P1U	15.3		45	115	65	48	16	0
D106-03-15500A1	AP30P1U	15.5		45	115	65	48	16	•
D106-03-15600A1	AP30P1U	15.6		45	115	65	48	16	0
D106-03-15700A1	AP30P1U	15.7		45	115	65	48	16	•
D106-03-15800A1	AP30P1U	15.8		45	115	65	48	16	•
D106-03-15875A1	AP30P1U	15.875	5/8"	45	115	65	48	16	0
D106-03-15900A1	AP30P1U	15.9		45	115	65	48	16	0
D106-03-16000A1	AP30P1U	16		45	115	65	48	16	•

Свёрла других размеров и геометрий могут быть изготовлены по запросу, включая свёрла для глубокого сверления, обработки композитных материалов и др.

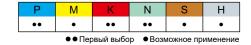
Цельные твёрдосплавные свёрла серии D106 с каналами для внутреннего подвода СОЖ 5xDc

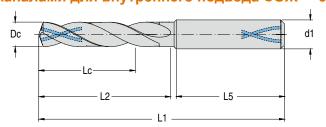


Номер по каталогу	Dc(m7)	Dc дюйм	Lc MM	L1 MM	L2 MM	L5 мм	d1(h6) мм	Наличие
D106-05-03000A1 AP30P1U	3		23	66	28	36	4	•
D106-05-03100A1 AP30P1U	3.1		23	66	28	36	4	•
D106-05-03175A1 AP30P1U	3.175	1/8"	23	66	28	36	4	0
D106-05-03200A1 AP30P1U	3.2		23	66	28	36	4	•
D106-05-03250A1 AP30P1U	3.25		23	66	28	36	4	0
D106-05-03300A1 AP30P1U	3.3		23	66	28	36	4	•
D106-05-03400A1 AP30P1U	3.4		23	66	28	36	4	0
D106-05-03500A1 AP30P1U	3.5		23	66	28	36	4	•
D106-05-03572A1 AP30P1U	3.572	9/64"	23	66	28	36	4	0
D106-05-03600A1 AP30P1U	3.6		23	66	28	36	4	•
D106-05-03650A1 AP30P1U	3.65		23	66	28	36	4	0
D106-05-03700A1 AP30P1U	3.7		23	66	28	36	4	•
D106-05-03800A1 AP30P1U	3.8		29	74	36	36	4	0
D106-05-03900A1 AP30P1U	3.9		29	74	36	36	4	•
D106-05-03969A1 AP30P1U	3.969	5/32"	29	74	36	36	4	0
D106-05-04000A1 AP30P1U	4		29	74	36	36	4	•
D106-05-04100A1 AP30P1U	4.1		29	74	36	36	6	0
D106-05-04200A1 AP30P1U	4.2		29	74	36	36	6	•
D106-05-04300A1 AP30P1U	4.3		29	74	36	36	6	0
D106-05-04366A1 AP30P1U	4.366	11/64"	29	74	36	36	6	0
D106-05-04400A1 AP30P1U	4.4		29	74	36	36	6	0
D106-05-04500A1 AP30P1U	4.5		29	74	36	36	6	•
D106-05-04600A1 AP30P1U	4.6		29	74	36	36	6	0
D106-05-04650A1 AP30P1U	4.65		29	74	36	36	6	0
D106-05-04700A1 AP30P1U	4.7		29	74	36	36	6	0
D106-05-04763A1 AP30P1U	4.763	3/16"	35	82	44	36	6	0
D106-05-04800A1 AP30P1U	4.8		35	82	44	36	6	•
D106-05-04900A1 AP30P1U	4.9		35	82	44	36	6	•
D106-05-05000A1 AP30P1U	5		35	82	44	36	6	•
D106-05-05100A1 AP30P1U	5.1		35	82	44	36	6	•
D106-05-05159A1 AP30P1U	5.159	13/64"	35	82	44	36	6	0
D106-05-05200A1 AP30P1U	5.2		35	82	44	36	6	•
D106-05-05300A1 AP30P1U	5.3		35	82	44	36	6	0
D106-05-05400A1 AP30P1U	5.4		35	82	44	36	6	0
D106-05-05500A1 AP30P1U	5.5		35	82	44	36	6	•
D106-05-05550A1 AP30P1U	5.55		35	82	44	36	6	0

Свёрла других размеров и геометрий могут быть изготовлены по запросу, включая свёрла для глубокого сверления, обработки композитных материалов и др.

Цельные твёрдосплавные свёрла серии D106 с каналами для внутреннего подвода СОЖ 5xDc

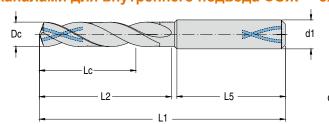




Номер по кат	алогу	Dc(m7)	Dc дюйм	Lc MM	L1 MM	L2 MM	L5 мм	d1(h6) мм	Наличие
D106-05-05556A1	AP30P1U	5.556	7/32"	35	82	44	36	6	0
D106-05-05600A1	AP30P1U	5.6		35	82	44	36	6	0
D106-05-05700A1	AP30P1U	5.7		35	82	44	36	6	0
D106-05-05750A1	AP30P1U	5.75		35	82	44	36	6	0
D106-05-05800A1	AP30P1U	5.8		35	82	44	36	6	•
D106-05-05900A1	AP30P1U	5.9		35	82	44	36	6	•
D106-05-05953A1	AP30P1U	5.953	15/64"	35	82	44	36	6	0
D106-05-06000A1	AP30P1U	6		35	82	44	36	6	•
D106-05-06100A1	AP30P1U	6.1		43	91	53	36	8	0
D106-05-06200A1	AP30P1U	6.2		43	91	53	36	8	0
D106-05-06300A1	AP30P1U	6.3		43	91	53	36	8	0
D106-05-06350A1	AP30P1U	6.35	1/4"	43	91	53	36	8	0
D106-05-06400A1	AP30P1U	6.4		43	91	53	36	8	0
D106-05-06500A1	AP30P1U	6.5		43	91	53	36	8	•
D106-05-06600A1	AP30P1U	6.6		43	91	53	36	8	0
D106-05-06700A1	AP30P1U	6.7		43	91	53	36	8	0
D106-05-06747A1	AP30P1U	6.747	17/64"	43	91	53	36	8	0
D106-05-06800A1	AP30P1U	6.8		43	91	53	36	8	•
D106-05-06900A1	AP30P1U	6.9		43	91	53	36	8	•
D106-05-07000A1	AP30P1U	7		43	91	53	36	8	•
D106-05-07100A1	AP30P1U	7.1		43	91	53	36	8	0
D106-05-07144A1	AP30P1U	7.144	9/32"	43	91	53	36	8	0
D106-05-07200A1	AP30P1U	7.2		43	91	53	36	8	0
D106-05-07250A1	AP30P1U	7.25		43	91	53	36	8	0
D106-05-07300A1	AP30P1U	7.3		43	91	53	36	8	0
D106-05-07400A1	AP30P1U	7.4		43	91	53	36	8	•
D106-05-07450A1	AP30P1U	7.45		43	91	53	36	8	0
D106-05-07500A1	AP30P1U	7.5		43	91	53	36	8	•
D106-05-07541A1	AP30P1U	7.541	19/64"	43	91	53	36	8	0
D106-05-07550A1	AP30P1U	7.55		43	91	53	36	8	0
D106-05-07600A1	AP30P1U	7.6		43	91	53	36	8	0
D106-05-07700A1	AP30P1U	7.7		43	91	53	36	8	0
D106-05-07800A1	AP30P1U	7.8		43	91	53	36	8	•
D106-05-07900A1	AP30P1U	7.9		43	91	53	36	8	•
D106-05-07938A1	AP30P1U	7.938	5/16"	43	91	53	36	8	0
D106-05-08000A1	AP30P1U	8		43	91	53	36	8	•
D106-05-08100A1	AP30P1U	8.1		49	103	61	40	10	0
D106-05-08200A1	AP30P1U	8.2		49	103	61	40	10	0
D106-05-08300A1	AP30P1U	8.3		49	103	61	40	10	0
D106-05-08334A1	AP30P1U	8.334	21/64"	49	103	61	40	10	0
D106-05-08400A1	AP30P1U	8.4		49	103	61	40	10	0
D106-05-08500A1	AP30P1U	8.5		49	103	61	40	10	•
D106-05-08600A1	AP30P1U	8.6		49	103	61	40	10	•
D106-05-08700A1	AP30P1U	8.7		49	103	61	40	10	0
D106-05-08731A1		8.731	11/32"	49	103	61	40	10	0
D106-05-08750A1		8.75		49	103	61	40	10	0
D106-05-08800A1	AP30P1U	8.8		49	103	61	40	10	•
D106-05-08900A1	AP30P1U	8.9		49	103	61	40	10	•

Свёрла других размеров и геометрий могут быть изготовлены по запросу, включая свёрла для глубокого сверления, обработки композитных материалов и др.

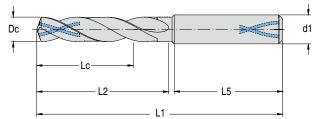
Цельные твёрдосплавные свёрла серии D106 с каналами для внутреннего подвода СОЖ 5xDc



5xDc	DIN 6537 L	140°	
~	~	~	~


Номер по кат	алогу	Dc(m7)	Dc дюйм	Lc MM	L1 мм	L2 MM	L5 мм	d1(h6) мм	Наличие
D106-05-09000A1	AP30P1U	9		49	103	61	40	10	•
D106-05-09100A1	AP30P1U	9.1		49	103	61	40	10	0
D106-05-09128A1	AP30P1U	9.128	23/64"	49	103	61	40	10	0
D106-05-09200A1	AP30P1U	9.2		49	103	61	40	10	0
D106-05-09300A1	AP30P1U	9.3		49	103	61	40	10	•
D106-05-09400A1	AP30P1U	9.4		49	103	61	40	10	0
D106-05-09500A1	AP30P1U	9.5		49	103	61	40	10	0
D106-05-09525A1	AP30P1U	9.525	3/8"	49	103	61	40	10	0
D106-05-09550A1	AP30P1U	9.55		49	103	61	40	10	0
D106-05-09600A1	AP30P1U	9.6		49	103	61	40	10	0
D106-05-09700A1	AP30P1U	9.7		49	103	61	40	10	0
D106-05-09800A1	AP30P1U	9.8		49	103	61	40	10	•
D106-05-09900A1	AP30P1U	9.9		49	103	61	40	10	•
D106-05-09922A1	AP30P1U	9.922	25/64"	49	103	61	40	10	0
D106-05-10000A1	AP30P1U	10		49	103	61	40	10	•
D106-05-10100A1	AP30P1U	10.1		56	118	71	45	12	•
D106-05-10200A1	AP30P1U	10.2		56	118	71	45	12	•
D106-05-10300A1	AP30P1U	10.3		56	118	71	45	12	•
D106-05-10319A1	AP30P1U	10.319	13/32"	56	118	71	45	12	0
D106-05-10400A1	AP30P1U	10.4		56	118	71	45	12	0
D106-05-10500A1	AP30P1U	10.5		56	118	71	45	12	•
D106-05-10600A1	AP30P1U	10.6		56	118	71	45	12	•
D106-05-10700A1	AP30P1U	10.7		56	118	71	45	12	0
D106-05-10716A1	AP30P1U	10.716	27/64"	56	118	71	45	12	0
D106-05-10800A1	AP30P1U	10.8		56	118	71	45	12	•
D106-05-10900A1	AP30P1U	10.9		56	118	71	45	12	0
D106-05-11000A1	AP30P1U	11		56	118	71	45	12	•
D106-05-11100A1	AP30P1U	11.1		56	118	71	45	12	0
D106-05-11113A1	AP30P1U	11.113	7/16"	56	118	71	45	12	0
D106-05-11200A1	AP30P1U	11.2		56	118	71	45	12	0
D106-05-11300A1	AP30P1U	11.3		56	118	71	45	12	0
D106-05-11400A1	AP30P1U	11.4		56	118	71	45	12	0
D106-05-11500A1	AP30P1U	11.5		56	118	71	45	12	0
D106-05-11509A1	AP30P1U	11.509	29/64"	56	118	71	45	12	0
D106-05-11550A1	AP30P1U	11.55		56	118	71	45	12	0
D106-05-11600A1	AP30P1U	11.6		56	118	71	45	12	0
D106-05-11700A1	AP30P1U	11.7		56	118	71	45	12	0
D106-05-11800A1	AP30P1U	11.8		56	118	71	45	12	•
D106-05-11900A1	AP30P1U	11.9		56	118	71	45	12	0
D106-05-11906A1		11.906	15/32"	56	118	71	45	12	0
D106-05-12000A1		12		56	118	71	45	12	•
D106-05-12100A1	AP30P1U	12.1		60	124	77	45	14	0
D106-05-12200A1	AP30P1U	12.2		60	124	77	45	14	0
D106-05-12250A1	AP30P1U	12.25		60	124	77	45	14	0

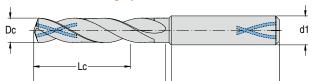
Цельные твёрдосплавные свёрла серии D106 с каналами для внутреннего подвода СОЖ

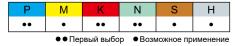

Номер по кат	алогу	Dc(m7)	Dc дюйм	Lc MM	L1 MM	L2 MM	L5 MM	d1(h6) мм	Наличие
D106-05-12300A1	AP30P1U	12.3		60	124	77	45	14	0
D106-05-12303A1	AP30P1U	12.303	31/64"	60	124	77	45	14	0
D106-05-12400A1	AP30P1U	12.4		60	124	77	45	14	0
D106-05-12500A1	AP30P1U	12.5		60	124	77	45	14	•
D106-05-12600A1	AP30P1U	12.6		60	124	77	45	14	0
D106-05-12700A1	AP30P1U	12.7	1/2"	60	124	77	45	14	0
D106-05-12750A1	AP30P1U	12.75		60	124	77	45	14	0
D106-05-12800A1	AP30P1U	12.8		60	124	77	45	14	0
D106-05-12900A1	AP30P1U	12.9		60	124	77	45	14	0
D106-05-13000A1	AP30P1U	13		60	124	77	45	14	•
D106-05-13100A1	AP30P1U	13.1		60	124	77	45	14	0
D106-05-13200A1	AP30P1U	13.2		60	124	77	45	14	•
D106-05-13300A1	AP30P1U	13.3		60	124	77	45	14	0
D106-05-13400A1	AP30P1U	13.4		60	124	77	45	14	0
D106-05-13494A1	AP30P1U	13.494	17/32"	60	124	77	45	14	0
D106-05-13500A1	AP30P1U	13.5		60	124	77	45	14	0
D106-05-13600A1	AP30P1U	13.6		60	124	77	45	14	0
D106-05-13700A1	AP30P1U	13.7		60	124	77	45	14	•
D106-05-13800A1	AP30P1U	13.8		60	124	77	45	14	0
D106-05-13900A1	AP30P1U	13.9		60	124	77	45	14	0
D106-05-14000A1	AP30P1U	14		60	124	77	45	14	•
D106-05-14100A1	AP30P1U	14.1		63	133	83	48	16	•
D106-05-14200A1	AP30P1U	14.2		63	133	83	48	16	•
D106-05-14288A1	AP30P1U	14.288	9/16"	63	133	83	48	16	0
D106-05-14300A1	AP30P1U	14.3		63	133	83	48	16	0
D106-05-14400A1	AP30P1U	14.4		63	133	83	48	16	0
D106-05-14500A1	AP30P1U	14.5		63	133	83	48	16	•
D106-05-14600A1	AP30P1U	14.6		63	133	83	48	16	•
D106-05-14700A1	AP30P1U	14.7		63	133	83	48	16	•
D106-05-14750A1	AP30P1U	14.75		63	133	83	48	16	0
D106-05-14800A1	AP30P1U	14.8		63	133	83	48	16	0
D106-05-15000A1	AP30P1U	15		63	133	83	48	16	•
D106-05-15100A1		15.1		63	133	83	48	16	0
D106-05-15200A1	AP30P1U	15.2		63	133	83	48	16	0
D106-05-15300A1		15.3		63	133	83	48	16	0
D106-05-15500A1		15.5		63	133	83	48	16	•
D106-05-15600A1		15.6		63	133	83	48	16	0
D106-05-15700A1		15.7		63	133	83	48	16	•
D106-05-15800A1		15.8		63	133	83	48	16	•
D106-05-15875A1		15.875	5/8"	63	133	83	48	16	0
D106-05-15900A1		15.9		63	133	83	48	16	0
D106-05-16000A1	AP30P1U	16		63	133	83	48	16	•

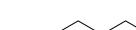
Свёрла других размеров и геометрий могут быть изготовлены по запросу, включая свёрла для глубокого сверления, обработки композитных материалов и др.

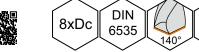
Цельн<mark>ые твёрдосп</mark>лавные

Цельные твёрдосплавные свёрла серии D108 с каналами для внутреннего подвода СОЖ 8xDc

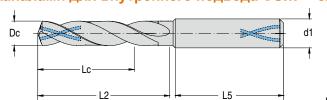




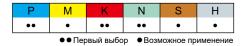

Номер по каталогу	Dc(m7)	Dc дюйм	Lc MM	L1 MM	L2 MM	L5 мм	d1(h6) мм	Наличие
D108-08-03000A1	3		28	74	34	36	6	•
D108-08-03100A1	3.1		28	74	34	36	6	•
D108-08-03175A1	3.175	1/8"	28	74	34	36	6	0
D108-08-03200A1	3.2		28	74	34	36	6	•
D108-08-03300A1	3.3		28	74	34	36	6	•
D108-08-03400A1	3.4		28	74	34	36	6	•
D108-08-03500A1	3.5		28	74	34	36	6	•
D108-08-03572A1	3.572	9/64"	28	74	34	36	6	0
D108-08-03600A1	3.6		28	74	34	36	6	•
D108-08-03700A1	3.7		28	74	34	36	6	•
D108-08-03800A1	3.8		35	81	42	36	6	•
D108-08-03900A1	3.9		35	81	42	36	6	•
D108-08-03969A1	3.969	5/32"	35	81	42	36	6	0
D108-08-04000A1	4		35	81	42	36	6	•
D108-08-04100A1	4.1		35	81	42	36	6	•
D108-08-04200A1	4.2		35	81	42	36	6	•
D108-08-04300A1	4.3		37	81	44	36	6	•
D108-08-04366A1	4.366	11/64"	37	81	44	36	6	0
D108-08-04400A1	4.4		37	81	44	36	6	•
D108-08-04500A1	4.5		37	81	44	36	6	•
D108-08-04600A1	4.6		37	81	44	36	6	•
D108-08-04700A1	4.7		37	81	44	36	6	•
D108-08-04763A1	4.763	3/16"	43	97	52	36	6	0
D108-08-04800A1	4.8		43	97	52	36	6	•
D108-08-04900A1	4.9		43	97	52	36	6	•
D108-08-05000A1	5		45	97	55	36	6	•
D108-08-05100A1	5.1		45	97	55	36	6	•
D108-08-05159A1	5.159	13/64"	45	97	55	36	6	0
D108-08-05200A1	5.2		45	97	55	36	6	•
D108-08-05300A1	5.3		45	97	55	36	6	•
D108-08-05400A1	5.4		48	97	57	36	6	•
D108-08-05500A1	5.5		48	97	57	36	6	•
D108-08-05556A1	5.556	7/32"	48	97	57	36	6	•
D108-08-05600A1	5.6		48	97	57	36	6	•
D108-08-05700A1	5.7		48	97	57	36	6	•
D108-08-05800A1	5.8		48	97	57	36	6	•
D108-08-05900A1	5.9		48	97	57	36	6	•
D108-08-05953A1	5.953	15/64"	48	97	57	36	6	0
D108-08-06000A1	6		48	97	57	36	6	•
D108-08-06100A1	6.1		53	106	64	36	8	•
D108-08-06200A1	6.2		53	106	64	36	8	•


Свёрла других размеров и геометрий могут быть изготовлены по запросу, включая свёрла для глубокого сверления, обработки композитных материалов и др.

Цельные твёрдосплавные свёрла серии D108 с каналами для внутреннего подвода СОЖ



Lc Lc		1	
L2	L5	t	Свёрла D108 в работе


Номер по каталогу	Dc(m7)	Dc дюйм	Lc MM	L1 MM	L2 MM	L5 мм	d1(h6) мм	Наличие
D108-08-06300A1	6.3		53	106	64	36	8	•
D108-08-06350A1	6.35	1/4"	54	106	66	36	8	•
D108-08-06400A1	6.4		54	106	66	36	8	•
D108-08-06500A1	6.5		55	106	66	36	8	•
D108-08-06600A1	6.6		55	106	66	36	8	•
D108-08-06700A1	6.7		55	106	66	36	8	•
D108-08-06747A1	6.747	17/64"	55	106	66	36	8	0
D108-08-06800A1	6.8		55	106	66	36	8	•
D108-08-06900A1	6.9		55	106	66	36	8	•
D108-08-07000A1	7		55	106	66	36	8	•
D108-08-07100A1	7.1		60	116	74	36	8	•
D108-08-07144A1	7.144	9/32"	60	116	74	36	8	0
D108-08-07200A1	7.2		62	116	74	36	8	•
D108-08-07300A1	7.3		62	116	74	36	8	•
D108-08-07400A1	7.4		62	116	74	36	8	•
D108-08-07500A1	7.5		64	116	76	36	8	•
D108-08-07541A1	7.541	19/64"	64	116	76	36	8	0
D108-08-07600A1	7.6		64	116	76	36	8	•
D108-08-07700A1	7.7		64	116	76	36	8	•
D108-08-07800A1	7.8		64	116	76	36	8	•
D108-08-07900A1	7.9		64	116	76	36	8	•
D108-08-07938A1	7.938	5/16"	64	116	76	36	8	0
D108-08-08000A1	8		64	116	76	36	8	•
D108-08-08100A1	8.1		70	139	88	40	10	•
D108-08-08200A1	8.2		70	139	88	40	10	•
D108-08-08300A1	8.3		72	139	88	40	10	•
D108-08-08334A1	8.334	21/64"	72	139	88	40	10	0
D108-08-08400A1	8.4		72	139	88	40	10	•
D108-08-08500A1	8.5		72	139	88	40	10	•
D108-08-08600A1	8.6		72	139	88	40	10	•
D108-08-08700A1	8.7		74	139	90	40	10	•
D108-08-08731A1	8.731	11/32"	74	139	90	40	10	0
D108-08-08800A1	8.8		74	139	90	40	10	•
D108-08-08900A1	8.9		76	139	92	40	10	•
D108-08-09000A1	9		76	139	92	40	10	•
D108-08-09100A1	9.1		78	139	95	40	10	•
D108-08-09128A1	9.128	23/64"	78	139	95	40	10	0
D108-08-09200A1	9.2		80	139	95	40	10	•
D108-08-09300A1	9.3		80	139	95	40	10	•

Свёрла других размеров и геометрий могут быть изготовлены по запросу, включая свёрла для глубокого сверления, обработки композитных материалов и др.

Цельные твёрдосплавные свёрла серии D108 с каналами для внутреннего подвода СОЖ 8хDc

_____ L1 ___

Свёрла D108 в работе

	DIN		
8xDc	6535		
		140°	

Номер по каталогу	Dc(m7)	Dc дюйм	Lc MM	L1 MM	L2 MM	L5 мм	d1(h6) мм	Наличие
D108-08-09400A1	9.4		80	139	95	40	10	•
D108-08-09500A1	9.5		80	139	95	40	10	•
D108-08-09525A1	9.525	3/8"	80	139	95	40	10	•
D108-08-09600A1	9.6		80	139	95	40	10	•
D108-08-09700A1	9.7		80	139	95	40	10	•
D108-08-09800A1	9.8		80	139	95	40	10	•
D108-08-09900A1	9.9		80	139	95	40	10	•
D108-08-09922A1	9.922	25/64"	80	139	95	40	10	0
D108-08-10000A1	10		80	139	95	40	10	•
D108-08-10100A1	10.1		88	163	108	45	12	•
D108-08-10200A1	10.2		88	163	108	45	12	•
D108-08-10300A1	10.3		88	163	108	45	12	•
D108-08-10319A1	10.319	13/32"	88	163	108	45	12	0
D108-08-10400A1	10.4		90	163	110	45	12	•
D108-08-10500A1	10.5		90	163	110	45	12	•
D108-08-10700A1	10.7		90	163	110	45	12	•
D108-08-10716A1	10.716	27/64"	92	163	110	45	12	0
D108-08-10800A1	10.8		92	163	110	45	12	•
D108-08-10900A1	10.9		94	163	112	45	12	•
D108-08-11000A1	11		94	163	112	45	12	•
D108-08-11100A1	11.1		94	163	112	45	12	•
D108-08-11113A1	11.113	7/16"	94	163	112	45	12	0
D108-08-11200A1	11.2		96	163	114	45	12	•
D108-08-11300A1	11.3		96	163	114	45	12	•
D108-08-11500A1	11.5		96	163	114	45	12	•
D108-08-11600A1	11.6		96	163	114	45	12	•
D108-08-11700A1	11.7		96	163	114	45	12	•
D108-08-11800A1	11.8		96	163	114	45	12	•
D108-08-11900A1	11.9		96	163	114	45	12	•
D108-08-11906A1	11.906	15/32"	96	163	114	45	12	0
D108-08-12000A1	12		96	163	114	45	12	•
D108-08-12303A1	12.303	31/64"	106	182	125	45	14	0
D108-08-12500A1	12.5		106	182	125	45	14	•
D108-08-12700A1	12.7	1/2"	106	182	125	45	14	0
D108-08-13000A1	13		110	182	130	45	14	•
D108-08-13494A1	13.494	17/32"	115	182	133	45	14	0
D108-08-13500A1	13.5		115	182	133	45	14	•
D108-08-14000A1	14		119	182	133	45	14	•
D108-08-14288A1	14.288	9/16"	122	204	140	48	16	0
D108-08-14500A1	14.5		124	204	140	48	16	•
D108-08-15000A1	15		128	204	143	48	16	•
D108-08-15500A1	15.5		132	204	150	48	16	•
D108-08-15875A1	15.875	5/8"	134	204	150	48	16	0
D108-08-16000A1	16		136	204	152	48	16	•

Режимы резания для цельных твёрдосплавных свёрл серий D106 и D108

				Длина ре	жушей										
				час		-	3x	Dc			5x	Dc		8xI	Dc
	Vc - скорос Код подачи - значе	ть резания, м/м		Сория		<u></u>		D1		<u></u>		D11		D1	
	код подачи - значе	ние подач см. і	на стр. 403	Серия сверл Диапазон диаметров			D106			D106				3.00-16.00	
				(мм	1)	3.00-20.00 Наружная		3.00-16.00 Внутренняя		3.00-20.00 Наружная		3.00-16.00 Внутренняя		3.00-2	
				Твёрдость по		пару	Код			Парул					1
	Обрабатыв	ваемые материал	Ы	Бринеллю (НВ)	прочности (Н/мм²)	Vc	подачи	Vc	Код подачи	Vc	Код подачи	Vc	Код подачи	Vc	Код подачи
		C≤0.25% 0.25 < C≤0.55%	Отожжённые	125 190	428 639	80-100 70-90	F E	90-115	F E	80-100 70-90	F E	90-115	F E	90-115	F E
		0.25 < C≤0.55%	Отожжённые Термообработанные	210	708	70-90	E	80-100	E	70-90	E	80-100	E	80-100	E
	Низкоуглеродистые	C>0.55%	Отожжённые	190	639	70-90	E	80-100	E	70-90	E	80-100	E	80-100	E
	стали	C>0.55%	Термообработанные	300	1013	50-70	D	50-70	D	50-70	D	50-70	D	50-70	D
		Хорошо обрабатываемые стали (короткая стружка)	Отожжённые	220	745	80-100	F	90-115	F	80-100	F	90-115	F	90-115	F
		Ото	кжённые	175	591	70-100	Е	80-110	Е	70-100	Е	80-110	Е	80-110	Е
Р	Низколегированные		работанные	300	1013	50-70	D	60-70	D	50-70	D	60-70	D	60-70	D
	стали		работанные	380	1282	35-45	С	40-50	С	35-45	С	40-50	С	40-50	С
			бработанные кжённые	430 200	1477 675	30-40 55-65	B D	30-40 60-80	B D	30-40 55-65	B D	30-40 60-80	B D	30-40 60-80	B D
	Высоколегированные и инструментальные		кженные е и отпущенные	300	1013	40-50	С	40-60	С	40-50	С	40-60	С	40-60	С
	стали		е и отпущенные	400	1361	30-40	С	45-50	С	30-40	С	45-50	С	45-50	С
			и мартенситные,	200	675	50-70	D	60-80	D	50-70	D	60-80	D	60-80	D
	Нержавеющие стали		жённые												
			термообработанные енитные	330 200	1114 675	40-50	С	40-50 40-50	С	40-50	С	40-50 40-50	C	40-50 40-50	C
			, закалённые (РН			05.45				05.45					
M	Нержавеющие стали	нержавеющие стали)		300	1013	35-45	С	40-50	С	35-45	С	40-50	С	40-50	С
		Аустенитно-ферритные (дуплексные)		230	778		_	25-35	В		_	25-35	В	25-35	В
	Ковкие чугуны	Ферритные Перлитные		200	400 700	70-90 60-80	G	70-90 60-80	G	70-90 60-80	G	70-90 60-80	G G	70-90 60-80	G
			литные делом прочности	180	200	80-100	H	80-110	Н	80-100	Н	80-110	Н	80-110	Н
K	Серые чугуны	С высоким пре	еделом прочности, енитный	245	350	70-90	G	70-90	G	70-90	G	70-90	G	70-90	G
	Чугуны с шаровидным	Фер	ритные	155	400	80-100	G	80-110	Н	80-100	G	80-110	Н	80-110	Н
	графитом		олитные	265	700	60-80	F	60-80	F	60-80	F	60-80	F	60-80	F
	Чугуны с вер	микулярным граф	вые сплавы, не	230	400	60-80	F	60-80	F	60-80	F	60-80	F	60-80	F
	Деформируемые	подвергну	тые старению	30	-	200-300	G	300-400	G	200-300	G	300-400	G	300-400	G
	алюминиевые сплавы		плавы, подвергнутые арению	100	340	200-300	G	300-400	G	200-300	G	300-400	G	300-400	G
			вергнутые старению	75	260	160-220	Н	180-240	Н	160-220	Н	180-240	Н	180-240	Н
	Литые алюминиевые сплавы		ергнутые старению	90	310	160-200		180-200	Н	160-200		180-200	Н	180-200	
N	оплавы	>12% Si, не под	вергнутые старению	130	450	130-160	G	140-180	G	130-160	G	140-180	G	140-180	G
_ [Магниевые сплавы	11		70	250										
	Manus		я электролитическая ронза	100	340	120-160	С	140-170	D	120-160	С	140-170	D	140-170	D
	Медь и сплавы на её основе (бронза,		а, красная латунь	90	310	110-140		120-140	Е	110-140	Е	120-140	Е	120-140	
	латунь)		ы, короткая стружка	110	380	120-150		140-180	F	120-150	F	140-180	F	140-180	
		·	ые сплавы Атрсо	300	1010	45-60	В	45-60	В	45-60	В	45-60	В	45-60	В
		На основе железа (Fe)	Отожжённые Отпущенные	200	680 940			30-40 20-25	A			30-40 20-25	A	30-40 20-25	B A
	Жаропрочные сплавы	На основе	Отожжённые	250	840			20-23	В			20-23	В	20-23	В
		никеля (Ni) и	Отпущенные	350	1180			10-15	Α			10-15	Α	10-15	Α
		кобальта (Со)	Литые	320	1080			15-25	Α			15-25	Α	15-25	Α
S	_	Чистый титан		200	680	30-40	В	40-50	С	30-40	В	40-50	С	40-50	С
	Титановые сплавы		ы, состаренные	375 410	1260 1400	20-30	A	25-35 10-15	B A	20-30	A	25-35 10-15	B A	25-35 10-15	B A
	Вольфрамовые	р	an idobi												
	сплавы			300	1010			10-15	Α			10-15	Α	10-15	Α
	Молибденовые сплавы			300	1010			10-15	Α			10-15	Α	10-15	Α
		Закалённы	е и отпущенные	50HRC	-	20-35	Α	20-35	Α	20-35	Α	20-35	Α	20-35	Α
н	Закалённые стали		е и отпущенные	55HRC	-										
	O=5000:		е и отпущенные	60HRC	-										
ш	Отбеленные чугуны	закаленны	е и отпущенные	50HRC	-										

Рекомендуемые значения режимов резания - начальные. При нестандартных условиях обработки (обработка пересекающихся отверстий, нежёсткая система СПИД, нестабильная подача СОЖ) режимы резания должны быть скорректированы.

Таблица значений подач на оборот

Подача на оборот (мм/об)									
		Α	В	С	D	E	F	G	Н
	3.0	0.03	0.04	0.05	0.06	0.08	0.10	0.12	0.14
	4.0	0.04	0.05	0.06	0.08	0.10	0.12	0.14	0.16
	5.0	0.05	0.06	0.07	0.09	0.10	0.12	0.16	0.18
_	6.0	0.05	0.07	0.08	0.10	0.12	0.15	0.18	0.20
Диаметр сверла,	8.0	0.06	0.08	0.10	0.12	0.15	0.18	0.20	0.23
IVIIVI	10.0	0.08	0.10	0.12	0.14	0.18	0.20	0.24	0.28
	12.0	0.10	0.12	0.14	0.18	0.20	0.24	0.28	0.32
	14.0	0.10	0.14	0.18	0.20	0.24	0.28	0.32	0.34
	16.0	0.12	0.15	0.18	0.20	0.25	0.30	0.34	0.36
	20.0	0.15	0.16	0.20	0.25	0.30	0.34	0.37	0.40

Значения диаметров отверстия под нарезание резьбы метчиком

М	Метрическая резьба с крупным шагом по DIN 13 и DIN ISO 965-1								
D	D	D1							
Диаметр резьбы	Мин. (мм)	Диаметр резьбы							
M4	3.242	3.422	3.30						
M4.5	3.688	3.878	3.70						
M5	4.134	4.334	4.20						
M6	4.917	5.00							
M7	5.917	6.153	6.00						
M8	6.647	6.912	6.80						
M9	7.647	7.912	7.80						
M10	8.376	8.676	8.50						
M11	9.376	9.676	9.50						
M12	10.106	10.441	10.20						
M14	11.835	12.210	12.00						
M16	13.835	14.210	14.00						
M18	15.294	15.50							
M20	17.294	17.50							
M22	19.294	19.744	19.50						

UNC	Резьба UNC с крупным шагом по стандарту ASME B.1.1						
D	D1 •••••		* ()•				
Диаметр резьбы Р Gg/1"	Мин. (мм) 2B/3B	Диаметр резьбы					
8-32 UNC	3.302	3.531	3.50				
10-24 UNC	3.683	3.90					
12-24 UNC	4.343	4.50					
1/4-20 UNC	4.976	5.10					
5/16-18 UNC	6.411	6.60					
3/8-16 UNC	7.805	8.00					
7/16-14 UNC	9.149	9.40					
1/2-13 UNC	10.584	10.28					
9/16-12 UNC	11.996	12.20					
5/8-11 UNC	13.376	13.868	13.50				
3/4-10 UNC	16.299	16.833	16.50				
7/8-9 UNC	19.169	19.748	19.50				

UNF	Резьба UNF с мелким шагом по стандарту ASME B.1.1							
D	D	*()						
Диаметр резьбы Р Gg/1"	Мин. (мм) 2B/3B	Макс. (мм) 2В	Диаметр резьбы					
8-36 UNF	3.404	3.607	3.50					
10-32 UNF	3.962	4.10						
12-28 UNF	4.496	4.60						
1/4-28 UNF	5.367	5.50						
5/16-24 UNF	6.792	6.90						
3/8-24 UNF	8.379	8.626	8.50					
7/16-20 UNF	9.738	9.90						
1/2-20 UNF	11.326	11.50						
9/16-18 UNF	12.761	12.90						
5/8-18 UNF	14.348	14.348 14.671						
3/4-16 UNF	17.330	17.689	17.50					

MF	Метрическая резьба с мелким шагом по DIN 13 и DIN ISO 965-1						
D	D1	> <u>/</u> ()•					
Диаметр резьбы х Р	Макс. (мм) 5Н/6Н	Диаметр резьбы					
M3.5x0.35	3.221	3.15					
M4x0.35	3.721	3.65					
M4x0.5	3.599	3.50					
M4.5x0.5	4.099	4.00					
M5x0.35	4.721	4.65					
M5x0.5	4.599	4.50					
M5x0.75	4.378	4.20					
M5x0.5	5.599	5.50					
M6x0.75	5.378	5.25					
M7x0.5	6.599	6.50					
M7x0.75	6.378	6.25					
M8x0.5	7.599	7.50					
M8x0.75	7.378	7.25					
M8x1	7.153	7.00					
M9x0.75	8.378	8.25					
M9x1	8.153	8.00					
M10x0.5	9.599	9.50					
M10x0.75	9.378	9.25					
M10x1	9.153	9.00					
M10x1.25	8.912	8.75					
M11x1	10.153	10.00					
M12x0.5	11.599	11.50					
M12x1	11.153	11.00					
M12x1.25	10.912	10.75					
M12x1.5	10.676	10.50					
M13x1	12.153	12.00					
M14x0.75	13.378	13.20					
M14x1	13.153	13.00					
M14x1.25	12.912	12.75					
M14x1.5	12.676	12.50					
M15x1	14.153	14.00					
M15x1.5	13.676	13.50					
M16x0.75	15.378	15.20					
M16x1	15.153	15.00					
M16x1.25	14.912	14.80					
M16x1.5	14.676	14.50					
M17x1	16.153	16.00					
M18x1	17.153	17.00					
M18x1.5	16.676	16.50					
M18x2	16.21	16.00					
M20x1	19.153	19.00					
M20x1.5	18.676	18.50					
M20x2	18.21	18.00					

цельн<mark>ые твёрдоспл</mark>авные

Значения диаметров отверстия под нарезание резьбы безстружечным метчиком

M	Метрическая резьба с крупным шагом по DIN 13 и DIN ISO 965-1
D	* *()•
Диаметр резьбы	Диаметр резьбы
M3.5	3.25
M4	3.70
M5	4.65
M6	5.55
M8	7.40
M10	9.30
M12	11.20
M14	13.10
M16	15.10
M18	16.90
M20	18.90

MF	Метрическая резьба с мелким шагом по DIN 13 и DIN ISO 965-1
D	***
Диаметр резьбы х Р	Диаметр резьбы
M4x0.5	3.80
M5x0.5	4.80
M6x0.5	5.80
M6x0.75	5.65
M7x0.75	6.65
M8x0.75	7.65
M8x1	7.55
M10x0.75	9.65
M10x1	9.55
M10x1.25	9.40
M12x1	11.55
M12x1.25	11.40
M12x1.5	11.30
M14x1	13.55
M14x1.5	13.30
M16x1	15.55
M16x1.5	15.30
M18x1	17.55
M18x1.5	17.30
M20x1.5	19.30
M20x2	19.10
M22x1.5	21.30

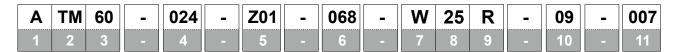
UNC	Резьба UNC с крупным шагом по стандарту ASME B.1.1
D	▶ ∤()•
Диаметр резьбы	Диаметр резьбы
6-32 UNC	3.15
8-32 UNC	3.80
10-24 UNC	4.30
12-24 UNC	5.00
1/4-20 UNC	5.75
5/16-18 UNC	7.25
3/8-16 UNC	8.75
7/16-14 UNC	10.30
1/2-13 UNC	11.80
9/16-12 UNC	13.30
5/8-11 UNC	14.80
3/4-10 UNC	17.90

UNF	Резьба UNF с мелким шагом по стандарту ASME B.1.1
D	▶ {()•
Диаметр резьбы	Диаметр резьбы
6-40 UNF	3.20
8-36 UNF	3.85
10-32 UNF	4.45
12-28 UNF	5.05
1/4-28 UNF	5.90
5/16-24 UNF	7.45
3/8-24 UNF	9.00
7/16-20 UNF	10.50
1/2-20 UNF	12.10
9/16-18 UNF	13.70
5/8-18 UNF	15.25
3/4-16 UNF	18.40

ACHTECK

www.achtecktool.com/ru

ЭКСПЕРТ В РЕЗАНИИ ТРУДНООБРАБАТЫВАЕМЫХ МАТЕРИАЛОВ


Видео об инструменте

ОСНОВНОЙ КАТАЛОГ

Резьбофрезы со сменными режущими пластинами	406
Обзор решений для резьбофрезерования	408
Система обозначения резьбофрез	409
Корпуса резьбофрез	410
Пластины для резьбофрезерования	411
Рекомендации по выбору резьбофрез для метрических резьб	412
Рекомендации по выбору резьбофрез для резьб ANSI	413
Рекомендации по выбору резьбофрез для резьб G BSP	414
Powers a possible des possi forthogonopolius	115

Обзор решений для резьбофрезерования

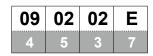
Вид инструмента	Серия	ATM60			
	Длина рабочей части	2.5XDN			
RCHTECK	Описание	Однорядная резьбофреза со сменными режущими пластинами			
	Марка сплава пластины	AP320U			
	Форморазмер пластины	TM60, TM55			
NOW THE WASHINGTON	Подвод СОЖ	Внутренний			
	Типы резьб	M; MF; MJ; UNC; UNF; UNEF; UN; UNJ; G;			
	Тип отверстий для нарезания резьбы				

1- Бренд **АСНТЕСК** 2-Тип инструмента
Резьбофрезы со
сменными режущими
пластинами

3- Форма пластины 60 - треугольная

5- Количество зубьев 01 03

6- Длина рабочей части
52
55
80
90
......


7:8-Тип и диаметр хвостовика W16 - Weldon 16 мм W20 - Weldon 20 мм W25 - Weldon 25 мм W32 - Weldon 32 мм W40 - Weldon 40 мм

9- Исполнение R: правое 10- Размер пластины 06 09 11 11-Осевое расстояние между рядами 006 007 012
Без обозначения - фреза с одним рядом

Система обозначения пластин для резьбовых фрез

TM 60 G 1 2 3

MU1 8

AP320U 9

1- Тип пластин Для резьбофрезерования

2-угол профиля резьбы
60
60° - треугольные пластины
55
55° - треугольные пластины
......

3-Точность пластин
G - высокоточные
шлифованные
М - без доп.
шлифования

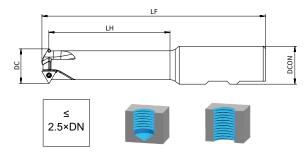
5-Толщина T1=1.98 02=2.38 03=3.18

6-Радиус при вершине

01

02

04

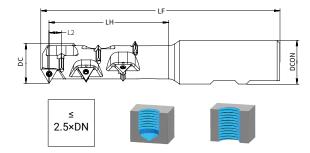

7-Упрочнение режущей кромки Е - округление режущей кромки 8-Геометрия

МU1 - универсальная

9-Марка сплава **AP320U**

Корпуса резьбовых фрез

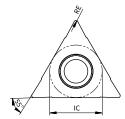
		Основные размеры (мм)						Внутр.	Кол-во	
Номер по каталогу	DN	Pmax _{MM}	DC MM	LH MM	LF MM	DCON MM	Z	сож	зубьев	Пластины
ATM60-016-Z03-052-W16R-06	M20	2.5	16	52	108	16	3	/= -	3	TM-06
ATM60-019-Z03-055-W20R-06	M24	3	19	55	115	20	3	-	3	TM-06
ATM60-024-Z03-080-W25R-09	M30	3.5	24	80	148	25	3	-	3	TM-09
ATM60-030-Z03-090-W32R-09	M36	4	30	90	162	32	3	-	3	TM-09
ATM60-035-Z03-110-W32R-11	M42	4.5	35	110	180	32	3	-	3	TM-11
ATM60-040-Z03-125-W40R-14	M48	5	40	125	208	40	3	-	3	TM-14
ATM60-044-Z03-150-W40R-14	M56	5.5	44	150	232	40	3	-	3	TM-14

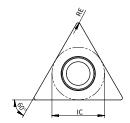

Замечание: С подводом СОЖ Без подвода СОЖ

Основные размеры (мм)		Запасные части							
D мм	Винт	Ключ	Момент затяжки						
16-19	SP020043	DT-TP06	0.6 Нм						
24-30	SP022049H	DT-TP07	0.9 Нм						
35	SP025066	DT-TP07	0.9 Нм						
40-44	SP030077	DT-TP09	2.0 Нм						

езьбофрезы со сменными режущими пластинами

Корпуса резьбовых фрез




	Основные размеры (мм)								Внутр.	Кол-во	
Номер по каталогу	DN	Шаг Р мм	DC MM	LH MM	L2 мм	LF MM	DCON MM	Z	СОЖ	зубьев	Пластины
ATM60-013-Z01-035-W12R-06-010	M16/M18	2.5/2	13	35	10	86	12	1	7	3	TM-06
ATM60-013-Z01-038-W12R-06-009	M16/M18	1.5	13	38	9	88	12	1	7	4	TM-06
ATM60-017-Z01-047-W16R-06-007.5	M20/M22	2.5/1.5	16.5	47	7.5	103	16	1	ت	6	TM-06
ATM60-017-Z01-053-W16R-06-010	M20/M22	2.5/2	16.5	53	10	109	16	1	ٿ م	5	TM-06
ATM60-019-Z01-054-W20R-06-009	M24/M27	3/1.5	19	54	9	114	20	1	ا=	6	TM-06
ATM60-019-Z01-063-W20R-06-012	M24/M27	3/2	19	63	12	123	20	1	ا = ۲	5	TM-06
ATM60-024-Z01-064-W25R-09-010.5	M30/M33	3.5/1.5	24	64	10.5	131	25	1	-	6	TM-09
ATM60-024-Z01-079-W25R-09-014	M30/M33	3.5/2	24	79	14	146	25	1	"	6	TM-09
ATM60-030-Z01-076-W32R-09-008	M36/M39	4/2	30	76	8	147	32	1	ٿ ۾	9	TM-09
ATM60-030-Z01-095-W32R-09-012	M36/M39	4/3/2/1.5	30	95	12	166	32	1	<u> </u>	8	TM-09
ATM60-035-Z01-089-W32R-11-009	M42/M45	4.5/3/1.5	35	89	9	159	32	1	√ ±1	9	TM-11
ATM60-035-Z01-110-W32R-11-009	M42/M45	4.5/3/1.5	35	110	9	180	32	1	√ ±1	10	TM-11
ATM60-040-Z01-102-W40R-14-010	M48/M52	5/2	40	102	10	186	40	1	-	10	TM-14
ATM60-040-Z01-122-W40R-14-015	M48/M52	5/3/1.5	40	122	15	206	40	1	<u>+</u>	8	TM-14
ATM60-044-Z01-119-W40R-14-011	M56/M60	5.5	44	119	11	201	40	1	ٿ ا	10	TM-14
ATM60-044-Z01-146-W40R-14-011	M56/M60	5.5	44	146	11	228	40	1	ٿ	10	TM-14
ATM60-052-Z01-135-W40R-14-012	M64/M68	6/3/2	52	135	12	218	40	1	ا - ا	11	TM-14

Замечание: С подводом СОЖ Без подвода СОЖ

Основные размеры (мм)	Запасные части					
D мм	Винт	Момент затяжки				
13-19	SP020043	DT-TP06	0.6Nm			
24-30	SP022049H	DT-TP07	0.9Nm			
35	SP025066	DT-TP07	0.9Nm			
40-52	SP030077	DT-TP09	2.0Nm			

Пластины TM60G и TM55G для резьбофрезерования

Пластины		RE	D		Сплав
	Номер по каталогу	ММ	Шаг Р, мм	Шаг Р, вит/дюйм	AP320U
	TM60G-06T101E-MU1	0.1	1.5-2.9	18-9	•
	TM60G-06T102E-MU1	0.2	3	8	•
	TM60G-090201E-MU1	0.1	1.5-2.9	18-9	•
A	TM60G-090202E-MU1	0.2	3.0-4.0	8-6	•
	TM60G-110201E-MU1	0.1	1.5-2.9	18-9	•
	TM60G-110202E-MU1	0.2	3.0-4.5	8-6	•
	TM60G-140301E-MU1	0.1	1.5-2.9	18-9	•
	TM60G-140302E-MU1	0.2	3.0-5.0	8-5	•
	TM60G-140304E-MU1	0.4	5.0-6.0	5-4	•
	TM55G-090202E-MU1	0.2		11	•
	TM55G-140302E-MU1	0.2		11	•

● На складе ○ Наличие ограничено

Резьбофрезы со сменным режущими пластинами

Рекомендации по выбору резьбофрез

Метрические резьбы

Корпус резьбофрезы	D MM	Пластины	Крупный шаг	Мелкий шаг
ATM60-016-Z03-052-W16R-06	16	TM60G-06T101	M20; M22;	M20X1.5; M20X2;
ATM60-019-Z03-055-W20R-06	19	TM60G-06T101		M22X1.5; M22X2; M24X1.5; M24X2; M25X1.5; M26X1.5;
AT MOU-013-203-055-W20K-06	19	TM60G-06T102	M24; M27;	
ATM60-024-Z03-080-W25R-09	24	TM60G-090201		M27X1.5; M27X2; M28X1.5; M28X2; M30X1.5; M30X2; M32X1.5; M32X2; M33X1.5; M33X2;
AT W00-024-203-000-W25K-03	24	TM60G-090202	M30; M33;	
ATM60-030-Z03-090-W32R-09	30	TM60G-090201		M34X1.5; M35X1.5; M36X1.5; M36X2; M38X1.5; M39X1.5; M39X2;
AT M00-030-203-030-10321X-03	30	TM60G-090202	M36; M39;	M36X3; M39X3;
ATM60-035-Z03-110-W32R-11	35	TM60G-110201		M39X1.5; M39X2; M40X1.5; M40X2; M42X1.5; M42X2;
A1W00-033-203-110-W32K-11	00	TM60G-110202	M42; M45;	M40X3; M42X3;
ATM60-040-Z03-125-W40R-14	40	TM60G-140301		M45X1.5; M45X2; M48X2;
AT MIOU-040-203-125-W40K-14	40	TM60G-140302	M48; M52;	M45X3; M48X3;
		TM60G-140301		M50X1.5; M50X2; M52X1.5; M52X2; M56X1.5; M56X2; M58X1.5; M60X1.5; M60X2;
ATM60-044-Z03-150-W40R-14	44	TM60G-140302		M50X3; M52X3; M56X3; M60X3;
		TM60G-140304	M56; M60;	
		TM60G-140301		M62X1.5; M62X2; M64X2; M68X1.5; M68X2;
ATM60-052-Z04-165-W40R-14	52	TM60G-140302		M62X3; M62X4; M64X3; M64X4; M68X3; M68X4;
		TM60G-140304	M64; M68;	M70X6; M72X6;

Рекомендации по выбору резьбофрез

Метрические резьбы

Корпус резьбофрезы	D MM	Шаг Р мм	Пластины	Крупный шаг	Мелкий шаг
ATM60-013-Z01-035-W12R-06-010	13	2.5/2	TM60G-06T101	M16; M17; M18;	M18X2; M17X2;
ATM60-013-Z01-038-W12R-06-009	13	1.5	TM60G-06T101		M16X1.5; M17X1.5; M18X1.5;
ATM60-017-Z01-047-W16R-06-007.5	16.5	2.5/1.5	TM60G-06T101	M20; M22;	M20X1.5; M22X1.5;
ATM60-017-Z01-053-W16R-06-010	16.5	2.5/2	TM60G-06T101	M20; M22;	M20X2; M22X2;
ATMC0 040 704 054 W00D 00 000	10	2/4 5	TM60G-06T101		M22X1.5; M24X1.5; M25X1.5; M26X1.5; M27X1.5;
ATM60-019-Z01-054-W20R-06-009	19	3/1.5	TM60G-06T102	M24; M27;	
ATMC0 040 704 062 W20D 06 042	10	2/2	TM60G-06T101		M24X2; M25X2; M27X2;
ATM60-019-Z01-063-W20R-06-012	19	3/2	TM60G-06T102	M24; M27;	
ATMC0 004 704 004 W05D 00 040 5	24	2545	TM60G-090201		M27X1.5; M28X1.5; M30X1.5; M32X1.5; M33X1.5;
ATM60-024-Z01-064-W25R-09-010.5	24	3.5/1.5	TM60G-090202	M30; M33;	
ATMON 004 704 070 MOT 00 044	0.4	0.5/0	TM60G-090201		M28X2; M30X2; M32X2; M33X2;
ATM60-024-Z01-079-W25-09-014	24	3.5/2	TM60G-090202	M30; M33;	
ATMON 000 704 070 M00D 00 000	00	4/0	TM60G-090201		M36X2; M39X2; M40X2; M42X2;
ATM60-030-Z01-076-W32R-09-008	30	4/2	TM60G-090202	M36; M39;	
ATMC0 020 704 005 W20D 00 040	20	4101014 5	TM60G-090201		M35X1.5; M36X1.5; M38X1.5; M39X1.5; M36X2; M39X2; M40X2; M42X2;
ATM60-030-Z01-095-W32R-09-012	30	4/3/2/1.5	TM60G-090202	M36; M39;	M36X3; M39X3; M40X3;
ATMC0 025 704 000 W22D 44 000	25	4 E 10 14 E	TM60G-110201		M39X1.5; M40X1.5; M42X1.5; M45X1.5;
ATM60-035-Z01-089-W32R-11-009	35	4.5/3/1.5	TM60G-110202	M42; M45;	M42*3; M45*3;
ATMC0 005 704 440 W20D 44 000	25	4 5 10 14 5	TM60G-110201		M39X1.5; M40X1.5; M42X1.5; M45X1.5;
ATM60-035-Z01-110-W32R-11-009	35	4.5/3/1.5	TM60G-110202	M42; M45;	M42X3; M45X3;
ATMC0 040 704 402 WAOD 44 040	40	E/O	TM60G-140301		M45X2; M48X2; M50X2; M52X2; M55X2; M56X2;
ATM60-040-Z01-102-W40R-14-010	40	5/2	TM60G-140302	M48; M52;	
ATM60 040 704 400 W40D 44 045	40	E/3/4 F	TM60G-140301		M45X1.5; M48X1.5; M50X1.5; M52X1.5; M55X1.5; M56X1.5; M60X1.5; M62X1.5; M64X1.5;
ATM60-040-Z01-122-W40R-14-015	40	5/3/1.5	TM60G-140302	M48; M52;	M48X3; M50X3; M52X3; M55X3; M56X3;
ATM60-044-Z01-119-W40R-14-011	44	5.5	TM60G-140304	M56,M60;	
ATM60-044-Z01-146-W40R-14-011	44	5.5	TM60G-140304	M56,M60;	
			TM60G-140301		M58X2; M60X2; M62X2; M64X2; M65X2; M68X2; M70X2; M72X2;
ATM60-052-Z01-135-W40R-14-012	52	6/3/2	TM60G-140302		M58X3; M60X3; M62X3; M64X3; M65X3; M68X3; M70X3; M72X3;
			TM60G-140304	M64; M68;	M70X6; M72X6;

Резьбофрезы со сменным режущими пластинами

Рекомендации по выбору резьбофрез

Резьбы ANSI UN

Корпус резьбофрезы	D MM	Пластины	UNC	UNF	UNEF	UN
ATM60-016-Z03-052-W16R-06	16	TM60G-06T101	7/8-9;	3/4-16; 7/8-14; 1-12;		7/8-12; 7/8-16;
		TM60G-06T102				
ATM60-019-Z03-055-W20R-06	19	TM60G-06T101		1-12; 11/8-12; 11/4–12;	1 1/16-18;	1-16;
		TM60G-06T102	1-8;			11/16-8;
ATM60-024-Z03-080-W25R-09	24	TM60G-090201		11/8-12; 11/4-12;	1 1/8-18; 1 1/4-18;	11/8-16; 11/4-16;
A111100-024-203-000-W23N-03	24	TM60G-090202	11/8-7; 11/4-7; 13/8-6;			11/8-8; 11/4-8;
ATM60-030-Z03-090-W32R-09	30	TM60G-090201		13/8-12; 11/2-12;	13/8-18; 11/2-18;	13/8-16; 11/2-16;
A1M00-020-203-030-W32K-03	30	TM60G-090202	11/2-6;			13/8-8; 11/2-8;
ATM60-035-Z03-110-W32R-11	35	TM60G-110201			15/8-18;	15/8-12; 15/8-16;
		TM60G-110202				15/8-6; 15/8-8; 13/4-6; 13/4-8;
ATM60-040-Z03-125-W40R-14	40	TM60G-140301				13/4-12; 13/4-16; 17/8-12; 17/8-16;
		TM60G-140302				17/8-6; 17/8-8;
		TM60G-140301				2-12; 2-16; 2 1/8-12; 2 1/8-16; 2 1/4-12; 2 1/4-16; 2 1/2-12; 2 1/2-16;
ATM60-044-Z03-150-W40R-14	44	TM60G-140302				2-6; 2-8; 21/8-6; 21/8-8; 21/4-6; 21/4-8; 21/2-6; 21/2-8;
		TM60G-140304	2-4.5; 21/4-4.5; 21/2-4;			
ATM60-052-Z04-165-W40R-14		TM60G-140301				21/2-12; 21/2-16; 23/4-12; 23/4-16; 3-12; 31/4-16; 31/2-12; 31/4-16;
	52	TM60G-140302				21/2-6; 21/2-8; 23/4-6; 23/4-8; 3-6; 3-8; 31/4-6; 31/4-8; 31/4-8; 31/2-6; 31/4-8;
		TM60G-140304	23/4-4; 3/4; 31/4-4; 31/2-4;			

Рекомендации по выбору резьбофрез

Резьба G (BSP)

Корпус резьбофрезы	D мм	Пластины	G
ATM60-024-Z03-080-W25R-09	24	TM55G-090202	G1-11; G1 1/8-11; G1 1/4-11;
ATM60-030-Z03-090-W32R-09	30	TM55G-090202	G1 1/8-11; G1 1/4-11; G1 3/8-11; G1 1/2-11;
ATM60-040-Z03-125-W40R-14	40	TM55G-140302	G1 1/2-11; G1 3/4–11;G2–11;
ATM60-044-Z03-150-W40R-14	44	TM55G-140302	G1 3/4–11;G2–11; G2 1/4–11;G2 1/2–11; G3–11;

езьбофрезы со сменными режупими прастинами

Режимы резания для резьбофрезерования

	Обрабатываемые материалы						ATM60			
ISO	Описацие	обрабатываемых мат	Твёрдость по Бринеллю	Предел прочности	Скорость резания	fz(мм) Размер пластины				
130	Описание	оораоатываемых ма	(HB)	(H/мм²)	Vc (м/мин)	06	09	11/14		
		C≤0.25%	Отожжённые	125	428	180	0.3	0.35	0.4	
		0.25 < C≤0.55%	Отожжённые	190	639	180	0.3	0.35	0.4	
	Низкоуглеродистые	0.25 < C≤0.55%	Термообработанные	210	708	180	0.3	0.35	0.4	
	стали	C>0.55%	Отожжённые	190	639	180	0.3	0.35	0.4	
	orani.	C>0.55%	Термообработанные	300	1013	180	0.25	0.3	0.35	
		Хорошо обрабатываемые стали (короткая стружка)	Отожжённые	220	745	180	0.3	0.35	0.4	
		Отожжён	ные	175	591	180	0.3	0.35	0.4	
P	Низколегированные	Термообрабо	отанные	300	1013	180	0.3	0.35	0.4	
	стали	Термообрабо	отанные	380	1282	130	0.2	0.3	0.35	
		Термообрабо	отанные	430	1477	80	0.15	0.2	0.3	
	Высоколегированные	Отожжён	ные	200	675	180	0.25	0.35	0.4	
	и инструментальные	Закалённые и о	тпущенные	300	1013	180	0.25	0.35	0.4	
	стали	Закалённые и о	тпущенные	400	1361	130	0.25	0.3	0.35	
	Нержавеющие стали	Ферритные и мартенси	тные, отожжённые	200	675	180	0.25	0.3	0.35	
	Пержавеющие стали	Мартенситные, терм	ообработанные	330	1114	130	0.25	0.3	0.35	
		Аустенит	ные	200	675	180	0.2	0.3	0.35	
M	Нержавеющие стали	Аустенитные, закалённы стали		300	1013	130	0.2	0.3	0.35	
		Аустенитно-ферритн	ые (дуплексные)	230	778	80	0.2	0.3	0.35	
	Ковкие чугуны	Ферритн	ые	200	400	180	0.3	0.35	0.4	
	results lylylis	Перлитн	ые	260	700	180	0.3	0.35	0.4	
	Серые чугуны	С низким предело	м прочности	180	200	250	0.3	0.35	0.4	
K	обрыс тугуны	С высоким пределом прочности, аустенитный Ферритные		245	350	180	0.3	0.35	0.4	
	Чугуны с шаровидным			155	400	180	0.3	0.35	0.4	
	графитом	Перлитн	ые	265	700	180	0.3	0.35	0.4	
	Чугуны	с вермикулярным графитом	(CGI)	230	400	180	0.3	0.35	0.4	
	Деформируемые	Алюминиевые сплавы, не п	одвергнутые старению	30	-					
	алюминиевые сплавы	Алюминиевые сплавы, под	двергнутые старению	100	340					
	Пити на описминисти на	≤ 12% Si, не подверг	нутые старению	75	260					
	Литые алюминиевые сплавы	≤ 12% Si, подвергну	тые старению	90	310	200	0.3	0.35	0.4	
N		>12% Si, не подверги	нутые старению	130	450	240	0.3	0.35	0.4	
	Магниевые сплавы			70	250					
		Нелегированная электро	олитическая бронза	100	340					
	Медь и сплавы на её	Латунь, бронза, кр	асная латунь	90	310					
	основе (бронза, латунь)	Медные сплавы, ко	ооткая стружка	110	380					
		Высокопрочные с	плавы Атрсо	300	1010					
		На основе железа (Fe)	Отожжённые	200	680	35	0.2	0.2	0.2	
		()	Отпущенные	280	940	20	0.1	0.1	0.1	
	Жаропрочные сплавы	На основе никеля (Ni) и	Отожжённые	250	840	35	0.2	0.2	0.2	
		кобальта (Со)	Отпущенные	350	1180	20	0.1	0.1	0.1	
S			Литые	320	1080	30	0.2	0.2	0.2	
		Чистый т		200	680	35	0.2	0.2	0.2	
	Титановые сплавы	α , β сплавы, со		375	1260	35	0.2	0.2	0.2	
		β сплав	ВЫ	410	1400	25	0.2	0.2	0.2	
	Вольфрамовые сплавы			300	1010	35	0.2	0.2	0.2	
	Молибденовые сплавы			300	1010	35	0.2	0.2	0.2	
		Закалённые и о	гпущенные	50HRC		40	0.15	0.2	0.2	
Н	Закалённые стали	Закалённые и о	гпущенные	55HRC						
		Закалённые и о	гпущенные	60HRC						
	Отбеленные чугуны	Закалённые и о	гпущенные	50HRC		40	0.15	0.2	0.2	

Рекомендуемые значения режимов резания - начальные. При нестандартных условиях обработки (обработка пересекающихся отверстий, нежёсткая система СПИД, нестабильная подача СОЖ) режимы резания должны быть скорректированы.

ACHTECK

www.achtecktool.com/ru

ЭКСПЕРТ В РЕЗАНИИ ТРУДНООБРАБАТЫВАЕМЫХ МАТЕРИАЛОВ

основной каталог

Инструментальная оснастка	418
Система обозначения инструментальной оснастки	420
Обзор инструментальной оснастки	421
Патроны и адаптеры под конуса ВТ	422
Силовые патроны	422
Цанговые патроны	423
Торцевые оправки	425
Антивибрационные торцевые оправки	430
Патроны Weldon	431
Аксессуары	432
Переходные втулки для силовых патронов	432
Цанги ER	433
Гайки для цанговых патронов	439
Переходник для СОЖ для патронов HSK	441
Удлинители для фрезерных головок на цилиндр. хвостовике из стали и тв. сплава	443

Доступны также новые гидравлические патроны HCA06-HCA32 и термооправки SF03-SF32, сбалансированные по G2,5 при 20 000 об/мин, с биением до 0,003 мм, переходные втулки для гидравлических патронов и наборы цанг, которые опубликованы в отдельном буклете. Инструментальная оснастка с креплением SK по DIN 69871 и HSK A-63/A-100 поставляется по запросу.

Система обозначения инструментальной оснастки

HSK-A63

1

FM

- **A**

_ 22

60 5

C

1-Тип конуса шпинделя

HSK-A63 HSK-A100 BT40 BT50 SK40 SK50

2-Тип патрона				
Обозначение	Описание			
HC	Гидравлический патрон			
SF	Термооправка			
ER	Цанговый патрон			
SL	Патрон Weldon или Whistle Notch			
PC	Силовой патрон			
FM	Торцевая оправка			

3-Вид патрона	
Для термооправок, гидравлического и силового патронов	Без обозначения - Стандартное исполнение S - Версия мини P - Усиленная конструкция
Для патронов с креплением болтами сбоку	B - Weldon E - Whistle Notch
Для торцевых оправок	A - крепление обычным центральным болтом В - крепление усиленным болтом С - крепление болтами по периферии D - антивибрационное исполнение
Цанговые патроны ER	Без обозначения - Стандартное исполнение V - Исполнение для нарезания резьбы метчиком H - Высокоскоростное исполнение

4-Крепёжный диаметр D1

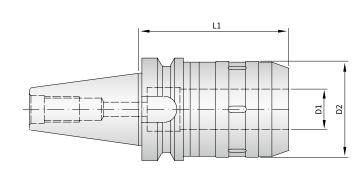
D1=22 мм

5-Длина патрона L1

L1 = 60 MM

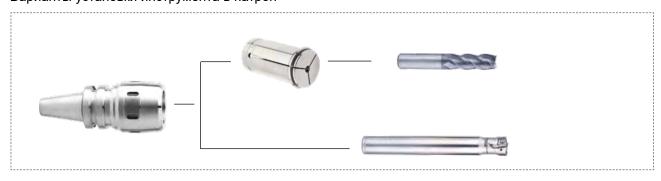
6-Дополнительная информация

C Подача СОЖ через торец оправки


Обзор типов патронов

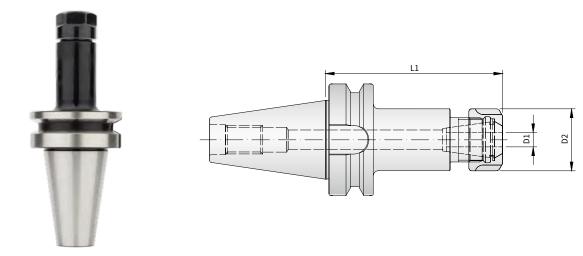
Тип	Силовой патрон	Цанговый патрон	Торцевая оправка	Патрон Weldon
Стандарт конуса шпинделя	JIS B6339	JIS B6339	JIS B6339	JIS B6339
Чистовая обработка	•	•	•	
Высокоскоростная обработка		•		
Черновая обработка	•	•	•	•
Диапазон диаметров инструмента	6-32	4-25	22-60	20-40
Примечание	Периодически проверяйте патрон на загрязнения	Периодически проверяйте патрон на загрязнения	Проверяйте затяжку болтов	Проверяйте затяжку болтов
Типоразмеры конуса шпинделя	BT40, BT50	BT40, BT50	BT40, BT50	BT40, BT50
Исполнения патрона	PC20, PC25, PC32	ER16, ER20, ER25, ER32, ER40	FMA22, FMA27, FMB32, FMB40, FMC40, FMC60	SLB20, SLB25, SLB32, SLB40
Страница	P422	P423	P425	P431

Силовой патрон



Номер по каталогу	Наличие на	Типоразмер	Основные размеры (мм)				
Tromep no karanory	складе	шпинделя	D1	D2	L1	Ключ	
BT40-PC20-80	•	BT40	20	53	80	W-C20	
BT40-PC25-90	•	BT40	25	58	90	W-C25	
BT40-PC32-105	•	BT40	32	68	105	W-C32	
BT50-PC25-90	•	BT50	25	58	90	W-C25	
BT50-PC32-105	•	BT50	32	68	105	W-C32	

Ключ и переходные втулки приобретаются отдельно


●: На складе ○: По запросу

Варианты установки инструмента в патрон

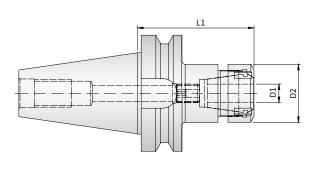
Цанговые патроны ER

JIS B6339

Номер по каталогу	Наличие на	Типоразмер	Основ	ные размер	ы (мм)	Гайка	Цанга	
Trowicp no karanory	складе	шпинделя	D1	D2	L1	Tarika	ципа	
BT40-ER16-70	•	BT40	4-10	28	70	ER16-A	ER16	
BT40-ER16-100	•	BT40	4-10	28	100	ER16-A	ER16	
BT40-ER16-150	0	BT40	4-10	28	150	ER16-A	ER16	
BT40-ER20-70	•	BT40	4-12	34	70	ER20-A	ER20	
BT40-ER20-100	•	BT40	4-12	34	100	ER20-A	ER20	
BT40-ER20-150	0	BT40	4-12	34	150	ER20-A	ER20	
BT40-ER25-70	•	BT40	4-16	42	70	ER25-UM	ER25	
BT40-ER25-100	•	BT40	4-16	42	100	ER25-UM	ER25	
BT40-ER25-150	0	BT40	4-16	42	150	ER25-UM	ER25	
BT40-ER32-70	•	BT40	4-20	50	70	ER32-UM	ER32	
BT40-ER32-100	•	BT40	4-20	50	100	ER32-UM	ER32	
BT40-ER32-150	0	BT40	4-20	50	150	ER32-UM	ER32	

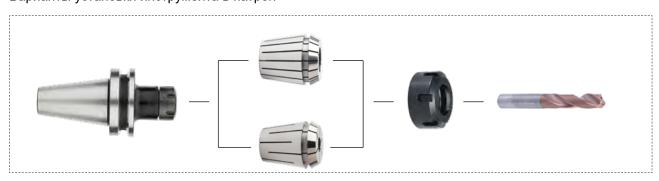
Ключ и цанги приобретаются отдельно

●: На складе ○: По запросу


Варианты установки инструмента в патрон

Цанговые патроны ER

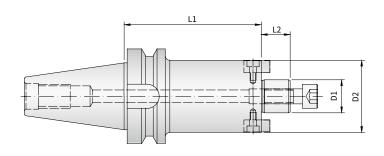
JIS B6339



Номер по каталогу	Наличие	Типоразмер	Основ	ные размер	ы (мм)	Гайка	Цанга
Tiomepho karahory	на складе	шпинделя	D1	D2	L1	Tanka	цапта
BT50-ER16-70	0	BT50	4-10	28	70	ER16-A	ER16
BT50-ER16-100	•	BT50	4-10	28	100	ER16-A	ER16
BT50-ER16-150	0	BT50	4-10	28	150	ER16-A	ER16
BT50-ER20-70	0	BT50	4-12	34	70	ER20-A	ER20
BT50-ER20-100	•	BT50	4-12	34	100	ER20-A	ER20
BT50-ER20-150	0	BT50	4-12	34	150	ER20-A	ER20
BT50-ER25-100	•	BT50	4-16	42	100	ER25-UM	ER25
BT50-ER25-150	0	BT50	4-16	42	150	ER25-UM	ER25
BT50-ER32-100	•	BT50	4-20	50	100	ER32-UM	ER32
BT50-ER32-150	0	BT50	4-20	50	150	ER32-UM	ER32
BT50-ER40-100	•	BT50	4-26	63	100	ER40-UM	ER40
BT50-ER40-150	0	BT50	4-26	63	150	ER40-UM	ER40
BT50-ER40-200	0	BT50	4-26	63	200	ER40-UM	ER40

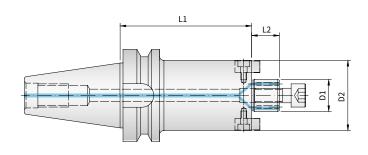
Ключ и цанги приобретаются отдельно

●: На складе ○: По запросу


Варианты установки инструмента в патрон

Для торцевых оправок

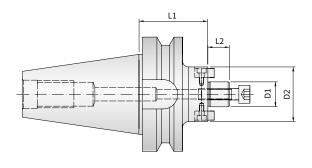
JIS B6339



Номер по каталогу	Наличие на	Типоразмер		Основные ра	азмеры (мм)		Центральный
помер по каталогу	складе	шпинделя	D1	D2	L1	L2	болт
BT40-FMA22-45	•	BT40	22	48	45	16.5	
BT40-FMA22-60	•	BT40	22	48	60	16.5	M10
BT40-FMA22-100	•	BT40	22	48	100	16.5	IVITO
BT40-FMA22-150	0	BT40	22	48	150	16.5	
BT40-FMA27-45	•	BT40	27	60	45	18.5	
BT40-FMA27-60	•	BT40	27	60	60	18.5	
BT40-FMA27-100	•	BT40	27	60	100	18.5	M12
BT40-FMA27-150	0	BT40	27	60	150	18.5	
BT40-FMA27-200	0	BT40	27	60	200	18.5	
BT40-FMB32-60	•	BT40	32	62	60	22	
BT40-FMB32-100	•	BT40	32	62	100	22	M16
BT40-FMB32-150	0	BT40	32	62	150	22	IVITO
BT40-FMB32-200	0	BT40	32	62	200	22	
BT40-FMB40-60	•	BT40	40	80	60	23	
BT40-FMB40-100	•	BT40	40	80	100	23	M20
BT40-FMB40-150	0	BT40	40	80	150	23	IVIZU
BT40-FMB40-200	0	BT40	40	80	200	23	

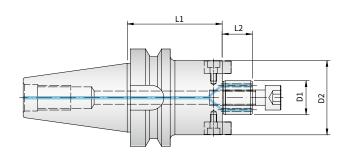
Торцевая оправка с внутренним подводом СОЖ

JIS B6339



Номер по каталогу	Наличие	Типоразмер	C	Основные р	азмеры (м	,	Внутренний	Центральный
Tiomop no karanory	на складе	шпинделя	D1	D2	L1	L2	подвод СОЖ	болт
BT40-FMA22-60-C	•	BT40	22	48	60	16.5	-	M10
BT40-FMA22-100-C	0	BT40	22	48	100	16.5	-	IVITO
BT40-FMA27-60-C	•	BT40	27	60	60	18.5	(- -1	M12
BT40-FMA27-100-C	0	BT40	27	60	100	18.5	-=-	IVI 12
BT40-FMB32-60-C	•	BT40	32	62	60	22	-	M16
BT40-FMB32-100-C	0	BT40	32	62	100	22	-=-	IVI IO
BT40-FMB40-60-C	•	BT40	40	80	60	23	(- -1	M20

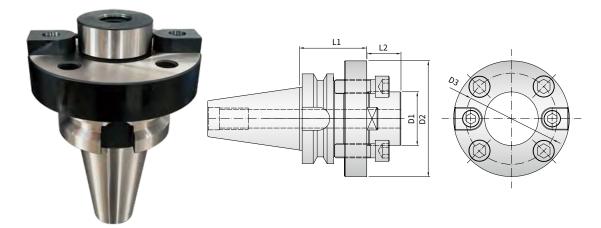
Для торцевых оправок



Номер по каталогу	Наличие на	Типоразмер		Основные р	азмеры (мм)		Центральный
помер по каталогу	складе	шпинделя	D1	D2	L1	L2	болт
BT50-FMA22-60	•	BT50	22	48	60	16.5	
BT50-FMA22-100	•	BT50	22	48	100	16.5	M10
BT50-FMA22-150	0	BT50	22	48	150	16.5	MITO
BT50-FMA22-200	0	BT50	22	48	200	16.5	
BT50-FMA27-60	•	BT50	27	60	60	18.5	
BT50-FMA27-100	•	BT50	27	60	100	18.5	M12
BT50-FMA27-150	0	BT50	27	60	150	18.5	IVITZ
BT50-FMA27-200	0	BT50	27	60	200	18.5	
BT50-FMB32-60	•	BT50	32	78	60	22	
BT50-FMB32-100	•	BT50	32	78	100	22	M16
BT50-FMB32-150	0	BT50	32	78	150	22	WITO
BT50-FMB32-200	0	BT50	32	78	200	22	
BT50-FMB40-60	•	BT50	40	89	60	23	
BT50-FMB40-100	•	BT50	40	89	100	23	M20
BT50-FMB40-150	•	BT50	40	89	150	23	IVIZU
BT50-FMB40-200	0	BT50	40	89	200	23	

Торцевая оправка с внутренним подводом СОЖ

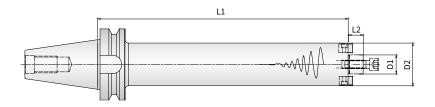
JIS B6339



Номер по каталогу	Наличие	Типоразмер	C	Основные р	азмеры (м	м)	Внутренний	Центральный
Tromop no karanory	на складе	шпинделя	D1	D2	L1	L2	подвод СОЖ	болт
BT50-FMA22-60-C	•	BT50	22	48	60	16.5	1	M10
BT50-FMA22-100-C	0	BT50	22	48	100	16.5	-	MITO
BT50-FMA27-60-C	•	BT50	27	60	60	18.5		M40
BT50-FMA27-100-C	0	BT50	27	60	90	18.5	₽	M12
BT50-FMB32-60-C	•	BT50	32	78	60	22	7	M16
BT50-FMB32-100-C	0	BT50	32	78	100	22	7=1	WHO
BT50-FMB40-60-C	•	BT50	40	89	60	23	7-1-1	M20
BT50-FMB40-100-C	0	BT50	40	89	100	23	-	IVI∠U

Торцевая оправка для крепления фрез больших диаметров

JIS B6339

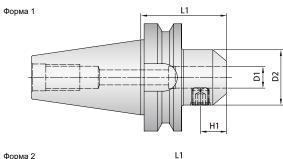


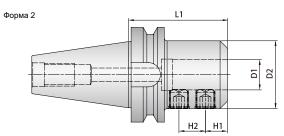
Номер по каталогу	Наличие	Типоразмер		Основ	ные размер	ы (мм)		Центральный
Trowicp no karanory	на складе	шпинделя	D1	D2	D3	L1	L2	болт
BT50-FMC40-60	•	BT50	40	98	66.7	60	23	
BT50-FMC40-100	•	BT50	40	98	66.7	100	23	4*M12
BT50-FMC40-150	0	BT50	40	98	66.7	150	23	
BT50-FMC60-75	•	BT50	60	140	101.6	75	25	4*M16

^{●:} На складе ○: По запросу

Антивибрационная торцевая оправка

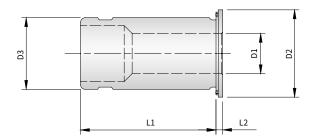
JIS B6339




Номер по каталогу	Наличие на	Типоразмер		Основные ра	азмеры (мм)		Вес (кг)
Tromop no karanory	складе	шпинделя	D1	D2	L1	L2	Dec (ki)
BT50-FMD22-300-D48	0	BT50	22	48	300	18	6.6
BT50-FMD22-350-D48	0	BT50	22	48	350	18	7.25
BT50-FMD22-400-D48	0	BT50	22	48	400	18	7.95
BT50-FMD22-300-D58	0	BT50	22	58	300	18	7.5
BT50-FMD22-400-D58	0	BT50	22	58	400	18	9.3
BT50-FMD22-500-D58	0	BT50	22	58	500	18	11
BT50-FMD27-300-D58	0	BT50	27	58	300	20	7.6
BT50-FMD27-400-D58	0	BT50	27	58	400	20	9.3
BT50-FMD27-500-D58	0	BT50	27	58	500	20	11
BT50-FMD27-300-D78	0	BT50	27	78	300	20	5.75
BT50-FMD27-400-D78	0	BT50	27	78	400	20	11
BT50-FMD27-500-D78	0	BT50	27	78	500	20	13.4
BT50-FMD32-300-D78	0	BT50	32	78	300	21	8.9
BT50-FMD32-400-D78	0	BT50	32	78	400	21	11.2
BT50-FMD32-500-D78	0	BT50	32	78	500	21	13.5

JIS B6339

Патрон Weldon



Номер по каталогу	Наличие на	Типоразмер	Основные размеры (мм)				
Tiomep no karanory	складе	шпинделя	D1	D2	L1		
BT40-SLB20-63	•	BT40	20	52	63		
BT40-SLB25-100	•	BT40	25	65	100		
BT40-SLB32-100	•	BT40	32	72	100		
BT50-SLB20-80	•	BT50	20	52	80		
BT50-SLB25-100	•	BT50	25	65	100		
BT50-SLB32-105	•	BT50	32	72	105		
BT50-SLB40-115	•	BT50	40	80	115		

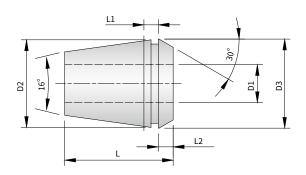
Переходные втулки для силовых патронов

Точность (биение) при закреплении инструмента - 0,01 мм

Номор по котополи	Наличие на		Осн	овные размеры	(мм)	
Номер по каталогу	складе	D1	D3	D2	L1	L2
C25-6	•	6	25	30	63	2.5
C25-8	•	8	25	30	63	2.5
C25-10	•	10	25	30	63	2.5
C25-12	•	12	25	30	63	2.5
C25-16	•	16	25	30	63	2.5
C25-20	•	20	25	30	63	2.5
C32-6	•	6	32	38	70	4
C32-8	•	8	32	38	70	4
C32-10	•	10	32	38	70	4
C32-12	•	12	32	38	70	4
C32-14	•	14	32	38	70	4
C32-16	•	16	32	38	70	4
C32-18	•	18	32	38	70	4
C32-20	•	20	32	38	70	4
C32-25	•	25	32	38	70	4

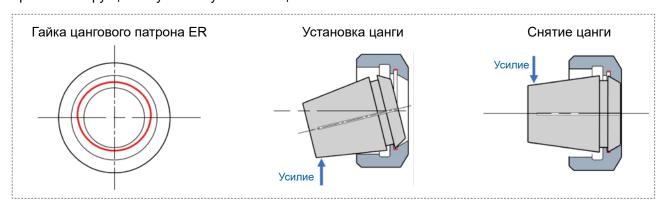
Применяются для силовых патронов

Аксессуарь


Цанги ER

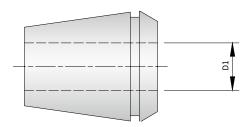
Высокая точность, универсальность и долговечность

- Материал: JIS-SUJ2
- Твёрдость: 46-50HRC
- Канавки цанг шлифуются, обеспечивая высокую точность и возможность работать на высоких скоростях резания
- Шлифование по внутреннему и наружному диаметру, а также до шероховатости Ra 0,4
- Экологичный тип покрытия повышает твёрдость материала адаптера, стойкость к абразивному износу и позволят сохранять точность, а также защищает от коррозии.



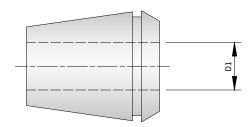
Номер по каталогу	Основные размеры (мм)							
помер по каталогу	D1	D2	D3	L	L1	L2		
ER16	4-10	16	17	27.5	6.26	4		
ER20	4-13	20	21	31.5	6.36	4.8		
ER25	4-16	25	26	34	6.66	5		
ER32	4-20	32	33	40	7.16	5.5		
ER40	4-26	40	41	46	7.66	7		

Применяются для цанговых патронов ER


Краткая инструкция по установку и снятию цанги

Доступны наборы цанг с номерами по каталогу ER16-8PCS, ER20-11PCS, ER25-14PCS, ER32-18PCS, ER40-8PCS и др.

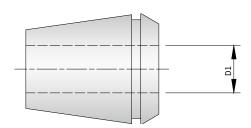
Цанги ER Точность при закреплении инструмента - 0,008 мм


ER:	16	ER	20	ER:	25	ER	32	ER4	40
Номер по каталогу	D1	Номер по каталогу	D1	Номер по каталогу	D1	Номер по каталогу	D1	Номер по каталогу	D1
ER16-4	4-3	ER20-4	4-3	ER25-4	4-3	ER32-4	4-3	ER40-4	4-3
ER16-6	6-5	ER20-6	6-5	ER25-6	6-5	ER32-6	6-5	ER40-6	6-5
ER16-8	8-7	ER20-8	8-7	ER25-8	8-7	ER32-8	8-7	ER40-8	8-7
ER16-10	10-9	ER20-10	10-9	ER25-10	10-9	ER32-10	10-9	ER40-10	10-9
		ER20-12	12-11	ER25-12	12-11	ER32-12	12-11	ER40-12	12-11
				ER25-14	14-13	ER32-14	14-13	ER40-14	14-13
				ER25-16	16-15	ER32-16	16-15	ER40-16	16-15
						ER32-18	18-17	ER40-18	18-17
						ER32-20	20-19	ER40-20	20-19
								ER40-25	25-24

Аксессуары

Высокоточные цанги ER

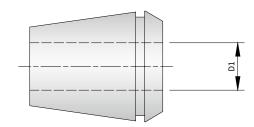
Точность при закреплении инструмента - 0,005 мм



ER	R16	ER	220	ER	25	ER	R32
Номер по каталогу	D1	Номер по каталогу	D1	Номер по каталогу	D1	Номер по каталогу	D1
ER16-4A	4-3	ER20-4A	4-3	ER25-4A	4-3	ER32-4A	4-3
ER16-6A	6-5	ER20-6A	6-5	ER25-6A	6-5	ER32-6A	6-5
ER16-8A	8-7	ER20-8A	8-7	ER25-8A	8-7	ER32-8A	8-7
ER16-10A	10-9	ER20-10A	10-9	ER25-10A	10-9	ER32-10A	10-9
		ER20-12A	12-11	ER25-12A	12-11	ER32-12A	12-11
				ER25-14A	14-13	ER32-14A	14-13
				ER25-16A	16-15	ER32-16A	16-15
						ER32-18A	18-17
						ER32-20A	20-19

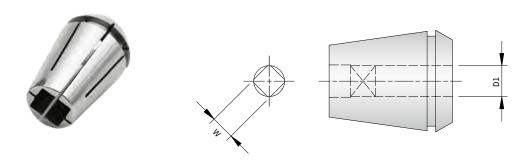
Уплотнённые цанги ER

Точность при закреплении инструмента - 0,008 мм



ER	116	ER	220	EF	25	ER	32
Номер по каталогу	D1	Номер по каталогу	D1	Номер по каталогу	D1	Номер по каталогу	D1
ER16-4C	4-3.9	ER20-4C	4-3.9	ER25-4C	4-3.9	ER32-4C	4-3.9
ER16-6C	6-5.5	ER20-6C	6-5.5	ER25-6C	6-5.5	ER32-6C	6-5.5
ER16-8C	8-7.5	ER20-8C	8-7.5	ER25-8C	8-7.5	ER32-8C	8-7.5
ER16-10C	10-9.5	ER20-10C	10-9.5	ER25-10C	10-9.5	ER32-10C	10-9.5
		ER20-12C	12-11.5	ER25-12C	12-11.5	ER32-12C	12-11.5
				ER25-14C	14-13.5	ER32-14C	14-13.5
				ER25-16C	16-15.5	ER32-16C	16-15.5
						ER32-18C	18-17.5
						ER32-20C	20-19.5

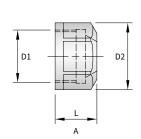
Высокоточные уплотнённые цанги ER Точность при закреплении инструмента - 0,005 мм

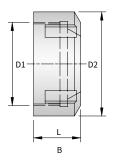


ER	R16	ER	220	ER	25	ER	32
Номер по каталогу	D1	Номер по каталогу	D1	Номер по каталогу	D1	Номер по каталогу	D1
ER16-4CA	4-3.9	ER20-4CA	4-3.9	ER25-4CA	4-3.9	ER32-4CA	4-3.9
ER16-6CA	6-5.5	ER20-6CA	6-5.5	ER25-6CA	6-5.5	ER32-6CA	6-5.5
ER16-8CA	8-7.5	ER20-8CA	8-7.5	ER25-8CA	8-7.5	ER32-8CA	8-7.5
ER16-10CA	10-9.5	ER20-10CA	10-9.5	ER25-10CA	10-9.5	ER32-10CA	10-9.5
		ER20-12CA	12-11.5	ER25-12CA	12-11.5	ER32-12CA	12-11.5
				ER25-14CA	14-13.5	ER32-14CA	14-13.5
				ER25-16CA	16-15.5	ER32-16CA	16-15.5
						ER32-18CA	18-17.5
						ER32-20CA	20-19.5

Метчиковые цанги

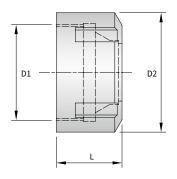
8 пазов, точность при закреплении инструмента - 0,02 мм




	Номер по каталогу	,	D1	W	Типоразмер	Стандарт
ER20	ER25	ER32		**	резьбы	Отапдарт
ER20G-4.5W34	ER25G-4.5W34		4.5	3.4	M4	DIN371
ER20G-4.5W34	ER23G-4.5W34		4.5	3.4	M6	DIN376
ER20G-6W49	ER25G-6W49	ER32G-6W49	6 4.9		M5/M6	DIN371
ER20G-60049	ER25G-60049	ER32G-60049		4.9	M8	DIN376
ER20G-7W55	ER25G-7W55	ER32G-7W55	7	5.5	M10	DIN376
ER20G-8W62	ER25G-8W62	ER32G-8W62	8	6.2	M8	DIN371
ER20G-9W70	ER25G-9W70	ER32G-9W70	9	7	M12	DIN376
ER20G-10W80	ER25G-10W80	ER32G-10W80	10	8	M10	DIN371
	ER25G-11W90	ER32G-11W90	11	9	M14	DIN376
	ER25G-12W90	ER32G-12W90	12	9	M16	DIN376
		ER32G-14W110	14	11	M18	DIN376
		ER32G-16W120	16	12	M20	DIN376
		ER32G-18W145	18	14.5	M22	DIN376
		ER32G-16W145	10	14.5	M24	DIN376

Аксессуары

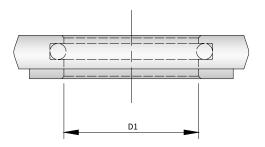
Гайки для цанговых патронов



Номер по каталогу	Oc	сновные размеры (м	ім)	Форма	Типоразмер цанги	
Tiomepho karahory	D1	D2	L	Форма	типоразмор цапти	
ER16-A	M22X1.5	28	17.5	Α	ER16	
ER20-A	M25X1.5	34	19	Α	ER20	
ER25-UM	M32X1.5	42	20	В	ER25	
ER32-UM	M40X1.5	50	23	В	ER32	
ER40-UM	M50X1.5	63	26	В	ER40	

Применяется для цанговых патронов, входит в поставку стандартного цангового патрона

Гайки для цанговых патронов для внутреннего подвода СОЖ

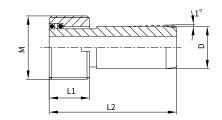


Номер по каталогу		Основные размеры (мм)		- Типоразмер цанги	
Tromep no karanory	D1	D2	L	типоразмер цапти	
ER20-AC	M25X1.5	34	24	ER20	
ER25-UMC	M32X1.5	42	25	ER25	
ER32-UMC	M40X1.5	50	28	ER32	
ER40-UMC	M50X1.5	63	30.5	ER40	

Для внутреннего подвода СОЖ вместе с уплотнительной шайбой

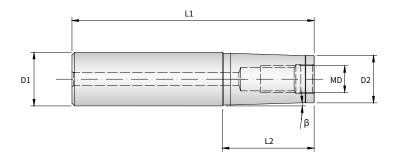
Уплотнительные шайбы

Диапазон диаметров		Номер по	каталогу	
инструмента	ER20	ER25	ER32	ER40
4.0-3.5	RC20-4	RC25-4	RC32-4	
5.0-4.5	RC20-5	RC25-5	RC32-5	
6.0-5.5	RC20-6	RC25-6	RC32-6	RC40-6
6.5-6.0	RC20-6.5	RC25-6.5	RC32-6.5	
7.0-6.5	RC20-7	RC25-7	RC32-7	
8.0-7.5	RC20-8	RC25-8	RC32-8	RC40-8
9.0-8.5	RC20-9	RC25-9	RC32-9	
10.0-9.5	RC20-10	RC25-10	RC32-10	RC40-10
12.0-11.5		RC25-12	EC32-12	RC40-12
14.0-13.5		RC25-14	RC32-14	RC40-14
16.0-15.5			RC32-16	RC40-16
18.0-17.5			RC32-18	RC40-18
20.0-19.5			RC32-20	RC40-20
22.0-21.5				RC40-22
24.0-23.5				RC40-24
25.0-24.5				RC40-25


Применятся для гаек ER для внутреннего подвода СОЖ

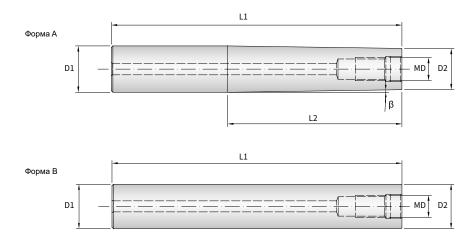
Аксессуары

Винт для внутреннего подвода СОЖ в патронах HSK

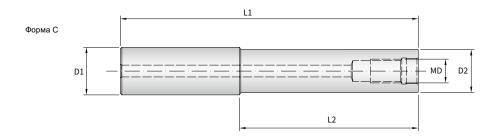


Номер по каталогу	Наличие на складе	Типоразмеры конуса	Основные размеры (мм)				
		шпинделя	M	D	L1	L2	
CT-HSK63	•	HSK-63	M18×1	12	11.5	36.6	
CT-HSK100	•	HSK-100	M24×1.5	16	15.5	44.2	

○: По запросу


Удлинители для фрезерных головок на цилиндр. хвостовике из стали

Номер по каталогу	Наличие на	Типоразмер	Основные размеры (мм)						
помер по каталогу	складе	крепления	D1	D2	MD	L1	L2	β	
C16S-M08-80-T	•	C16	16	14.5	M08	80	20	3°12'	
C16S-M08-100-T	•	C16	16	14.5	M08	100	40	1°4'	
C20S-M10-100-T	•	C20	20	18	M10	100	40	1°53'	
C20S-M10-120-T	•	C20	20	18	M10	120	50	1°	
C25S-M12-110-T	•	C25	25	22.5	M12	110	30	2°36'	
C25S-M12-130-T	•	C25	25	22.5	M12	130	50	1°18'	
C32S-M16-125-T	•	C32	32	28.5	M16	125	35	3°15'	
C32S-M16-145-T	•	C32	32	28.5	M16	145	55	1°48'	


Аксессуарь

Твёрдосплавные удлинители для фрезерных головок на цилиндр. хвостовике

Номор по котополи	Наличие на	Типоразмер	Основные размеры (мм)						
Номер по каталогу	складе	крепления	D1	D2	MD	L1	L2	β	Форма
C20C-M08-100-T	•	C20	20	14.5	M08	100	40	3°30'	Α
C20C-M08-150-T	•	C20	20	14.5	M08	150	77	1°45'	Α
C16C-M08-200-T	•	C16	16	15.5	M08	200	150	43'	Α
C20C-M10-100-T	•	C20	20	18.5	M10	100	40	43'	Α
C25C-M10-150-T	•	C25	25	18.5	M10	150	70	1°43'	Α
C20C-M10-150-T	•	C20	20	18.5	M10	150	90	19'	Α
C20C-M10-200-T	•	C20	20	18.5	M10	200	140	12'	Α
C32C-M12-200-T	•	C32	32	23.5	M12	200	120	1°45'	Α
C32C-M16-200-T	•	C25	32	29	M16	200	120	30'	Α
C32C-M16-250-T	•	C32	32	29	M16	250	170	28'	Α
C32C-M16-300-T	•	C32	32	29	M16	300	200	28'	Α
C16C-M08-100	•	C16	16	16	M08	100			В
C16C-M08-150	•	C16	16	16	M08	150			В
C16C-M08-200	•	C16	16	16	M08	200			В
C20C-M10-100	•	C20	20	20	M10	100			В
C20C-M10-150	•	C20	20	20	M10	150			В
C20C-M10-200	•	C20	20	20	M10	200			В
C20C-M10-250	•	C20	20	20	M10	250			В
C25C-M12-100	•	C25	25	25	M12	100			В
C25C-M12-150	•	C25	25	25	M12	150			В
C25C-M12-200	•	C25	25	25	M12	200			В
C25C-M12-250	•	C25	25	25	M12	250			В
C25C-M12-300	•	C25	25	25	M12	300			В
C32C-M16-150	•	C32	32	32	M16	150			В
C32C-M16-200	•	C32	32	32	M16	200			В
C32C-M16-250	•	C32	32	32	M16	250			В
C32C-M16-300	•	C32	32	32	M16	300			В

Твёрдосплавные удлинители для фрезерных головок на цилиндр. хвостовике

Номер по каталогу	Наличие на	Типоразмер		Od	сновные р	азмеры (м	ім)		- Форма
г юмер по каталогу	складе	крепления	D1	D2	MD	L1	L2	β	Форма
C16C-M08-100-R	•	C16	16	15.5	M08	100	40		С
C16C-M08-150-R	•	C16	16	15.5	M08	150	90		С
C16C-M08-200-R	•	C16	16	15.5	M08	200	120		С
C20C-M10-100-R	•	C20	20	19.5	M10	100	40		С
C20C-M10-150-R	•	C20	20	19.5	M10	150	90		С
C20C-M10-200-R	•	C20	20	19.5	M10	200	140		С
C20C-M10-250-R	•	C20	20	19.5	M10	250	180		С
C25C-M12-100-R	•	C25	25	24	M12	100	25		С
C25C-M12-150-R	•	C25	25	24	M12	150	70		С
C25C-M12-200-R	•	C25	25	24	M12	200	120		С
C25C-M12-250-R	•	C25	25	24	M12	250	180		С
C25C-M12-300-R	•	C25	25	24	M12	300	220		С
C32C-M16-100-R	•	C32	32	29	M16	100	30		С
C32C-M16-150-R	•	C32	32	29	M16	150	70		С
C32C-M16-200-R	•	C32	32	29	M16	200	120		С
C32C-M16-250-R	•	C32	32	29	M16	250	170		С
C32C-M16-300-R	•	C32	32	29	M16	300	220		С

Применяются на фрезерных вертикальных обрабатывающих центрах. Для достижения лучших результатов заранее проверьте жёсткость системы СПИД, полный вылет инструмента и режимы резания.

Заметки

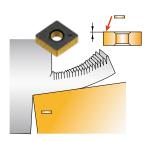
ACHTECK

www.achtecktool.com/ru

ЭКСПЕРТ В РЕЗАНИИ ТРУДНООБРАБАТЫВАЕМЫХ МАТЕРИАЛОВ

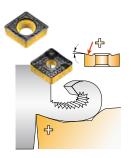
ОСНОВНОЙ КАТАЛОГ

Техническая информация	446
Методы борьбы с износом и решение проблем при точении	448
Рекомендации по точению, обработке канавок и отрезке	449
Информация о станках-автоматах швейцарского типа	452
Рекомендации по фрезерной обработке	457
Методы борьбы с износом и решение проблем при работе монолитными фрезами и свёрлами	461
Таблица аналогов марок сплавов	465
Таблица аналогов стружколомающих геометрий	469
Формулы для расчёта параметров резания	472
Сравнительная таблица значений твёрдости	475
Сравнительная таблица обрабатываемых материалов	477


Больше технических рекомендаций, примеров внедрения и видео обработки - на наших каналах vk.com/achtecktool и t.me/achtecktool

Методы борьбы с износом и решение проблем при точении

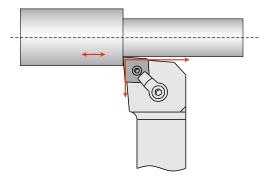
Тип износа	Вид износа	Причины	Решения
Износ по задней поверхности		Слишком мягкий сплав пластины Слишком высокая скорость резания Малый задний угол Слишком малое значение подачи на оборот Недостаточная подача СОЖ в зону резания	Выбрать более твёрдую марку сплава (например, АС152Р вместо АС252Р) Уменьшить скорость резания Выбрать инструмент с увеличенным задним углом Увеличить подачу на оборот
Кратерный износ (лункообразование)		Слишком мягкий сплав пластины (или без покрытия) Слишком высокая скорость резания Слишком высокая подача на оборот	Выбрать более твёрдую марку сплава (например, AC252P вместо AC350P) Уменьшить скорость резания Уменьшить подачу на оборот Улучшить подачу COЖ в зону резания
Выкрашивание		 Слишком твёрдая марка сплава Недостаточно прочная стружколомающая геометрия 	Выбрать более прочную марку сплава (например, AP200U вместо AP100S) Выбрать более прочную геометрию (например, PC4 или PD5 вместо PD3)
Пластическая деформация		 Выбрана слишком мягкая марка сплава Установлена слишком высокая скорость резания Работа с большой глубиной резания и подачей Недостаточная подача СОЖ в зону резания 	 Выбрать более твёрдую марку сплава (например, АС052Р вместо АС152Р) Снизить скорость резания Уменьшить подачу и глубину резания Выбрать сплав с более толстым покрытием МТ-СVD Улучшить подачу СОЖ в зону резания, увеличить давление
Наростообразование		 Недостаточно высокая скорость резания Недостаточно острая геометрия для вязких материалов Неправильно выбрана марка сплава Недостаточная подача СОЖ в зону резания, неправильная марка СОЖ 	Увеличить скорость резания Выбрать более острую геометрию (например, SC1 вместо SL3) Выбрать сплав с PVD покрытием или кермет Улучшить подачу СОЖ в зону резания, увеличить давление, выбрать СОЖ с большей концентрацией масла
Поломка пластины		 Слишком большая глубина резания и подача на оборот Нежёсткая система СПИД 	Выбрать более прочную марку сплава (например, AC350P вместо AC252P) Применить державку с меньшим углом в плане Применить пластину с увеличенным радиусом при вершине Увеличить жёсткость крепления детали и инструмента (СПИД)
Термотрещины		 Большие переменные термические и механические нагрузки 	 Улучшить подвод СОЖ или перейти на работу без СОЖ Выбрать более прочную марку сплава
Проточина на глубине резания	Ä.	 Слишком высокие скорость резания и подача Слишком мягкая марка сплава 	Выбрать более твёрдую марку сплава Выбрать державку с меньшим углом в плане, работать на разной глубине за проход Уменьшить скорость резания
Отслаивание покрытия		 Налипание материала на режущую кромку с последующим отрывом Сход стружки на соседнюю кромку 	 Выбрать более острую геометрию Выбрать геометрию с большим пространством для стружки


Сравнение пластин с задним углом и без заднего угла

Пластины без заднего угла (негативные)

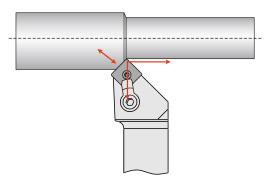
- В основном двусторонние в 2 раза больше режущих кромок
- Выше прочность режущей кромки
- Больше угол режущего клина выше усилия резания
- Первый выбор для наружного точения
- Первый выбор для тяжёлого точения больших заготовок

Пластины с задним углом (позитивные)


- Односторонние
- Невысокая прочность режущей кромки
- Низкие усилия резания
- Первый выбоор для точения мелкоразмерных деталей, нежёстких деталей и для растачивания

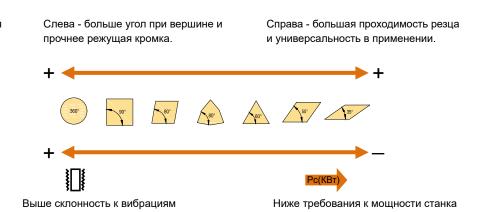
Сравнение инструмента с разным углом в плане

Угол в плане Kr измеряется между линией главной режущей кромки и направлением подачи. Угол в плане влияет на:


- Формирование стружки
- Направление усилий резания
- Длину кромки в контакте с заготовкой

Большой угол в плане

- Усилия резания в основном направлены вдоль оси, меньше склонности к возникновению вибраций.
- Возможно получить прямоугольный уступ
- Более высокие усилия резания при врезании и выходе из заготовки
- Более высокая вероятность к возникновению проточины при обработке нержавеющих, закалённых сталей и жаропрочных сплавов


Малый угол в плане

- Меньше нагрузка на каждый элемент режущей кромки
- Генерируется более тонкая стружка, возможно увеличить подачу и производительность
- Значительно меньше тенденция к износу в виде проточины
- Больше усилия в радиальном направлении выше вероятность возникновения вибраций, особенно при обработке длинных валов

Форма пластины

Форма пластины выбирается, исходя из формы заготовки и готовой детали, проходимости резца, угла в плане и тяжести операции Увеличенный угол при вершине пластины следует выбирать, если необходима повышенная прочность инструмента и надёжность при точении на удар.

Факторы, влияющие на выбор формы пластины

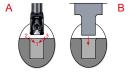
	R	S 90°	C 80°	W 80°	T 60°	D 55°	V 35°
Форма пластины	360°	90°	80°	80°	60°	55°	35°
Черновая обработка (высокая прочность)	•	•	•	A	A		
Лёгкая черновая и получистовая обработка (количество режущих кромок)		A	•	•	•	•	
Чистовая обработка (количество режущих кромок)			•	•	•	•	•
Склонность к вибрациям				•	•	•	•
Продольное точение (в направлении подачи)			•	•	•	•	•
Профильное точение (проходимость)			•	•	•	•	•
Подрезка торца	•	•	•	•	A	•	
Операционная универсальность	•		•	•	A	•	•
Ограниченная мощность станка			A	A	•	•	•
Твёрдые обрабатываемые материалы	•	•					
Прерывистая обработка, на удар	•	•	•	•	•		
Большой угол в плане			•	•	•	•	
Малый угол в плане	•	•		•	•		

● Первый выбор ▲ Хорошо подходит

Пластины ромбической формы C с углом 80° при вершине наиболее часто применяются, так как подходят для большинства токарных операций

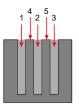
Рекомендации по обработке канавок и отрезке

Обработка одной канавки за проход

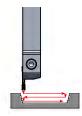

- Обработка одной канавки за проход является наиболее экономичным и производительным методом обработки канавок
- Пластины с геометрией GS обладают точностью по ширине +/- 0.02 мм и показывает отличные результаты при невысокой подаче

Обработка широкой канавки с врезанием под углом

- Обработка канавок с врезание под углом приводит к снижению вероятности возникнования вибраций и уменьшает радиальные усилия резания. Данный метод позволяет легче управлять сходом стружки и уменьшает тенденцию к проточинам при обработке жаропрочных сплавов
- Возможно работать на увеличенных подачах профильными геометриями RM и RA, обеспечивая высокую производительность при повышенной надёжности процесса обработки.
- Однако данный метод в общем удваивает количество проходов.


Фаски на кромках канавки

- Обработать фаски на кромках канавки возможно как обычной канавочной пластиной (рис. A)
- Так и пластиной со специальными фасочными участками (рис. В), изготовленной по запросу, что значительно сократит время обработки, необходимое для массового производства.


Плоское донышко канавки

- Часто требуется повышенная прямолинейность донышка канавки
- Данные требованиям лучше всего удовлетворяют геометри GS, TM и G, обеспечивая максимально плоскую форму донышка канавок.

Обработка широких канавок с несколькими врезаниями

- Если глубина канавки больше, чем ширина, рекомендуется её обрабатывать с врезаниеями в шахматном порядке
- В данном методе обеспечиватся равномерная боковая нагрузка на пластину
- Ширина кольца для последних проходов составляет около 0,6-0,8 ширин пластины (ширина-2 радиуса при вершине)

Обработка широких канавок методом точения

- При ширине канавки значительно большей, чем глубина, данный метод будет наиболее оптимальным. Геометрии TS и TM являются первым выбором, так как имеют боковые режущие кромки
- Глубина резания при продольном точении канавочными пластинами не должна быть больше, чем 3/4 от ширины пластины.

CITIZEN

Серия станков Cincom

Модель	Размер державок (в многопоз. держателе)	Nº	Размер державок (в револьв. головке)	Nº	Диаметр направл. втулки (мм)	Макс. диаметр заготовки (мм)
A12	10×10×100	5			Ø19.05/Ø20	Ø12
A16	10×10×100	5			Ø19.05/Ø20	Ø16
A20	12×12×120	5-7			Ø25.4	⊘20
A25	12×12×120	5-6			⊘25.4	⊘25
A32	16×16×150				Ø25.4	Ø32
B12/B12E	10×10×100	5			Ø19.05/Ø20	Ø12
B16E	10×10×100	5			Ø19.05/Ø20	⊘16
B20	12×12×120	6			Ø19.05/Ø20	⊘20
BL12	10×10×60-120	5			⊘20	Ø12
BL20	12×12×120	7			Ø20	∅20
BL25	12×12×120	7			Ø20	⊘25
C12	10×10×120	6			Ø19.05	Ø12
C16	10×10×120	6			Ø19.05	⊘16
C32	16×16×130	5			∅25.4	∅32
E32			16×16×90	20	Ø25.4	Ø32
F10			10×10×60	10	Ø19.05	Ø10
F12			10×10×60	10	Ø19.05	Ø12
F16			10×10×60	10	Ø19.05	Ø16
F20			16×16×90	10	Ø25.4	⊘20
F25			16×16×90	10	Ø25.4	∅25
FL25			16×16×90	12	Ø16	⊘25
FL42			16×16×90	12	Ø16	∅42
G10			10×10×60	8		Ø10
G16			10×10×60	8		Ø16
G32			16×16×90	10		∅32
K12/K12E	10×10×100	7			Ø20	Ø12
L16/K16E	12×12×120	6			Ø20	Ø16
L10	8×8×100-130	5			Ø15.875	Ø10
L16/L16E	12×12×130	7			Ø19.05	Ø16
L20/L20E	12×12×130	7			Ø19.05	∅20
L25	16×16×130	5			Ø25.4	⊘25
L32	16×16×130	5			⊘25.4	Ø32
M12	10×10×120	5	10×10×60	10	Ø19.05	Ø12
M16	10×10×120	5	10×10×60	10	Ø19.05	⊘16
M20	12×12×130	5	16×16×90	10	⊘25.4	⊘20
M32	16×16×130	5	16×16×90	10	⊘25.4	∅32
MSL12	10×10×120		10×10×60	10		Ø12
R04	8×8×120	7			Ø15.875	⊘4
R07	8×8×120	5			Ø15.875	Ø7
RL02	16×16×60-150	6			Ø16/Ø20	⊘25
RL21	10×10×90				Ø19.05	⊘35

CITIZEN

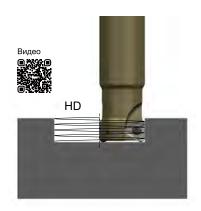
Серия станков Міуапо

Модель	Размер державок (в многопоз. держателе)	Nº	Диаметр направл. втулки (мм)	Макс. диаметр заготовки (мм)
ABX-51TH3	20×20×100	12+12/12	Ø25	Ø51
ABX-64TH3	20×20×100	12+12/12	Ø 2 5	∅64
ABX-51THY	20×20×100	12+12/12	Ø20/Ø25/Ø40	Ø51
ABX-64THY	20×20×100	12+12/12	Ø20/Ø25/Ø40	∅64
ABX-51SYY	20×20×100	12/12	Ø20/Ø25/Ø40	Ø51
ABX-64SYY	20×20×100	12/12	Ø20/Ø25/Ø40	∅64
ABX-51SYY	20×20×100	12/12	Ø25	⊘51
ABX-64SYY	20×20×100	12/12	Ø25	⊘64
BNA-34C	20×20×100	8(16)/-	Ø25	∅34
BNA-42C	20×20×100	8(16)/-	Ø25	Ø42
BNA-34S	20×20×100	8(16)/-	Ø25	Ø34
BNA-42S	20×20×100	8(16)/-	Ø25	Ø42
BNA-34DHY	20×20×100	8(16)/6	Ø25	Ø34
BNA-42DHY	20×20×100	8(16)/6	Ø25	Ø42
BNA-34MSY	20×20×100	8(16)/-	Ø25	Ø34
BNA-42MSY	20×20×100	8(16)/-	Ø25	∅42
BNC-34C5	20×20×100	8/-	Ø25	∅34
BNC-34S6	20×20×100	8/-	Ø25	∅34
BNC-42C5	20×20×100	8/-	Ø25	⊘42
BNC-42S6	20×20×100	8/-	Ø25	∅42
BND-51C/S2/SY2	20×20×100	12/-	Ø25	⊘51
BNE-34S5/SY5	20×20×100	12/12	Ø25	Ø34
BNE-42S6/SY6	20×20×100	12/12	Ø25	⊘42
BNE-51S5/SY5	20×20×100	12/12	Ø25	Ø51
BNE-51S6/SY6	20×20×100	12/12	Ø25	⊘51
BNJ-34S3/SY3	20×20×100	12/6	Ø 2 5	∅34
BNJ-42S3/SY3	20×20×100	12/6	Ø25	∅42
BNJ-51SY3	20×20×100	12/6	Ø 2 5	Ø51
BNX-42SY	20×20×100	12/-	Ø25	∅42
BX-20S	16×16×100	8/-	Ø20	∅20
BX-26S	16×16×100	10/-	Ø20	⊘26
BX-26T	16×16×100	8/-	Ø20	Ø26

STAR

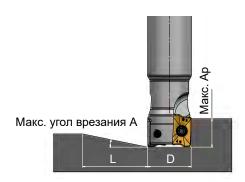
Модель	Размер державок (в многопоз. держателе)	Nº	Размер державок (в револьв. головке)	Nº	Диаметр направл. втулки (мм)	Макс. диаметр заготовки (мм)
ECAS-12	10×10×95-150	6			Ø22	Ø13
ECAS-20	12×12×80-144	6			Ø22	Ø20
ECAS-20T			12×12×80	8 St.×3	Ø22	⊘20
ECAS-32T	16×16×80-120	4	16×16×60-78	10 St.×2	Ø22/Ø32	Ø32
JNC-10			8×8×65	6	-	Ø10
JNC-16			10×10×80	6	-	Ø16
JNC-25/32			16×16×78-120	10 St.	Ø22	Ø25/Ø32
KJR-16B/25B			16×16×78	12 St./6 St.	Ø22	Ø16/Ø25
KNC-16/20			16×16×68	16 St.	Ø22	Ø16/Ø20
KNC-25II/32II			16×16×78	20 St.	Ø22/Ø32	Ø25/Ø32
RNC-10/16	10×10×80-120	5			Ø22	Ø10/Ø16
RNC-16II/16BII	10×10×80-120	5			Ø22	Ø16
SA-16R	10×10×95-120	6			Ø22	⊘16
SB-12II/16II	12×12×95-130	6			Ø22	Ø12/Ø16
SB-16	12×12×95-130	6			Ø22	Ø16
SB-20	12×12×95-130	6			Ø22	Ø20
SR-20J	12×12×100-135	6			Ø22	Ø20
SC-20	12×12×95-130	6			Ø22	Ø20
SE-12/16	10×10×95-120	5			Ø22	Ø13/Ø16
SF-25			16×16×73-98	10 St.×2	Ø22/Ø32	⊘25
SG-42			16×16×84-88	10 St.×2	Ø22/Ø32	∅42
SH-7	8×8×95-120	5			Ø22	Ø7
SH-12/16	10×10×95-120	5			Ø22	Ø13/Ø16
SI-12/12C	10×10×80-130	6			Ø22	Ø13
SR-16/20	12×12×95-120	5			Ø22	Ø16/Ø20
SR-32	16×16×100-135	6			Ø22	Ø32
SR-20R	12×12×100-135	6			Ø22	Ø20
SR-10J	8×8×67-110	6			Ø22	Ø10
SR-25J/32J	16×16×95-155	6			Ø22/Ø32	Ø25/Ø32
SST-16	12×12×95-115	5			Ø22	Ø16
ST-38			16×16×85	8 St.×3	Ø22/Ø32	∅38
SV-12	12×12×95-135	4	12×12×70-78	8 St.×3	Ø22	Ø13
SV-20	16×16×95-135	5	16×16×65-70	8 St.	Ø22	⊘20
SV-32	16×16×95-135	4	16×16×80-88	10 St.×2	Ø22/Ø32	Ø32
SV-32J/32JII	16×16×95-135	4	16×16×65-70	8 St.	⊘22/Φ32	Ø32
SW-7	8×8×80-120	6				Ø7
SW-20	12×12×80-144	6			Ø22	⊘20

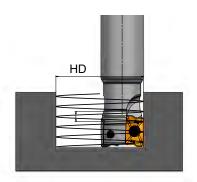

TSUGAMI


Модель	Размер державок (в многопоз. держателе)	Nº	Размер державок (в револьв. головке)	Nº	Диаметр направл. втулки (мм)	Макс. диаметр заготовки (мм)
P013H/P014H	8×8×100-120	6			Ø16	Ø1
P033H/P04H	8×8×100-120	6			Ø16	Ø3
B007-III	7×7×85	8			Ø25	⊘7
B074/B07-V	8×8×85	9			Ø20	∅7
B0123/B0124/B0125	12×12×85	9			Ø20	Ø12
B012F/B012-V/BE12-V	12×12×85	9			Ø20	Ø12
B016MF	12×12×85	9			Ø20	⊘16
B018-III	12×12×85	9			Ø20	⊘18
B0203/B0204/B0205	12×12×85	9			Ø20	Ø20
B020F/B020-V/BE20-V	12×12×85	9			Ø20	∅20
B026-V	12×12×85	6			Ø25	⊘26
B0385/B0385L	16×16×125	8			Ø32	∅38
BA20-III	12×12×85	6			Ø25	⊘20
BA26-III	12×12×85	6			Ø25	Ø26
BC18	12×12×85	10			Ø25	⊘18
BC25	12×12×85	10			Ø10/Ø25	⊘25
BE18	12×12×85	9			Ø20	⊘18
BH20/BH20Z	12×12×85	4	12×12×85	12 St.	Ø25/Ø32	∅20
BH38	16×16×125	7	20×20×125	12 St.	Ø25/Ø32	∅38
BM07	8×8×85	9			Ø20	Ø7
BM163/BM164/BM165	12×12×85	9			Ø20	Ø16
BM20-V	12×12×85	9			Ø20	Ø20
BN12-III	12×12×85	7			Ø20	Ø12
BN20-III	12×12×85	7			Ø20	∅20
BS12-V	12×12×85	8/12			⊘20/⊘25	Ø12
BS18-III	12×12×85	7/10			Ø14/Ø25	Ø18
BS20-V	12×12×85	8/12			Ø20/Ø25	Ø20
BS26(ABC)-V	16×16×100	7/10			Ø16/Ø25	∅26
BS32C-V	16×16×100	6			Ø16/Ø25	Ø32
BU12	12×12×85	4	12×12×80	8 St.	Ø20	Ø51
BU20	12×12×85	4	12×12×80	8 St.	Ø20	Ø20
BU26	16×16×100	7	20×20×80	8 St.	∅20/∅32	Ø26
BU38	16×16×100	7	20×20×80	8 St.	∅20/∅32	Ø38
BW07-III	12×12×85	7			Ø20	Ø 7
BW12-III	12×12×85	7			Ø20	Ø12
BW20-III	12×12×85	7			Ø20	Ø20
C004-III	13×13×60-100	6-8			Ø10	Ø120
C150	10×10×60-100	4-6			Ø8	Ø80
C180	12×12×60-100	4-6			Ø10	Ø120
C220	13×13×60-100	6-8			Ø10	Ø120
C300-III	16×16×100-130	6-10			Ø14	Ø170

TSUGAMI

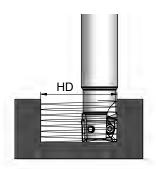
Модель	Размер державок (в многопоз. держателе)	Nº	Размер державок (в револьв. головке)	Nº	Диаметр направл. втулки (мм)	Макс. диаметр заготовки (мм)
CH154	12×12×60-100	16			Ø10	⊘15
M34J			20×20×125	12 St.	Ø20/Ø32	∅34
M42J/M42D/M42SD			20×20×125	12 St.	Ø25/Ø32	⊘42
M50SY-III			20×20×100	12 St.	Ø32	⊘51
M50J			20×20×100	12 St.	Ø20/Ø32	⊘51
MB25			20×20×80	8 St.×2	Ø20/Ø32	⊘25
MB35-III			20×20×80	8 St.×2	Ø20/Ø32	Ø35
MB38-III			20×20×80	8 St.×2	Ø20/Ø32	∅38
MB50-III			20×20×80	8 St.×2	Ø20/Ø32	⊘50
MU26			20×20×80	8 St.×2	Ø20/Ø32	⊘26
MU38			20×20×80	8 St.×2	Ø20/Ø32	∅38
NU50-III			20×20×100	12 St.	Ø20/Ø32	⊘51
S205/S206	12×12×100	8			Ø20/Ø22	⊘20
SS20	16×16×100	8			Ø20/Ø22	⊘20
SS207	12×12×100	8			Ø20/Ø22	⊘20
SS26	16×16×100	7			Ø20/Ø22	⊘26
SS32/SS32L	16×16×100	7			Ø20/Ø22	∅32
TMB2			20×20×125	16 St.	Ø32	⊘51
TMU1			20×20×125	16 St.	Ø32	∅38


Рекомендации по работе фрезами ASM90-TD15



	Фрезеро	вание с врезание г	од углом	Фрезерован	Фрезерование по винтовой интерполяции			
Диаметр фрезы (мм)	Макс. угол врезания А	Мин. длина L (мм)	Макс. Ар (мм)	Мин. диаметр отверстия (мм)	Мин. диаметр отверстия (мм)	Шаг винта (мм)		
32	1.4°	479	11.5	53.5		1.4		
32	1.4	479	11.5		64	2.1		
40	1.0°	633	11.5	70.1		1.5		
40	1.0	033	11.5		80	1.3		
50	0.8°	824	11.5	90.1		1.5		
30	0.0	024	11.5		100	1.9		
63	0.6°	1073	11.5	116.1		1.5		
03	0.0	1073	1070	11.5		126	1.8	
80	0.5°	1399	11.5	150.3		1.5		
	0.5	1000	11.5		160	1.8		
100	0.3°	2144	11.5	190.5		1.3		
100	0.0	2177	11.0		200	1.4		
125	0.3°	2262	11.5	240.3		1.6		
125	0.0	2202	11.0		250	1.7		
160	0.2°	2933	11.5	310.3		1.6		
	V.2	2000	11.0		320	1.7		
200	0.2°	3692	11.5	390.3		1.6		
200	0.2	0002	11.0		400	1.7		

Рекомендации по работе фрезами ASM90-AP17



	Фрезеров	зание с врезание п	од углом	Фрезерован	ние по винтовой ин	терполяции
Диаметр фрезы (мм)			Макс. Ар (мм)	Мин. диаметр отверстия (мм)	Макс. диаметр отверстия (мм)	Шаг винта (мм)
25	5.0°	184	16.1	30.6		1.3
25	5.0	104	10.1		50	5.8
32	9.0°	102	16.1	44.6		5.3
32	9.0	102	10.1		64	13.5
40	5.0°	184	16.1	40.6		4.8
40	5.0	104			80	9.3
50	4.4°	209	16.1	80.6		6.3
50	4.4	209	10.1		100	10.3
63	3.2°	288	16.1	106.6		6.5
63	3.2	288	10.1		126	9.4
80	2.3°	401	16.1	140.6		6.5
60	2.3	401	16.1		160	8.6
100	1.8°	513	10.4	180.6		6.8
100	1.0	313	16.1		200	8.4

Рекомендации по работе фрезами ASM90-AO12

	Фрезерог	вание с врезание г	од углом	Фрезерован	Фрезерование по винтовой интерполяции					
Диаметр фрезы (мм)	Макс. угол врезания А	Мин. длина L (мм)	Макс. Ар (мм)	Мин. диаметр отверстия (мм)	Макс. диаметр отверстия (мм)	Шаг винта (мм)				
16	8.1	77.0	11	17		0.4				
10	0.1	77.0	11		32	6.1				
20	5.3	119.6	11	25		1.2				
20	3.3	119.0	11		40	4.9				
25	3.6	175.6	11	35		1.7				
25	3.0	175.0	11		50	4.2				
32	1.7	378.0	11	49		1.3				
32	1.7	376.0	11		64	2.5				
35	1.5	424.5	11	55		1.4				
35	1.5	424.5	11		70	2.4				
40	1.3	468.9	11	65		1.6				
40	1.3	400.9	11		80	2.5				
50	1.3	501.5	11	85		2.0				
30	1.3	501.5	11		100	2.9				
63	0.9	708.6	11	111		2.0				
03	0.9	700.0	11		126	2.6				
80	0.7	875.2	11	145		2.2				
00	0.7	070.2	"		160	2.7				

Рекомендации по работе резьбофрезами АТМ 60

1. Позиционирование фрезы над отверстием под резьбу и врезание

2. Заход вниз по дуге на требуемую глубину и проверка радиуса

3. Фрезерование по винтовой интерполяции

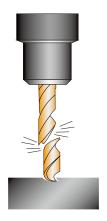
4. Обработка резьбы по спирали до перекрывания ниток резьбы, обработанных разными рядами зубьев.

5. Выход по дуге

6. Отвод инструмента на начальную позицию

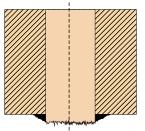
винеская информатив

Методы борьбы с износом и решение проблем при работе монолитными фрезами

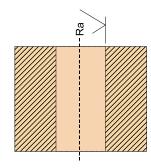

Тип износа	Вид износа	Причины	Решения
Износ по задней поверхности		● Абразивное истирание инструментального материала материалом заготовки при высокой температуре проводит к износу по задней поверхности.	 Уменьшить скорость резания Применить фрезу из более твёрдой марки сплава или с более износостойким покрытием Увеличить подачу Улучшить подачу СОЖ в зону резания, увеличить давление СОЖ
Наростообразование		• Налипание вязкого типа обрабатываемого материала на режущую кромку приводит к наростообразованию.	Увеличить скорость резания Выбрать фрезу с более острой геометрией Уменьшить подачу Выбрать СОЖ с увеличенным содержанием масла (> 8 %) При обработке алюминиевых сплавов - применить фрезу без покрытия с полированными кромками и стружечными канавками
Выкрашивание		 Микротрещины приводят к выкрашиваниям. Вибрации при обработке также приводят к выкрашиванию. 	 Проверить жёсткость закрепления детали и инструмента. Уменьшить скорость резания Улучшить подачу СОЖ в зону резания или работайте без СОЖ Проверить значение установленной подачи на зуб
Пластическая деформация		● Высокий нагрев и нагрузка в процессе обработки могут привести к пластической деформации режущей кромки.	 Уменьшить скорость резания Уменьшить подачу Применить фрезу из более износостойкой марки сплава Применить фрезу с более черновой геометрией Улучшить подачу СОЖ в зону резания
Термотрещины		 При переменной термомеханической нагрузке образуются микротрещины, перпендикулярные режущей кромке, которые приводят к выкрашиваниям. 	 Уменьшить скорость резания Уменьшить подачу Улучшить подачу СОЖ в зону резания или работайте без СОЖ Применить фрезу из более прочной марки сплава
Образование проточины		● Проточина образуется обычно при обработка самоупрочняемых сталей (жаропрочных сплавов, броневой стали и др.)	 Работайте с разной глубиной резания Выберит фрезу из более прочной марки сплава Работайте с разной шириной резания Примените фрезу с более прочной геометрией

Методы борьбы с износом и решение проблем при работе монолитными свёрлами

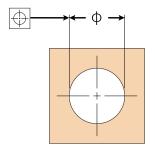
Тип износа	Вид износа	Причины	Решения
Износ по задней поверхности		• Абразивное истирание инструментального материала материалом заготовки при высокой температуре проводит к износу по задней поверхности.	 Уменьшить скорость резания Уменьшите подачу Улучшить подачу СОЖ в зону резания, увеличить давление СОЖ
Наростообразование		• Налипание вязкого типа обрабатываемого материала на режущую кромку приводит к наростообразованию.	 Увеличить скорость резания Выбрать СОЖ с увеличенным содержанием масла (> 8 %)
Выкрашивание		• Микротрещины приводят к выкрашиваниям, а также плохое формирование и эвакуация стружки, вибрации	 По возможности замените сверло и отправьте на переточку раньше Проверьте жёсткость системы СПИД, соосность с осью детали на токарном станке
Пластическая деформация		• Высокий нагрев и нагрузка в процессе обработки могут привести к пластической деформации режущей кромки.	 Уменьшить скорость резания Улучшить подачу СОЖ в зону резания
Кратерный износ		 Слишком мягкий сплав сверла Слишком высокая скорость резания Слишком высокая подача 	 Выбрать сверла из более износостойкой марки сплава Уменьшить скорость резания Уменьшить подачу Увеличьте давление СОЖ


Предотвращение поломки сверла

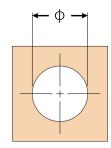
- 1. Проверьте целостность геометрии вершины сверла
- 2. Убедитесь, что длина стружечных канавок больше, чем глубина отверстия на значение 1,5 диаметров
- 3. Удостоверьтесь, что процесс переточки сверла прошёл как следует.
- 4. При глубоком сверлении в начале обработайте предварительное пилотное отверстие
- 5. Проверьте жёсткости системы СПИД. На токарном станке убедитесь в соосности вращающейся детали и сверла.


Решение проблем при сверлении

Заусенец на выходе из отверстия


- Режущая кромка недостаточно острая, возможно, изношенная
- Уголки сверла износились

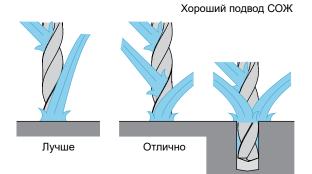
Плохое качество обработанной поверхности


- Сверло изношено, либо расположено не по оси заготовки на токарном станке
- Слишком толстое или неравномерное покрытие после переточки и перепокрытия сверла

Плохое позиционирование отверстия

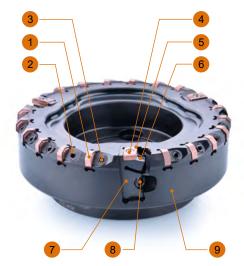
- Проверьте геометрию режущих кромок на повреждения
- Проверьте перемычку и ленточки на повреждения

Отверстие большего размера


- Проверьте геометрию режущих кромок на повреждения
- Слишком толстое или неравномерное покрытие после переточки и перепокрытии сверла
- Проверьте перемычку на повреждения

Проверка качества подачи СОЖ

При работе цельными твёрдосплавными свёрлами всегда рекомендуется работать с применением внутренней подачи СОЖ. При сверлении отверстий глубже 5хDc применение внутреннего подвода СОЖ является обязательным. СОЖ должна подаваться под соответствующим давлением на режущую кромку для её охлаждение и эвакуации стружки по стружечным канавкам. Рекомендации же по наружной подаче СОЖ показаны ниже.


Плохой подвод СОЖ

3 трубки для подачи СОЖ должны быть направлены по возможности на режущие кромки.

Инструкция по настройке фрез AFF40-LN12/LN15

- 1. Очистите картридж 7, открутите регулировочный винт 6.
- 2. Очистите каждое посадочное место под пластину и под картриджи, а также сами пластины и картриджи.
- 3. Установите и закрепите режущие пластины 1, картриджи зачистных пластин 7 и надавливая на них пальцем закрутите крепёжные винты 8
- 4. Установите и закрепите зачистные пластины 5 винтами 4.
- 5. Измерьте осевое положение каждой режущей и зачистной пластин.
- 6. Выставляйте высоту зачистных пластин регулировочным винтом 6.
- 7. Высота положения зачистных пластин должна быть больше, чем положение режущих на 0,03 0,06 мм.
- 1. Режущие пластины ON05
- 2. Крепёжный клин
- 3. Крепёжный винт для клина
- 4. Винт крепления зачистной пластины.
- 5. Зачистные пластины LN12 или LN15

- 6. Регулировочный винт
- 7. Картридж зачистной пластины
- 8. Крепёжный винт картриджа зачистной пластины
- 9. Корпус фрезы

Таблица аналогов марок сплавов для точения Твёрдые сплавы с покрытием CVD

,	Группа обр.	мат-в и ооласть применения	АСНТЕСК	SANDVIK	KENNAMETAL	SECO	WALTER	ISCAR	TAEGUTEC	MITSUBISHI	TUNGALOY	SUMITOMO	KYOCERA	KORLOY	ZCC.CT	PRAMET	GESAC
ŗ		P01	AC052P	GC4305 GC4205	KCP05B KCP05 KC9105	TP0501 TP0500	WPP05S WPP05	IC8005 IC428	TT8105	UE6005 UE6105	T9005 T9105	AC810P	CA510 CA5505	NC3010		T9310	GP1105
	р	P10	AC152P AC150P	GC4415 GC4315	KCP10B KCP10 KC9110	TP1501 TP1500	WPP10S WPP10	IC9150 IC9015 IC8150	TT8115	UE6110 MC6015 MY5015	T9115 T9215	AC810P AC700G	CA515 CA5515	NC3215	YBC152 YBC151	T9315	GP1115
		P20	AC252P AC250P	GC4425 GC4325	KCP25B KC9125	TP2501 TP2500	WPP20S WPP20	IC8250 IC9025 IC9250	TT8125 TT5100	UE6020 MC6025	T9225 T9125	AC8025P AC820P AC2000	CA025P CA525 CA5525	NC3220 NC3225 NC3120	YBC251 YBC252	T9325	GP1125
		P30	AC350P	GC4335	KCP40B KCP40 KC9240	TP300 TP3500	WPP30S WPP30	IC8350 IC9350	TT8135 TT7100	MC6035 UE6035 UH6400	T9135 T9035	AC830P AC630M	CA530 CA5535	NC3030 NC500H NC5330	YBC351 YBC352	T9335	GP1135
		M10	AC100M	GC2015 GC1515	KCM15 KCM15M			IC6015	TT9215	MC7015 US7020	T6120 T6020	AC610M AC6020M	CA6515	NC9020	YBM151 YBM153		GM1115
ı	М	M20	AC200M	GC2025	KCM25	TM2000	WMP20S	IC6025	TT9225	MC7025	T6130	AC630M AC6020M	CA6525	NC9025	YBM251 YBM253	T7325	GM1125
		M30			KCM35 KC9045 KC9245	TM4000			TT9235	MC7035 US735					YBM253		
		K05	AC100K AC102K	GC3205 GC3210	KCK05 KCK05B	TK0501 TK1001 TK1000	WKK10S WAK10	IC5005 IC9007	TT7005	MC5005 UC5105	T505 T5105	AC405K AC410K	CA310 CA4505	NC6205	YBD052 YBD102	T5305	GK1115
ľ		K20	AC202K ACK15A	GC3215	KCK15 KCK20 KC9315 KC9320	TK2001 TK2000	WKK20S WAK20	IC5010	TT7310 TT7015	MC5015 UC5115	T515 T5115 T5125	AC415K AC420K AC700G	CA315 CA320 CA4515	NC6210 NC6215	YBD152C YBD152	T5315	GK1120 GK1125

Таблица аналогов марок сплавов для точения Твёрдые сплавы с покрытием PVD

Группа обр.	мат-в и область применения	АСНТЕСК	SANDVIK	KENNAMETAL	SECO	WALTER	ISCAR	TAEGUTEC	MITSUBISHI	TUNGALOY	SUMITOMO	KYOCERA	KORLOY	ZCC.CT	PRAMET	GESAC
р	P10	AP100S	GC1025	KC5010 KC5510 KU10T	CP200	WSM10S WSM10	IC507 IC807 IC907		MS6015 VP10MF	AH710	ACZ150 ACZ310	PR930 PR1115 PR1215	PC8110 PC230	YBG102	T6130 T8310 T8315	
	P20	AP200U AP301M	GC1020 GC1025 GC1125 GC4125	KC5025 KC5525 KC7215 KC7315 KU25T	CP250	WSM20S WSM20	IC507 IC807 IC907	TT5030	VP15TF VP20MF VP20RT UP20M	AH7025 AH725 SH725	ACZ330 AC520U	PR1225 PR1625 PR1725	PC8115 PC5300	YBG202	6630	GA4230
	P30		GC1145 GC2145	KC7235 KC7140 KC7040	CP500	WSM30S WSM30	IC328 IC928 IC3028		VP15TF VP20MF UP20M	GH330 AH740 AH9030	AC530U ACZ350	PR1535	PC3545		6640 T8330 T8030"	
	M10	AP100S	GC1105 GC1115 GC15	KC5510 KC5010	TS2000 TH1000 CP200	WSM10 WSM10S	IC520 IC907 IC808	TT5080	VP10RT VP10MF	AH710	AC510U ACZ150	PR1215 PR1225	PC8110		T6310 T8310 T8315	GS3115
М	M20	AP200U AP301M	GC1125 GC4125 GC1025 GC30	KC5025 KC5525 KCU25	CP500	WSM20 WSM20S	IC308 IC908 IC3028 IC830	TT9080	VP15TF VP20RT VP20MF	AH725 AH630 GH330 GH730 SH725 SH730	AC520U ACZ310 AC1030U	PR930 PR1215 RP1225 PR1725 PR1525	PC8115 PC5300	YBG202 YBG205	T8330	GS3125
	M30		GC2035 GC2030	KC7030 KC7225	CP600	WSM30 WSM30S	IC228 IC328 IC928	TT9020 TT8020	MP7035	AH130* AH645*	AC6040 AC530U ACZ330 ACZ350	PR1535	PC9030 PC5400		T8345	GM3225
	K05		GC1010	KC5010 KC7210	TS2000 CP200		IC807 IC910 IC507 IC908"		VP05RT	GH110 AH110	EH10Z EH510Z AC510U	PR905 PR1215			T8310	
K	K20		GC1020 GC1120	KC5025 KC5525 KC7215 KC7315	TS2500 CP200 CP250		IC508 IC908	TT5030	VP10RT VP15TF VP20RT	AH120 AH725	ACZ310 AC520U AC530U AC1030U	PR905 PR1215	PC5300		T8315	GA4230
	K30		GC1030	KC7225	CP500		IC508 IC908"		VP15TF VP20RT		ACZ310				T8330	
	S10	AP100S	GC1105 GC1115	KC5510 KC5010	CP200 TH1000 TS2000	WSM01 WSM10S	IC808 IC807 IC907	TT5080	VP05RT VP10RT MP9005	AH110 AH905 AH8005	AC510U AC5015S	PR005S PR1305 PR1310	PC8105	YBG102	T6310	GS3115
S	S20	AP200U AP301M	GC1025 GC1125	KC5525 KC5025	CP500 TS2500	WSM20 WSM20S	IC808 IC908	TT9080	VP15TF VP20RT MP9015	AH120 AH8015 AH725	AC520U AC5025S	PR015S PR1325 PR1535	PC8115	YBG105 YBG202	6630	GS3125
	S30		GC1125			WSM30 WSM30S	IC328	TT9080 TT8020	MP9025	AH725	AC520U	PR1535	PC5400	YBG212	6640	

Таблица аналогов марок сплавов для точения

Твёрдые сплавы без покрытия

יאס פווויים]	Z	АСНТЕСК	SANDVIK	KENNAMETAL	SECO	WALTER	ISCAR	TAEGUTEC	MITSUBISHI	TUNGALOY	SUMITOMO	KYOCERA	KORLOY	ZCC.CT	PRAMET	GESAC
Ν	N10	AW100K	H10	K313	H15	WK1	IC20	K10	HTI10	TH10	EH10	KW10 GW05	H01	YD101		GN9115

Керметы

,		мат-в и ооласть применения	АСНТЕСК	SANDVIK	KENNAMETAL	SECO	WALTER	ISCAR	TAEGUTEC	MITSUBISHI	TUNGALOY	SUMITOMO	KYOCERA	KORLOY	ZCC.CT	PRAMET	GESAC
	P	P10	AT202 AT210A AT200	CT5015 CT525 GC1525*	KT175 HT2 KTP10*	TP1020 CM CMP	WTA43* WTA41*	IC20N IC520N	CT3000 PV3010*	NX2525 AP25N* VP25N*	NS9530 NS520 GT9530* GT530*	T1200A T1500Z*	TN60 TN620 TN6020 PV720*	CN2000 CN20 CC1500* CN1500*	NG151 YNG151C*		GP91TM GT31TM*
ı	<	K10	AT202 AT210A AT200	CT5015	HTX KT315* KTP10*				CT3000	NX2525 AP25N* VP25N*	NS530 GT530*	T1200A T2000Z*	TN610 PV710* PV7005*	CN1500*	YNG151 YNG151C*		GP91TM GT31TM*

Таблица аналогов марок сплавов для точения CBN

Группа обр.	мат-в и область применения	АСНТЕСК	SANDVIK	KENNAMETAL	SECO	WALTER	ISCAR	TAEGUTEC	MITSUBISHI	TUNGALOY	SUMITOMO	KYOCERA	KORLOY	ZCC.CT	PRAMET	GESAC
K	K10	PB90			CBN20 CBN600				MB4120 MBS140	BX950 BX90S	BN7000 BNS800		DBN350			
	H10	PB30	CB7105 CB7050"	KBH10 KB1615 KB5610	CBN150 CBN060K CBN200	WCB30	IB50	TB610	MB8025 MB825	BXA40 BC330 BX360						
Н	H20	PB60	CB7025 CB7525	KBH20 KB1340	CBN350 CBN500	WCB50	IB55	TB650	MB8025	BX380						
	H30	PB90	CB7525	KB5630			IB55	TB670	MB835	BX380						

PCD

290 000,00	2 2	имен	АСНТЕСК	SANDVIK	KENNAMETAL	SECO	WALTER	ISCAR	TAEGUTEC	MITSUBISHI	TUNGALOY	SUMITOMO	KYOCERA	KORLOY	ZCC.CT	PRAMET	GESAC
^	I	N20	PD20		KD1425	PCD30 PCD30M	WDN10			MD230	DX110 DX120	DA1000 DA2200	KPD001 KPD010 KPD230 KPD250				DNN130P

Таблица аналогов марок сплавов для фрезерования

Группа обр.	мат-в и область применения	АСНТЕСК	SANDVIK	KENNAMETAL	SECO	WALTER	ISCAR	TAEGUTEC	MITSUBISHI	TUNGALOY	SUMITOMO	KYOCERA	KORLOY	ZCC.CT
	P10		GC1025 GC1010	KC715M		WXM15			F7010		ACP100	PR1225	PC33525	YBG252
P	P20	AC251P AP251U	GC1130 GC1030 GC4220 GC4020 GC4030	KC522M KC525M KCPM20	MP1500 T250M T25M T20M	WKP25S	IC330 IC250 IC950 IC520M	TT7080 TT7030	MC7020 MP6120 MV1020 UP20M F7030	T313W AH725	ACP200 ACP2000 ACP2500	PR1525 PR1225 PR1230	PC3535 PC3500	YBC301 YBC302 YBM251 YBG202 YBG252
	P30	AP351U AP351M AC301P	GC1130 GC4040 GC4230 GC4330	KC994M KC725M KC792M KC530M	MP2500 T250M T25M F25M F30M	WSM35S WSM36 WKP35S WKP35G	IC330 IC328 IC830 IC908	TT9080 TT9030 TT7080	MP6130 VP15TF VP30RT F7030	T3130 GH330 AH120 AH330 AH730	AC230 ACP300	PR1230 PR1535	PC5300 PC9530 PC3600	YBM351 YBM251 YBM301 YBG302
	P40	AP403M	GC4040 GC4240 GC4340	KC735M	MP300 T350M T60M T25M	WKP45S WSP46	IC635 IC928 IC4050	TT9030	VP30RT	AH140	AC230 ACZ330 ACZ350		PC9530	YBC302 YBG302 YBG351
	M10		GC1025 GC1030	KC522M				TT9300	F7010	T6120 T6020	ACM100 ACM200	PR1225	NC5330	YBG252
М	M20	AP251U	GC2030 GC2334 GC2044 S30T	KC730M KC525M	MS2050 MP2500 T250M T25M F20M	WXM15	IC380 IC908 IC928	TT9300	MC7020 VP15TF VP20RT MP7030 MP7130	T6130	ACM200 ACP200 ACU2500	PR1525 PR1225	PC5300 PC3545 PC9530	YBM251 YBM253 YBC302 YBG205 YBG252
	M30	AP351U AP351M	GC1040 GC2040 S40T	KC994M KC725M KCPK30	T350M T250M F40M	WSM35S WSM36	IC380 IC328 IC330	TT9080 TT8020	F7030 VP30RT M07140		ACM300 ACP300 ACZ350	CA6535 PR1535	PC3545 PC5300	YBC302 YBG351 YBG302
	M40	AP403M			MM4500	WKP45S WSP46	IC830	TT8080 TT8020 TT9300	VP30RT		ACZ350		PC9530	YBG302
	K01				MH1000		IC5100 IC4100			T505 T5105	ACK100			
K	K10	AC151K	GC1010 GC3220 K15W	KCK15 KC915M	MK1500 T150M F15M	WXM15 WAK15 WSN10	IC5100 IC4010 IC910 IC810	K10	MP8010 MC5020 MV1020 VP10RT	T515 T5115 T5125	ACK2000 ACK200 AC211	PR1500 PR1210 PR905	PC215K	YBD152 YBG102 YBG252
	K20	AP251K AP351K AC301K	GC1020 GC3020 GC3330 GC3334	KCC520M KC920M KC925M	MP1500 T250M MK2000 MK2050	WKP25S WKK25S	IC810 IC910 IC928	TT6080 TT7515	VP15TF VP20RT	AH120 AH725 T1215	EH20Z ACZ310 ACK300 ACK3000	CA420M PR1210 CA415D PR905	PC6510 PC5300	YBD152 YBD252 YBG152
	K30		GC3040 GC4040	KC930M	MK3000 T250M	WKP35S	IC928	TT7515		GH130				YBD252 YBG152
	S10	AP151H	GC1010	KC510M	MS2050		IC903 IC807 IC808 IC908	K10	MP9120 VP15TF		ACM100 ACM200	CA6535 PR1535 PR1210		YBG202 YBS203
s	S20	AP251U	GC1030 GC2030 GC1130	KC525M	MP2050	WSM35S WSM36	IC903 IC807 IC808 IC908 IC830	TT9080 TT9030 TT5525	MP9120 VP15TF MP9130 MP9030		ACU2500 ACM200	CA6535 PR1535 PR1210		YBS203 YBS303
	S30	AP403S	GC2040 S40T	KC725M KCSMN40	F40M	WSP45S WSP46 WSM42X WMP45G	IC328 IC330	TT8080 TT8020 TT9300	MP9140		ACM300	PR1535		YBS303

Таблица аналогов стружколомающих геометрий для токарный пластин без заднего угла

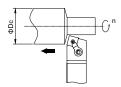

Группа обр. материалов по ISO	Тяжесть обработки	АСНТЕСК	SANDVIK	KENNAMETAL	SECO	WALTER	ISCAR	TAEGUTEC	MITSUBISHI	TUNGALOY	SUMITOMO	KYOCERA	KORLOY	ZCC.CT
	Чистовая	PB1	QF	FF	FF1 MF2 FF2	NF3 FP5	SF F3P	FS FA FLP FG FC	FP FH FY FS	TF	FA FB FL SU	GP PP XP XF	VG VL VF	SF DF
	Получистовая	PB3 PC3	PF LC	FN	MF5	NS6	NF	MLP	C SA SH	TSF	LU SX NSE	CQ XQ HQ	VC HC	NM
		PL5	К		UX			V FS	ES 2G	S	GX HM	LD ST	SH	
n	Средняя	PD3	PM PMC QM	MN CT	M3	NM4 MP5	M3P TF PP	MT MC MP MGP	MA MP MV MH	TM ZM AM NM	GU UX UG UP	GS PS PG	VM LP MP	PM DM
р		PC4			M4			MG-	без обознач.	без обознач.	UZ	без обознач.	B25	
	Черновая	PD5	PR	RN RP RW	M5 M6 MR7	NM6 NM9 RP5 RP7	NR R3P	RT RGP	RP GH	TH	MU, MX	PT GT	HR GR	DR ER
		PD8 PC8	PR QR	RM	R4 R5	NR6 NRF	МН	RX RH	HZ HL	TRS	HG MP		GH	DR
	Тяжёлая черновая	PC9	HR	RP	R7 R8	NR8		HT HD	HX HR	TU TUS	HF		VT	HDR
		PD9		RH	RR9	NRR	HR	HY HZ	HV		HU HW		VH	HPR
	Чистовая	SC1 MB2	MF	FF LF FP	MF2	NF NF4 FM5	NF F3M	FG EA SF	LS FS SA	SS TF SF HRF	SU EF	MQ	VP1	EF
		SL3		MS	MF1	MS3	PP	ML	MJ	28	UP	TK	НА	
M	Получистовая	МС3	MM MMC	MP UP	MF4 MF3	NM NM4	МЗМ	EM MP	MS GM MM MA	HRM SM SA	EX GU	MS MU SU	HS	EM
	Черновая	MC4	MR MMR	RP	M5 MR7	NR4 RM5	R3M MR	ET	RM GH	TU SH	MU	HU	VM	ER
	Средняя	PC4	KM	UN CT	M4	MK5 NM5 NM6	NR	без обознач.	МК GК без обознач.	СМ без обознач.	UZ MU	КG без обознач.	B25	без обознач.
К	Черновая	KC4 KD5	KR	RP- NMA	МR7 Плоская	RK5 RK7 Плоская	Плоская	КТ RT Плоская	GH RK Плоская	СН Плоская	GZ	ZS GC KH PH Плоская	GR VR VK- Плоская	DR
N	Получистовая		QM 23	MS MP			PP	ML	MJ	Р	UP GX AG	A3 AH	НА	
	Чистовая	SC1 MB2	MF SF	FS	MF2	NF4	NF	EA SF"	FS LS	TF	SU	MQ SQ	VP1	EF
s		SL3		MS	MF1	MS3	PP	ML	MJ	28	UP	TK	НА	
	Средняя	SC3	SM SMC	UP	MR3	NMS NMT	TF	MP SU MK	MS	HMM SA HRM	EG EX	MS MU	VP3	NM
	Черновая	MC4	SR SMR	RP	MR4	NRS NRT	NR		GJ RS		MU	SG	VM	SNR

Таблица аналогов стружколомающих геометрий для токарный пластин с задним углом

Группа обр. материалов по ISO	Тяжесть обработки	ACHTECK	SANDVIK	KENNAMETAL	SECO	WALTER	ISCAR	TAEGUTEC	MITSUBISHI	TUNGALOY	SUMITOMO	KYOCERA	KORLOY	ZCC.CT
	Чистовая	LF										СК		
Р	чистовая	UF PB1 BS	UF PF	11 UF	FF1 MF2	PF4 FP4	PF	FA FG FX	FV FP	PF	FP LU	GP VF	VL	HF
	Получистовая	PC2	PM UM	LF MF	F2 M5	FP6 PS5 MP4	SM 14	PC	MP MV	PM 23 24	SU SC	HQ XQ GK	НМР	НМ
	Черновая	KC2	PR			PM5 RP4	17 19	MT	без обознач.		MU		C25	
	Чистовая	PB1	MF UF	11 UF	FF1 MF2	PF4 FM4	PF	FA FG	FM FV LM	PF	LU	MQ	VL	EF
M	Получистовая	PC2	MM UM	LF MF	F2 M5	PS5 MM4	SM 14	FM	MV MM	PS PM	SC SU	MS	MP	EM
	Черновая	KC2	MR UR			PM5 RM4	17	MT			MU	MU	C25	HR
14	Получистовая	KC2	KM	MF	F2 M3	MK4	14	MT PMR	MK	СМ	MU		C25	НМ
K	Черновая	KD5	KR		M5	RK4 RK6 Плоская		СМХ		Плоская				HR
N	Получистовая	NC2	AL	HP	AL	PM2	AF, AS	FL	AZ	AL	AW, AG	АН	AK, AR	LH
	Чистовая	UF PB1	MF	HP	F1	PF5 PF4	PF	FA	FJ		LU	MQ	VP1 VL	NF NGF
S	Средняя	PC2	MM UM	LF	F2	PS5 PM5	SM	FG	MS	PS	SU	HQ	MP	
	Черновая													SNR

Формулы для расчёта параметров резания при точении

• Скорость резания

$$Vc = \frac{\pi * Dc * n}{1000}$$
 (м/мин)

Vc:Скорость резания (м/мин) π: ≈3.14 Dc:Диаметр заготовки (мм) n:Частота оборотов шпинделя (об/мин)

• Минутная подача

$$Vf = f * n (MM/MUH)$$

Vf:Минутная подача (мм/мин) f:Подача на оборот (мм/об) n:Частота оборотов шпинделя (об/мин)

• Толщина стружки

$$h = f * sinkr (MM)$$

h:Толщина стружки (мм) f:Подача на оборот (мм/об)

• Ширина стружки

$$b = \frac{ap}{sinkr}$$
 (м/мин)

b:Ширина стружки (мм) ар:Глубина резания (мм)

• Площадь стружки

$$A = h * b = ap * f (MM^2)$$

А:Площадь стружки (мм²) ар:Глубина резания (мм) f:Подача на оборот (мм/об)

• Сила резания

$$Fc = Kc * ap * f(H)$$

Fc:Сила резания (H) ар:Глубина резания (мм) Кс:Удельное сопротивление резанию (H/мм²) f:Подача на оборот (мм/об)

• Мощность резания (КВт)

$$Pmot = \frac{Kc * Vc * ap * f}{60000 * \eta} \qquad (KB\tau)$$

Ртот: Мощность резания (КВт) Vс:Скорость резания (м/мин) Кс:Удельное сопротивление резанию (Н/мм²) ар:Глубина резания (мм) f:Подача на оборот (мм/об) η: эффективность станка (0,75)

• Объём снимаемого материала

$$Q = ap * f * Vc (cm3/muh)$$

Q: Объём снимаемого материала (см³/мин) ар:Глубина резания (мм) f:Подача на оборот (мм/об) Vc:Скорость резания (м/мин)

• Теоретическая шероховатость поверхности

Rmax =
$$\frac{f^2}{8 * r}$$
 * 1000 (MKM)

Rmax: Теоретическая шероховатость поверхности (мкм) f:Подача на оборот (мм/об) г:Радиус при вершине

• Машинное время

$$Tc = \frac{L}{f * n}$$
 (мин)

Тс:Машинное время f:Подача на оборот (мм/об) n:Частота оборотов шпинделя (об/мин)

L: Длина прохода (мм)

Формулы для расчёта параметров резания при фрезеровании

• Скорость резания

$$Vc = \frac{\pi * Dc * n}{1000}$$
 (м/мин)

Vc:Скорость резания (м/мин) π: ≈3.14 Dc:Диаметр фрезы (мм) n:Частота оборотов шпинделя (об/мин)

• Частота оборотов шпинделя

$$n = \frac{1000 * Vc}{\pi * Dc} \quad (oб/мин)$$

Vc:Скорость резания (м/мин) т: ≈3.14 Dc:Диаметр фрезы (мм) n:Частота оборотов шпинделя (об/мин)

Минутная подача

$$Vf = fz * n * Z (мм/мин)$$

• Подача на зуб

$$fz = \frac{Vf}{n * Z}$$
 (MM/3y6)

• Подача на оборот

$$f = \frac{Vf}{g}$$
 (MM/o6)

f:Подача на оборот (мм/об) Vf:Минутная подача(мм/мин) n:Частота оборотов шпинделя (об/мин)

• Машинное время

$$Tc = \frac{L}{Vf}$$
 (мин)

Требуемая мощность станка

$$Hp = \frac{-Pmot}{0.75}$$

Hp:Требуемая мощность станка Pmot : Мощность резания (КВт)

• Мощность резания

$$Pmot = \frac{ap * ae * Vf * Kc}{6 * 10^7 * n} (KBT)$$

Ртот:Мощность резания (КВт) ар:Глубина резания (мм) ае:Ширина фрезерования (мм) η: эффективность станка (0,7-0,95) Кс:Удельное сопротивление резанию (Н/мм²)

• Средняя толщина стружки

$$hm = \frac{114.7 * fz * sink * (ae/Dc)}{\psi s}$$
 (MM)

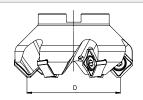
hm:Средняя толщина стружки fz:Подача на зуб (мм/зуб) ае:Ширина фрезерования (мм) Dc:Диаметр фрезы (мм) ψs:Угол охвата

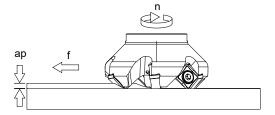
• Усилие подачи

Фреза по центру заготовки

$$\psi s = 2 * arcsin(\frac{ae}{Dc}) [°]$$

Фрез смещена от центра


$$\psi s = 90^{\circ} + \arcsin \frac{\text{ae-(Dc/2)}}{(\text{Dc/2})} [^{\circ}]$$


ψs:Угол охвата ае:Ширина фрезерования (мм) Dc:Диаметр фрезы (мм)

• Объём снимаемого материала

$$Q = \frac{ap * ae * Vf}{1000} \quad (cm^3/muH)$$

Q:Объём снимаемого материала (см³/мин) ар:Глубина резания (мм) ае:Ширина фрезерования (мм) Vf:Минутная подача (мм/мин)

Формулы для расчёта параметров резания при сверлении

• Скорость резания

$$Vc = \frac{\pi * Dc * n}{1000} \quad (M/MUH)$$

Vc:Скорость резания (м/мин) π:≈3.14

Dc:Диаметр сверла (мм)

n:Частота оборотов шпинделя (об/мин)

• Частота оборотов шпинделя

$$n = \frac{1000 * Vc}{\pi * Dc} \quad (\text{об/мин})$$

Vc:Скорость резания (м/мин) π: ≈3.14

Dc:Диаметр сверла (мм)

n:Частота оборотов шпинделя (об/мин)

• Минутная подача

$$Vf = fz * n * Z (мм/мин)$$

Vf:Минутная подача (мм/мин)

n:Частота оборотов шпинделя (об/мин)

• Подача на зуб

$$fz = \frac{Vf}{n \star Z}$$
 (MM/3y6)

Vf:Минутная подача (мм/мин)

n:Частота оборотов шпинделя (об/мин)

• Подача на оборот

$$f = \frac{Vf}{n}$$
 (MM/06)

f:Подача на оборот (мм/об)

Vf:Минутная подача (мм/мин)

n:Частота оборотов шпинделя (об/мин)

Объём снимаемого материала

$$Q = \frac{Vf * \pi * Dc^{2}}{4 * 1000} (cm^{3}/muH)$$

Q:Объём снимаемого материала (см³/мин)

Vf:Минутная подача (мм/мин)

Требуемая мощность станка

$$Hp = \frac{Pmot}{0.75}$$

Нр:Требуемая мощность станка

Pmot : Мощность резания (КВт)

• Мощность резания

ФД

$$Pmot = \frac{Q * Kc}{60000 * \eta} \quad (KBT)$$

Pmot : Мощность резания (КВт)

Q: Объём снимаемого материала (см³/мин)

Кс:Удельное сопротивление резанию (Н/мм²) η: эффективность станка (0,7-0,95)

• Момент

$$Mc = \frac{Dc^2 * Kc * f}{8000}$$
 (HM)

Кс:Удельное сопротивление резанию (H/мм²)

f:Подача на оборот (мм/об)

• Усилие подачи

$$Ff = 0.63 * \frac{f * Dc * Kc}{2}$$
 (H)

Ff:Усилие подачи f:Подача на оборот (мм/об)

Dc:Диаметр сверла (мм)

Кс:Удельное сопротивление резанию (Н/мм²)

• Толщина стружки

$$h = fz * sink (MM)$$

h:Толщина стружки(мм) fz:Подача на оборот (мм/об)

Сравнительная таблица значений твёрдости

	Бринеллю (НВ), ик 10мм, ка: 3000 кгс	Твёрдость по		Твёрдость	по Роквеллу		Твёрдость по Шору,	Предел
Стандартный шарик	Твёрдосплавный шарик НВ	Виккерсу HV	Алмазная пирамида, HRA	Шкала В, Нагрузка: 100 кгс, 1/16" дюймовый шарик, HRB	Алмазная пирамида, HRC	Шкала D, Нагрузка: 100 кгс, Алмазная пирамида, HRD	порог твёрдости, HS	(Прибл.), кгс/ мм
-	-	1865	92.0	-	80	-	-	-
-	-	1787	91.5	-	79	-	-	-
-	-	1710	91.0	-	78	-	-	-
-	-	1633	90.5	-	77	-	-	-
-	-	1556	90.0	-	76	-	-	-
-	-	1478 1400	89.5 89.0	- -	75 74	- -	-	-
_	-	1400	09.0	_	74	_	-	-
-	-	1323	88.5	-	73	-	-	-
-	-	1245	88.0	-	72	-	-	-
-	-	1160	87.0	-	71	-	-	-
-	-	1076 1004	86.5 86.0	-	70 69	-	-	-
-	-	940	85.6	-	68.0	76.9	97	-
-	-	920	85.3	-	67.5	76.5	96	-
-	-	900	85.0	-	67.0	76.1	95	-
-	767	880	84.7	-	66.4	75.7	93	-
-	757	860	84.4	-	65.9	75.3	92	-
_	745	840	84.1	_	65.3	74.8	91	_
-	733	820	83.8	-	64.7	74.3	90	-
-	722	800	93.4	-	64.0	73.8	88	-
-	712	-	-	-	-	-	- 07	-
-	710 698	780 760	83.0 82.6	-	63.3 62.5	73.3 72.6	87 86	-
-	090	700	02.0	-	02.3	72.0	00	-
-	684	740	82.2	-	61.8	72.1	-	-
-	682	737	82.2	-	61.7	72.0	84	-
-	670	720	81.8	-	61.0	71.5	83	-
-	656 653	700 697	81.3 81.2	-	60.1 60.0	70.8 70.7	- 81	-
_	000	031	01.2	-	00.0	70.7	01	-
-	647	690	81.1	-	59.7	70.5	-	-
-	638	680	80.8	-	59.2	70.1	80	-
-	630	670	80.6	-	58.8	69.8	- 70	-
-	627	667	80.5	-	58.7	69.7	79	-
-	601	640	79.8	_	57.3	68.7	77	-
-	578	615	79.1	-	56.0	67.7	75	-
-	555	591	78.4	-	54.7	66.7	73	210
-	534	569	77.8	-	53.5	65.8	71	202
_	514	547	76.9	-	52.1	64.7	70	193
	495	528	76.3		51.0	63.8	68	186
-	477	508	75.6	-	49.6	62.7	66	177
-	461	491	74.9	-	48.5	61.7	65	170
-	444	472	74.2	-	47.1	60.8	63	162
429	429	455	73.4	-	45.7	59.7	61	154
415	415	440	72.8	-	44.5	58.8	59	149
401	401	425	72.0	-	43.1	57.8	58	142
388	388	410	71.4	-	41.8	56.8	56	136
375	375	396	70.6	-	40.4	55.7	54	129
363	363	383	70.0	-	39.1	54.6	52	124
352	352	372	69.3	(110.0)	37.9	53.8	51	120
341	341	360	68.7	(109.0)	36.6	52.8	50	115
331	331	350	68.1	(108.5)	36.6	51.9	48	112
321	321	339	67.5	(108.0)	34.3	51.0	47	108
311	311	328	66.9	(107.5)	33.1	50.0	46	105
302	302	319	66.3	(107.0)	32.1	49.3	45	103
293	293	309	65.7	(106.0)	30.9	48.3	43	99
285 277	285 277	301 292	65.3 64.6	(105.5) (104.5)	29.9 28.8	47.6 46.7	- 41	97 94

Сравнительная таблица значений твёрдости

Шарі	Бринеллю (НВ), ик 10мм, а: 3000 кгс	Твёрдость по		Твёрдость	по Роквеллу		Твёрдость по Шору,	Предел прочности
Стандартный шарик	Твёрдосплавный шарик НВ	Виккерсу HV	Шкала А, Нагрузка: 60 кгс, Алмазная пирамида, HRA	Шкала В, Нагрузка: 100 кгс, 1/16" дюймовый шарик, НRВ	Алмазная пирамида, HRC	Шкала D, Нагрузка: 100 кгс, Алмазная пирамида, HRD	порог твёрдости, НЅ	(Прибл.), кгс/ мм
269	269	284	64.1	(104.0)	28	45.9	40	91
262	262	276	63.6	(103.0)	27	45.0	39	89
255	255	269	63.0	(102.0)	25	44.2	38	86
248 241	248 241	261 253	62.5 61.8	(101.0) 100	24 23	43.2 42.0	37 36	84 82
241	241	233	01.0	100	23	42.0	30	02
235	235	247	61.4	99	22	41.4	35	80
229	229	241	60.8	98.2	21	40.5	34	78
223	223	234	-	97.3	(18.8)	-	-	
217	217	228	-	96.4	(17.5)	-	33	74
212	212	222	-	95.5	(16.0)	-	-	72
207	207	218	-	94.6	(15.2)	-	32	70
201	201	212	-	93.8	(13.8)	-	31	69
197	197	207	-	92.8	(12.7)	-	30	67
192	192	202	-	91.9	(11.5)	-	29	65
187	187	196	-	90.7	(10.0)	-	-	63
					(= =)			
183	183	192	-	90	(9.0)	-	28	63
179 174	179 174	188 182	-	89 87.8	(8.0)	-	27	61 60
174	174	178	- -	86.8	(6.4) (5.4)	-	26	58
167	167	175	-	86	(4.4)	-	20	57
					()			0.
163	163	171	-	85	(3.3)	-	25	56
156	156	163	-	82.9	(0.9)		-	53
149	149	156	-	80.8		-	23	51
143	143	150 143	-	78.7		-	22 21	50 47
137	137	143	-	76.4		-	21	47
131	131	137	-	74		-	_	46
126	126	132	-	72		-	20	44
121	121	127	-	69.8		-	19	42
116	116	122	-	67.6		-	18	41
111	111	117	-	65.7		-	17	39

			A	налоги мате	риалов согл	асно станд	цартам разли	ічных стран			
ISO	Китай	Международный ст.	Германия	США	Великобр	ритания	Франция	Швеция	Италия	Россия и страны СНГ	Япония
	GB	DIN	Wnr	AISI/SAE	BS	EN	AFNOR	SS	UNI	ГОСТ	JIS
					Углер	одистые ст	гали				
	15	C15	1.0401	1015	080M15	-	CC12	1350	C15C16	15	-
	20	C22	1.0402	1020	050A20	2C	CC20	1450	C20C21	20	-
	35	C35	1.0501	1035	060A35	-	CC35	1550	C35	35	-
	45	C45	1.0503	1045	080M40	-	CC45	1650	C45	45	-
	55	C55	1.0535	1055	070M55	-	-	1655	C55	-	-
	60	C60	1.0601	1060	080A62	43D	CC55	-	C60	-	-
	Y15	9SMn28	1.0715	1213	230M07	-	S250	1912	CF9SMn28	-	SUM22
	-	9SMnPb28	1.0718	12L13	-	-	S250Pb	1914	CF9MnPb28	AC14	SUM22L
	-	10SPb20	1.0722	-	-	-	10PbF2	-	CF10Pb20	A12	-
	-	35S20	1.0726	1140	212M36	8M	35MF4	1957	-	A30	-
	Y13	9SMn36	1.0736	1215	240M07	1B	S300	-	CF9SMn36	-	-
	-	9SMnPb36	1.0737	12L14	-	-	S300Pb	1926	CF9SMnPb36	-	-
	55Si2Mn	55Si9	1.0904	9255	250A53	45	55S7	2085	55Si8	-	-
	-	60SiCr7	1.0961	9262	-	-	60SC7	-	60SiCr8	60C2A	-
Р	15	Ck15	1.1141	1015	080M15	32C	XC12	1370	C16	15	S15C
•	40Mn	40Mn4	1.1157	1039	150M36	15	35M5	-	-	-	-
	25	Ck25	1.1158	1025	-	-	-	-	-	-	S25C
	35Mn2	36Mn5	1.1167	1335	-	-	40Mn5	2120	-	30Г	SMn438(H)
	30Mn	28Mn6	1.117	1330	150M28	14A	20M5	-	C28Mn	-	SCMn1
	35Mn	Cf35	1.1183	1035	060A35	-	XS38TS	1572	C36	-	S35C
	Ck45	45	1.1191	1045	080M46	-	XC42	1672	C45	45	S45C
	55	Ck55	1.1203	1055	070M55	-	XC45	-	C50	50	S55C
	50	Cf53	1.1213	1050	060A52	-	XC48TS	1674	C53	-	S50C
	60Mn	Ck60	1.1221	1060	080A62	43D	XC60	1678	C60	-	S58C
	-	Ck101	1.1274	1095	060A96	-	-	1870	-	-	SUP4
	-	X120Mn12	1.3401	-	Z120M12	-	X120M12	-	XG120Mn12	110Г13Л	SCMnH/1
	GCr15	100Cr6	1.3505	52100	534A99	31	100C6	2258	100Cr6	ШХ15	SUJ2
	-	15Mo3	1.5415	ASTM A204Gr.A	1501-240	-	15D3	2912	16Mo3KW	15FC	-
	-	16Mo5	1.5426	4520	1503-245- 420	-	-	-	16Mo5	-	-
	-	14Ni6	1.5622	ASTM A350LF5	-	-	16N6	-	14Ni6	15ГНЛ	-
	-	X8Ni9	1.5662	ASTM A353	1501-509; 510	-	-	-	X10Ni9	-	-

			Α	налоги материа	пов согласно ста	ндарта	м различных	с стран			
ISO	Китай	Международный ст.	Германия	США	Великобрита	ния	Франция	Швеция	Италия	Россия и страны СНГ	Япония
	GB	DIN	Wnr	AISI/SAE	BS	EN	AFNOR	SS	UNI	гост	JIS
					Легированные	стали					
	-	12Ni19	1.5680	2515	-	-	Z18N5	-	-	-	-
	-	36NiCr6	1.5710	3135	640A35	111A	35NC6	-	-	-	SNC236
	-	14NiCr10	1.5732	3415	-	-	14NC11	-	16NiCr11	12XH3A	SNC415 (H)
	-	14NiCr14	1.5752	34153310	655M13655A12	36A	12NC15	-	-	-	SNC815 (H)
	-	36CrNiMo4	1.6511	9840	816M40	110	40NCD3	-	38CrNiMo4 (KB)	40XH2MA	-
	-	21NiCrMo2	1.6523	8620	850M20	362	20NCD2	2503	20NiCrMo2	20ХГНМ	SNCCM220 (H)
	-	40NiCrMo2	1.6546	8740	311-Type7	-	-	-	40NiCrMo2 (KB)	38ХГНМ	SNC240
	40CrNiMoA	34CrNiMo6	1.6582	4340	817M40	24	35NCD6	2541	35CrNiMo6 (KB)	-	-
	-	17CrNiMo6	1.6587	-	820A16	-	18NCD6	-	-	38X2H2MA	-
	15Cr	15Cr3	1.7015	5015	523M15	-	12C3	-	-	-	SCr415(H)
	35Cr	34Cr4	1.7033	5132	530A32	18B	32C4	-	34Cr4(KB)	35X	SCr430(H)
	40Cr	41Cr4	1.7035	5140	530M40	18	42C4	-	41Cr4	40X	SCr440(H)
P	40Cr	42Cr4	1.7045	5140	-	-	-	2245	-	40X	SCr440
'	18CrMn	16MnCr15	1.7131	5115	(527M20)	-	16MC5	2511	16MnCr15	18XF	-
	20CrMn	55Cr3	1.7176	5155	527A60	48	55C3	-	-	-	SUP9(A)
	30CrMo	25CrMo4	1.7218	4130	1717CDS110	-	25CD4	2225	25CrMo4 (KB)	50XΓA	SCM420; SCM430
	35CrMo	34CrMo4	1.7220	4137;4135	708A37	19B	35CD4	2234	35CrMo4	30XM	SCM432; SCRRM3
	40CrMoA	41CrMo4	1.7223	4140;4142	708M40	19A	42CD4TS	2244	41CrMo4	38XM	SCM440
	42CrMo 42CrMnMo	42CrMo4	1.7225	4140	708M40	19A	42CD4	2244	42CrMo4	40ХФА	SCM440(H)
	-	15CrMo5	1.7262	-	-	-	12CD4	2216	-	15XM	SCM415(H)
	-	13CrMo44	1.7335	ASTMA182F11; F12	1501-620Gr.27	-	15CD3.5; 15CD4.5	-	14CrMo44	12XM	-
	-	32CrMo12	1.7361	-	722M24	40B	30CD12	2240	32CrMo12		-
	-	10CrMo910	1.7380	ASTMA182F.22	1501- 622Gr.31;45	-	12CD9;10	2218	12CrMo9,10		-
	-	14MoV63	1.7715	-	1503-660-440	-	-	-	-	12Х1МФ	-
	50CrVA	50CrV4	1.8159	6150	735A50	47	50CV4	2230	50CrV4	50ХГФА	SUP10
	-	41CrAlMo7	1.8509	-	905M39	41B	40CAD6,12	2940	41CrAlMo7	38Х2МЮА	-
	-	39CrMoV139	1.8523	-	897M39	40C	-	-	36CrMoV12	-	-

			Аналогі	и материа	алов согла	асно ста	ндартам разлі	ичных стр	ан		
ISO	Китай	Международный ст.	Германия	США	Великобр	оитания	Франция	Швеция	Италия	Россия и страны СНГ	Япония
	GB	DIN	Wnr	AISI/ SAE	BS	EN	AFNOR	SS	UNI	гост	JIS
					Инструме	ентальны	ые стали				
	T10	C105W1	1.1545	W.110	-	-	Y1105	1880	C98KU C100KU	У11А	-
	T12A	C125W	1.1663	W.112	-	-	Y2120	-	C120KU	У13	SK20
	GCr15	100Cr6	1.2067	L3	BL3	-	Y100C6	-	-	ШХ15	-
	Cr12	X210Cr12	1.2080	D3	BD3	-	Z200Cr12	-	X210Cr13KU X250Cr12KU	X12	SKD1
	4Cr5MoVSi	X40CrMoV5 1	1.2344	H13	BH13	-	Z40CDV5	2242	X35CrMoV05KU X40CrMoV51KU	4Х5МФ1С	SKD61
	Cr6WV	X100CrMoV5 1	1.2363	A2	BA2	-	Z100CDV5	2260	X100CrMoV51KU	9Х5ВФ	SKD12
	CrWMo	105WCr6	1.2419	-	-	-	105WC13	2140	10WCr6 107WCr5KU	ХВГ	SKS31 SKS2 SKS3
	Cr12W	X210CrW12	1.2436	-	-	-	-	2312	X215CrW12 1KU	X12BM	SKD2
	5CrNiMo	45WCrV7	1.2542	S1	BS1	-	-	2710	45WCrV8KU	5XB2C	-
Р	3Cr2W8V	X30WCrV93 X30WCrV93KU	1.2581	H21	BH21	-	Z30WCV9	-	X28W09KU X30WCrV9 3KU	3Х2В8Ф	SKD5
	Cr12MoV	X165CrMoV 12	1.2601	-	-	-	-	2310	X165CrMoW12KU	X12M	SKD11
	5CrNiMo	55NiCrMoV6	1.2713	L6	-	-	55NCDV7	-	-	5XHM	SKT4
	V	100V1	1.2833	W210	BW2	-	Y1105V	-	-	-	SKS43
	W6Mo5Cr4V2Co5	S6-5-2-5	1.3243	-	-	-	Z85WDKCV	2723	HS6-5-2-5	P6M5K5	SKH55
	W18Cr4VCo5	S18-1-2-5	1.3255	T4	BT4	-	Z80WKCV 10-05-04-01	-	X78WCo1805KU	Р18К5Ф2	SKH3
	W6Mo5Cr4V2	S6-5-2	1.3343	M2	BM2	-	Z85WDCV 06-05-04-02	2722	X82WMo0605KU	P6M5	SKH9
	-	S2-9-2	1.3348	M7	-	- Z -	Z100WCWV 09-02-04-02	2782	HS2-9-2	-	-
	W18Cr4V	S18-0-1	1.3355	T1	BT1	-	Z80WCV 18-04-01	-	X75W18KU	P18	SKH2
	W6Mo5Cr4V3	S6-5-3	-	М3	-	-	-	-	-	-	SKH52
	-	-	-	M42	BM42	-	-	-	-	-	SKH59

			Анал	оги матери	алов сог.	пасно ста	ндартам разли	чных стра	ан		
ISO	Китай	Международный ст.	Германия	США	Велико6	 британия	Франция	Швеция	Италия	Россия и страны СНГ	Япония
	GB	DIN	Wnr	AISI/SAE	BS	EN	AFNOR	SS	UNI	гост	JIS
				Ферритны	е и марте	нситные	нержавеющие	стали	1		
	0Cr13; 1Cr12	403	1.4000	403	403S17	-	Z6C13	2301	X6Cr13	12X13	SUS403
	-	-	1.4001	-	-	-	-	-	-	-	-
	1Cr13	410	1.4006	410	410S21	56A	X12Cr13	2302	X12Cr13	15Х13Л	SUS410
	1Cr17	430	1.4016	430	430S15	60	X8Cr17	220	X8Cr17	12X17	SUS430
	2Cr13	410	1.4021	40	S62	56B;56C	X20C13	-	X20C13	15Х13Л	SUS410
	-	-	1.4027	-	420C29	56B	-	-	-	-	SCS2
	4Cr13	-	1.4034	-	420S45	56D	X40Cr14	2304	X40Cr14	-	SUS420J2
	1Cr17Ni2	431	1.4057	431	431S29	57	X16CNi16	2321	X16CNi16	-	SUS431
	Y1Cr17	430F	1.4104	430F	-	-	X10CrS17	2383	X10CrS17	-	SUS430F
	1Cr17Mo	434	1.4113	434	434S17	-	X8CrMo17	2325	X8CrMo17	-	SUS434
	-	-	1.4313	-	425C11	-	-	-	-	-	SCS5
	-	-	1.4408	-	316C16	-	-	-	-	-	SCS14
	4Cr9Si2	HW3	1.4718	HW3	401S45	52	X45CrSi8	-	X45CrSi8	40X9C2	SUH1
	0Cr13Al	405	1.4724	405	403S17	-	X10CrAl12	-	X10CrAl12	10Х13СЮ	SUS405
М	Cr17	430	1.4742	430	430S15	60	X8Cr17	-	X8Cr17	15X18CЮ	SUS430
	8Cr20Si2Ni	HNV6	1.4757	HNV6	443S65	59	X80CrSiNi20	-	X80CrSiNi20	95X18	SUH4
	2Cr25N	446	1.4762	446	-	-	X16Cr26	2322	X16Cr26	-	SUH446
		I		Ayo	тенитны	е нержав	еющие стали		T	Γ	
	0Cr18Ni9	X5CrNi1810	1.4301	304	304S15	58E	Z6CN18.09	2332	X5CrNi1810	08X18H10	SUS304
	1Cr18Ni9MoZr	X10CrNiS189	1.4305	303	303S21	58M	Z10CNF18.09	2346	X10CrNiS18.09	12X18H9	SUS303
	0Cr19Ni10	X2CrNi1911	1.4306	304L	304S12	-	Z2CN18.10	2352	X2CrNi18.11	03X18H11	SCS19
	-	G-X6CrNi189	1.4308	-	304C15	-	Z6CN18.10M	-	-	-	SCS13
	Cr17Ni17	X12CrNi177	1.4310	301	-	-	Z12CN17.07	2331	X12CrNi1707	12X18H9	SUS301
	-	X2CrNiN1810	1.4311	304LN	304S62	-	Z2CN18.10	2371	-	-	SUS304LN
	0Cr19Ni9	X5CrNi189	1.4350	304	304S31	58E	Z6CN18.09	-	X5CrNi1810	-	SUS304
	0Cr17Ni11Mo2	X5CrNi Mo1712 X2CrNi	1.4401	316	316S16	Z6CND 17.11	1.4401	2347	X5CrNiMo1712	08X16H11M3	SUS316
	00Cr17Ni13Mo2	MoN17133	1.4429	316LN	-	-	Z2CND17.13	2375	-	-	SUS316LN
	0Cr27Ni12Mo3	X2CrNi Mo18143	1.4435	316L	316S12	-	Z2CDN17.13	2353	X2CrNiMo1713	03X17H14M3	SCS16
	00Cr19Ni13Mo3	X2CrNi Mo17133	1.4438	317L	317S12	-	Z2CND19.15	2367	X2CrNiMo18.16	-	SUS317L
	-	X8CrNiMo275	1.4460	329L	-	-	-	2324	-	08X21H6M2T	SUS329L; SCH11; SCS11

			Анало	оги мат	ериалов с	огласно	стандартам разлі	ичных стра	ан		
ISO	Китай	Международный ст.	Германия	США	Великоб	ритания	Франция	Швеция	Италия	Россия и страны СНГ	Япония
	GB	DIN	Wnr	AISI/ SAE	BS	EN	AFNOR	SS	UNI	гост	JIS
					Аустенит	ные неря	кавеющие стали				
	1Cr18Ni9Ti	X6CrNi Ti1810	1.4541	321	2337	321S12	Z6CNT18.10	58B	X6CrNiTi1811	12X18H10T	SUS321
	1Cr18Ni11Nb	X6CrNi Nb1810	1.4550	347	347S17	58F	Z6CNNb18.1	2338	X6CrNiTi1811	08Х18Н12Б	SUS347
	Cr18Ni12Mo2Ti	X6CrNi MoTi17122	1.4571	316Ti	320S17	58J	Z6NDT17.12	2350	X6CrNiMoTi17	10X17H13M2T	-
	-	G-X5CrNi MoNb1810	1.4581	-	318C7	-	Z4CNDNb1812M	-	XG8CrNiMo18	-	SCS22
М	Cr17Ni12Mo3Nb	X10CrNi MoNb1812	1.4583	318	-	-	Z6CNDNb1713B	-	X6CrNiMoTiNb17	-	-
IVI	1Cr23Ni13	X15CrNi Si2012	1.4828	309	309S24	-	Z15CNS20.1	-	-	-	SUH309
	0Cr25Ni20	X12CrNi2521	1.4845	310S	310S24	-	Z12CN2520	2361	X6CrNi2520	10X23H18	SUH310
	Cr15Ni36W3Ti	X12NiCr Si3616	1.4864	330	-	-	Z12CNS35.1	-	-	-	SUH330
	-	G-X40NiCr Si3818	1.4865	-	330C11	-	-	-	XG50NiCr3919	-	SCH15
	5Cr2Mn9Ni4N	X53CrMn NiN219	1.4871	EV8	349S54; 321S12	- 58B	Z52CMN21.0	-	X53CrMnNiN219	-	SUH35
	1Cr18Ni9Ti	X12CrNi Ti189	1.4878	321	321S320	58C	Z6CNT18.12	-	X6CrNiTi1811	12X18H12T	SU321

	Аналоги материалов согласно стандартам различных стран										
ISO	Китай	Германия	США	Великобритания	Франция	Швеция	Италия	Россия и страны СНГ	Япония		
	GB	Wnr	AISI/SAE	EN	AFNOR	SS	UNI	гост	JIS		
				Чугуны с	: шаровидным г	рафитом					
	QT400-18	GGG40	60-40-18	400/17	FGS370-17	0717-02	GS370-17	B440	FCD400		
	QT450-10		65-45-12	420/12	FGS400-12		GS400-12	B445	FCD450		
	QT500-7	GGG50	70-50-05	500/7	FGS500-7	0727-02	GS500-7	B450	FCD500		
	QT600-3	GGG60	80-60-03	600/7	FGS600-2	0732-03	GS600-2	B460	FCD600		
	QT700-2	GGG70	100-70-03	700/2	FGS700-2	0737-01	GS700-2	B470	FCD700		
	QT800-2	GGG80	120-90-02	800/2	FGS800-2	0864-03	GS800-2	B480	FCD800		
K	QT900-2			900/2	-						
, ,	Серые чугуны										
		GG40	NO.60		FGL400	0140		-			
	HT350	GG35	NO.50	350	FGL350	0135	G35	C435	FC350		
	HT300	GG30	NO.45	300	FGL300	0130	G30	СЧ30	FC300		
	HT250	GG25	NO.35	250	FGL250	0125	G25	C425	FC250		
	HT200	GG20	NO.30	200	FGL200	0120	G20	C420	FC200		
	HT150	GG15	NO.20	150	FGL150	0115	G15	C415	FC150		
	HT100			100		0110	G10		FC100		

		Аналоги материалов согласно стандартам различных стран											
ISO	Китай	Международный ст.	Германия	США	Великобритания	Франция	Швеция	Италия	Россия и страны СНГ	Япония			
	GB	DIN	Wnr	AISI/SAE	BS	AFNOR	SS	UNI	гост	JIS			
	Алюминиевые сплавы												
	ZAISi7Mg	Al-Si7Mg(Fe)	~AlSi7Mg	356	LM25	A-S7G	4244	3599	-	AC4C			
	ZAISi7MgA	Al-Si7Mg	AlSi7Mg	A356.0	2L99	A-S7G03	-	8024	АК7пч	AC4C			
	ZAISi12	Al-Si12	AlSi12	413;B413.0	LM6	A-S13	4261	4514	AK12	AC3A			
N	ZAISi9Mg	~Al-Si10Mg	AlSi9Mg	360	LM9	A-S9G;A-S10G	4253	3051	АК9ч	AC4A			
	-	Al-Si5	AlSi5Mg	A 443.0	-	-	-	5077	АМг5К	-			
	-	Al-Si5Fe	-	B443.0	-	-	-	GD-AlSi5Fe	-	-			
	-	(AlSi7Fe)	-	A444.0	-	-	-	-	-	-			
	-	Al-Si12Fe	-	413	LM20	~A-S12	4260	5079	-	ADC1			

	Аналоги материалов согласно стандартам различных стран										
ISO	Китай	Международный ст.	Германия	США	Великобритания	Франция	Швеция	Италия	Россия и страны СНГ	Япония	
	GB	DIN	Wnr	AISI/SAE	BS	AFNOR	ss	UNI	гост	JIS	
				Жаропрочн	ые сплавы на осн	ове никеля					
	-	S-NiCr13A16MoNb	LW2 4670	5391	mar - 46	NC12AD	-	-	-	-	
	-	NiCo15Cr10MoAlTi	LW2 4674	AMS 5397	-	-	-	-	-	-	
	-	NiFe35Cr14MoTi	LW2.4662	5660	-	ZSNCDT42	-	-	-	-	
	-	NiCr19Fe19NbMo	LW2.4668	5383	HR8	NC19eNB	-	-	-	-	
	-	NiCr20TiAk	2.4631	-	Hr401.601	NC20TA	-	-	XH78T	-	
	-	NiCr19Co11MoTi	2.4973	AMS 5399	-	NC19KDT	-	-	-	-	
	-	NiCr19Fe19NbMo	LW2.4668	AMS 5544	-	NC20K14	-	-	-	-	
	-	-	2.4603	5390A	-	NC22FeD	-	-	-	-	
	-	NiCr22Mo9Nb	2.4856	5666	-	NC22FeDNB	-	-	-	-	
S	-	NiCr20Ti	2.4630	-	HR5.203-4	NC20T	-	-	-	-	
	-	NiCu30AL3Ti	2.4375	4676	3072-76	-	-	-	-	-	
	Жаропрочные сплавы на основе кобальта										
	-	CoCr20W15Ni	-	5537C,AMS	-	KC20WN	-	-	-	-	
	-	CoCr22W14Ni	LW2.4964	5772	-	KC22WN	-	-	-	-	
	Титановые сплавы										
	-	TiAl5Sn2.5	3.7115.1	UNS R54520	TA14/17	T-A5E	-	-	BT5-1	-	
	-	-	-	-	-	UNS R56400	-	-	-	-	
	-	TiAl6V4	3.7165.1	-	TA10-13/TA28	UNS R56401	-	T-A6V	BT6	-	
	-	TiAl5V5Mo5Cr3	-	-	-	-	-	-	-	-	
	-	TiAl4Mo4Sn4Si0.5	3.7185	-	-	-	-	-	-	-	

Продукт	Страница	Продукт	Страница	Продукт	Страница	Продукт	Страница
Α		ASIBR/L	137	BT50-FM====	427	CPMT-PB1	73
ABF	131	ASIFR/L	146	BT50-FM□□-□-C	428	CPMT-PC2	73
ACD - CH	183	ASIGR/L	141	BT50-FMD□-□	430	CT-HSK100	441
ACD - CM	182	ASITR/L	147	BT50-PC□-□	422	CT-HSK63	441
ACD - CS	181	ASM90-AO12	244	BT50-SLB□-□	431		
ADMT 11T3	296	ASM90-AP17	240				
AFB-A/B/C□□	375	ASM90-LN09	230	C		D	
AFB-AK□	358	ASM90-LN12	228	C00-00	432	D106-03A0	383
AFF40-LN12	226	ASM90-LN13	232	CoC-Mo-oo-R	444	D106-03A1	391
AFF40-LN15	226	ASM90-LN16	234	CoC-Mo-oo-T	443	D106-05A0	387
AFM40-ON05	206	ASM90-TD15	242	Cos-Mo-oo-T	442	D106-05A1	395
AFM42-OD06	204	ASM90-WN08	236	CCET-FL-F	74、75	D108-08A1	399
AFM45-SD09	208	ASM90-WN08-N	238	CCET-FL-M	75	DCET-FL-F	78
AFM45-SD12	212	ASWB	135	CCET-FR-F	74、75	DCET-FL-M	79
AFM45-SN12	216	ASWP	133	CCET-FR-M	75	DCET-FR-F	78
AFM45-SN19	216	ASWSR/L	132	CCGT-E-UF	72	DCET-FR-M	79
AFM45-XN07	222	ASWT	135	CCGT-FP-LF	72	DCGT-E-UF	76
AFM45-XN09	224	ATBD	190	CCGT-FP-UF	72	DCGT-FP-LF	76
AFM75-SN12	218	ATD - E	189	CCGT-F-UF	72	DCGT-FP-UF	76
AFM88-SN12	220	ATD - E-G	188	CCGT-NC2	73	DCGT-FF-UF	76
AFM90-SD09	210	ATD - E-GS	184	CCGW-1-LL-07	110	DCGT-NC2	77
AFM90-SD12	214	ATD - RA		CCGW-1-LL-07	110	DCGW-1-NL-00	111
AGPFR/L	166		186			DCGW-1-NL-05	
AGSFR/L	165	ATD TM	186	CCGW-1-NL-05	110		111
AGSIR/L	171	ATD TO	185	CCGW-SL-1	102	DCGW-SL-1	103
AGUER/L		ATD - TS	185	CCGW-SL-2	102	DCGW-SL-2	103
	161	ATG 32	179	CCMT-F1T	73	DCMT-F1T	77
AGUIR/L	172	ATG 43	180	CCMT-KC2	74	DCMT-KC2	77
AHM15-XD09	250	ATGHR/L	155	CCMT-M2T	74	DCMT-PB1	77
AHM15-XD12	252	ATGIR/L	169	CCMT-PB1	73	DCMT-PC2	77
AK-00-00	368	ATM60	410	CCMT-PC2	73	DCMW-KD5	78
AOMT 1204	295	ATPFR/L	167	CCMW-KD5	74	DFB-==-BBT50-=	362
APE90-LN09	246	ATPIR/L	168	CNGA-1-NL-00	108	DNGA-1-NL-00	108
APE90-LN13	248	ATSER/L	157	CNGA-SL-1	96	DNGA-SL-1	97
APHT-P-DH	345	ATSER/L-D	159	CNGA-SL-2	96	DNGA-SL-2	97
APHT-P-DL	346	ATSER/L-SW	160	CNGA-SL-4	96	DNGA-SL-4	97
APKT 1003	294	ATSFR/L	162	CNMA-KD5	54	DNMA-KD5	58
APKT 1705	293	ATSFR/L-OB	163	CNMG-KC4	54	DNMG-BS	56
APM00-RO08	256	ATSIR/L	170	CNMG-MB2	52	DNMG-KC4	58
APM00-RO10	258			CNMG-MC3	53	DNMG-M1T	56
APM00-RO12	260			CNMG-MC4	53	DNMG-MB2	56
APM00-RO16	262	В		CNMG-PB1	52	DNMG-MC3	57
APM00-RO20	264	BARDD-D	363	CNMG-PB3	52	DNMG-MC4	58
APM00-RP080	254	BS-□-□	357	CNMG-PC3	52	DNMG-PB1	56
APM00-RP100	254	BS-□-□-LD	357	CNMG-PC4	53	DNMG-PB3	56
APMT 1135	297	BT40-AK□-□	365	CNMG-PD3	52	DNMG-PC3	57
APMT 1604	297	BT40-ER□-□	423	CNMG-PD5	54	DNMG-PC4	58
APMT-DH	347	BT40-FM□□-□	425	CNMG-SC1	52	DNMG-PD3	57
ARB-AK□	354	BT40-FM□□-□-C	426	CNMG-SC3	53	DNMG-PD5	58
ASG 32	178	BT40-PC□-□	422	CNMG-SL3	52	DNMG-PL5	57
ASGHR/L	153	BT40-SLB□-□	431	CNMM-PC8	55	DNMG-SC1	56
ASI	136	BT50-AK□-□	365	CNMM-PC9	55	DNMG-SC3	57
		BT50-BA40-□	367	CNMM-PD8	55	DNMG-SL3	56
		BT50-ER□-□	423	CNMM-PD9	55		

Продукт	Страница	Продукт	Страница	Продукт	Страница	Продукт	Страница
E		M205-6ES	316	SCMT-PB1	80	TCET-FR-M	85
EFB-==-AK=	364	M245-2ES	317	SCMT-PC2	80	TCGT-E-UF	81
EPMT-C-DH	345	M245-3EL	319	SCMW-KD5	80	TCGT-FP-LF	81
EPMT-I-DH	345	M245-3ES	318	SDGT	277	TCGT-FP-UF	81
EPMT-I-DL	346	MLF	360	SDJCR/L	119	TCGT-F-UF	81
ER00-0	434	MLFLD	360	SDKT	277	TCGT-NC2	81
ER:::-:A	435	MLR	357	SDLCR/L	120	TCGW-1-NL-00	112
ER:::-:C	436	MLRLD	357	SDMT	277	TCGW-1-NL-05	112
ER:::-:CA	437			SDNCN	120	TCMT-KC2	83
ER:::-::W::	438			SEKT	278	TCMT-M2T	83
ER□□-UM	439			SFB-□-AK6	363	TCMT-PB1	82
				SNGA-SL-1	98	TCMT-PC2	82
F		0		SNGA-SL-4	98	TCMW-KD5	83
FCC-□□	359	ODET	275	SNGA-SL-8	98	TDHT 1505	290
FCT-□□	359	ODEW	275	SNGX	279	TDMT 1505	290
		ODHT	275	SNHX	279	TM55G	411
G		ODMT	275	SNMA-KD5	61	TM60G	411
GPAD	348	ONHF	286	SNMG-KC4	60	TNGA -SL-1	99
01715	010			SNMG-M3T	59		
		ONHU	276			TNGA SL S	99
Н		ONMU	276	SNMG-MB2	59	TNGA 4 NIL 00	99
	220			SNMG-MC3	59	TNGA-1-NL-00	109
HP-2D(SPMT)	330	В		SNMG-MC4	60	TNGG-FL-F	64
HP-3D(SPMT)	332	R		SNMG-PB1	59	TNGG-FP-UF	64
HP-4D(SPMT)	334	RC-□-CC□	355	SNMG-PC3	59	TNGG-FR-F	64
HSK-A100-AK□-□	366	RC-□-CC□-B	356	SNMG-PC4	60	TNGG-L-H	64
HSK-A100-BA40-□	367	RC-□-SC□	355	SNMG-PD3	59	TNGG-R-H	64
HSK-A63-AK□-□	366	RCGT-NC2	92	SNMG-PD5	60	TNMA-KD5	64
		RCMX	92	SNMG-SC3	59	TNMG-KC4	63
L		RCMX-PD8	90	SNMG-SL3	59	TNMG-M1T	62
LNET	285	RDHT	300	SNMM-PC9	61	TNMG-M2T	62
LNHQ	286	RDHW	300	SNMM-PD8	61	TNMG-MB2	62
LNHU 0904	287	RDMT	300	SNMM-PD9	61	TNMG-MC3	63
LNHU 1306	288	RDMW	300	SNMX	279	TNMG-MC4	63
LNHU 1607	289	ROHT	301	SNMX-PD9	61	TNMG-PB1	62
LNMX-AM	71	ROMT	301	SPMT-DP	340	TNMG-PB3	62
LNMX-AR	71	RPM 080ER	299	STGCR/L	121	TNMG-PC3	62
LNMX-AS	71	RPM 100ER	299	STGPR/L	121	TNMG-PC4	63
LNMX-HE	70	RPMT	300	SVJBR/L	122	TNMG-PD3	62
		RPMW	300	SVJCR/L	124	TNMG-PD5	63
				SVLPR/L	125	TNMG-PL5	62
М		S		SVPBR/L	123	TNMG-SC3	62
M200-2BS	315	Suuu-ASGHL	154	SVPPR/L	125	TNMM-PD8	64
M200-2BL	315	SunaR/LuCA-u	370	SVVBN	123	TPEH-FL-F	84、85
M200-2BX	316	Sudu-SCLCL	128	SVVCN	124	TPEH-FR-F	84、85
M200-2EB	307	S==-SDUCL	129			TPGW-1-LL-07	112
M200-4ESP	308	S==-SVUBL	130			TPGW-1-NL-00	112
M200-4EL	309	Sooo-SVUPL	130	T		TPGW-1-NL-05	112
M200-4ELP	309	SCGT-NC2	80	TBET-FL-F	83	TPGW-SL-1	104
M200-4EX	309						
M200-4EX M200-4EB		SCGW-1-LL-07	111	TBET-FR-F	83	TPGW-SL-3	104
	308	SCLCR/L	118	TBGW-1-NL-05	112	TPMT-DH	347
M200-4CS	311	SCMT-HT	80	TCET-FL-F	84	TPMT-PC2	82
M200-4RS	312	SCMT-KC2	80	TCET-FL-M	85	TPMX-DH	348
M200-4RL	313	SCMT-M2T	80	TCET-FR-F	84		

Продукт	Страница	Продукт	Страница	Продукт	Страница	Продукт	Страница
V		VPGT-F-UF	87				
VBET-FL-F	88	VPGT-NC2	87				
VBET-FL-M	89						
VBET-FL-Y	90						
VBET-FR-F	88	W					
VBET-FR-M	89	WBET-FL-F	91				
VBET-FR-Y	90	WBET-FR-F	91				
VBGT-E-UF	86	WCMT(DU)	340				
VBGT-FP-LF	86	WNGA -SL-1	101				
VBGT-FP-UF	86	WNGA -SL-3	101				
VBGT-F-UF	86	WNGA -SL-6	101				
VBGW -SL-1	105	WNGU 0806	291				
VBGW -SL-2	105	WNMA-KD5	69				
VBGW-1-NL-05	113	WNMG-F1T	67				
VBMT-BS	87	WNMG-KC4	69				
VBMT-KC2	88	WNMG-M3T	68				
VBMT-PB1	88	WNMG-MB2	67				
VBMT-PC2	88	WNMG-MC3	68				
VCET-FL-F	89	WNMG-MC4	69				
VCET-FR-F	89	WNMG-PB1	67				
VCGT-E-UF	87	WNMG-PB3	67				
VCGT-FP-LF	86	WNMG-PC3	67				
VCGT-FP-UF	87	WNMG-PC4	68				
VCGT-F-UF	87	WNMG-PD3	68				
VCGT-NC2	87	WNMG-PD5	69				
VCGW -SL-1	105	WNMG-PL5	68				
VCGW -SL-2	105	WNMG-SC1	67				
VCGW-1-NL-05	113	WNMG-SC3	68				
VCMT-PB1	88	WNMG-SL3	67				
VCMT-PC2	88	WNMU 0806	292				
VNGA -SL-1	100	Willia oooo	202				
VNGA -SL-2	100						
VNGA -SL-4	100	Y					
VNGA-1-NL-00	109	XDLT	298				
VNGG-FP-UF	66	XDMW	298				
VNMG-BS	65	XNGU	283				
VNMG-KC4	66	XNGX	284				
VNMG-M3T	66	XNMU	283				
VNMG-MB2	65	XIVIO	203				
VNMG-MC3	66						
VNMG-PB1	65						
VNMG-PB3	65						
VNMG-PC3	65						
VNMG-PC3 VNMG-PC4	66						
VNMG-PD3	66						
VNMG-SC3	66						
VNMG-SL3	65						
VPET-FL-F	89						
VPET-FL-M	90						
VPET-FL-M VPET-FR-F	89						
	90						
VPET-FR-M VPGT-FP-LF	90 86						
VPGT-FP-UF	87						

Заметки

Заметки

ГАНЬЧЖОУ АКТЕК ТУЛ ТЕХНОЛОДЖИ КО. ЛТД улица Цзиньфэн 198, район Джангун, г. Ганьчжоу, провинция Цзянси, Китай, 341000 Телефон: +86 7978086879 ruinfo@achtecktool.com www.achtecktool.com/ru