ACHTECK

www.achtecktool.com/ru

ЭКСПЕРТ В РЕЗАНИИ ТРУДНООБРАБАТЫВАЕМЫХ МАТЕРИАЛОВ

Пластины для обработки канавок и отрезки

Геометрии режущих пластин для отрезки и обработки канавок

				Ширина пластины (мм)										
				Ofinal	ботка	uanyor.		LIODOV.	Обработка навок торцевых			ботка		
				Обра	оотка	наруж	ных ка	навок	канавок		внутренних канавок			
Геометрия	Форма пластины	Форма профиля главной режущей кромки	Описание	Обработка канавок	Отрезка	Точение	Профильное точение	Обработка наклонных канавок	Обработка канавок	Точение	Обработка канавок	Точение		
ATG	0		Пластины повышенной точности Позитивное исполнение снижает вероятность возникновения вибраций З режущие кромки, большой диапазон ширин.	0.33 4.8	-	-	0.5 1.0 1.5 2.0 3.0 4.0	-	-	-	0.33 4.8	-		
ASG	0	25°	 Пластины повышенной точности Большой передний угол и острое исполнение позволяет получить очень высокое качество обработанной поверхности 3 режущие кромки 	0.8 2.5	-	-	-	-	-	-	0.8 2.5			
cs		10°	 Рекомендуется для обработки канавок и отрезки в заготовках из нержавеющих сталей, жаропрочных сплавов и низкоуглеродистых сталей Для работы на низких подачах на оборот 	2.0 3.0	2.0 3.0	-	-	-	3.0	-	3.0	-		
СМ		8*	 Рекомендуется для обработки канавок и отрезки в заготовках из низкоуглеродистых и нержавеющих сталей Для вязких материалов, трубопроводной арматуры, фиттингов, отрезки тонкостенных деталей, генерирует низкие усилия резания Для работы на низких и средних подачах на оборот 	2.0 3.0 4.0 5.0 6.0	2.0 3.0 4.0 5.0 6.0	-	-	-	3.0 4.0 5.0 6.0	-	3.0 4.0 5.0 6.0	-		
СН		12* 0.05	Рекомендуется для обработки канавок и отрезки в заготовках из углеродистых и легированных сталей, нержавеющих сталей повышенной прочности и твёрдости. Упрочнённая режущая кромка Для работы на средних и больших подачах на оборот	2.0 3.0 4.0 5.0 6.0 8.0	2.0 3.0 4.0 5.0 6.0 8.0	-	-	-	3.0 4.0 5.0 6.0	-	3.0 4.0 5.0 6.0	-		
GS		23*	 Отличные стружколомающие свойства, подходит для обработки канавок и чистового продольного точения Применяется для чистовой обработки, генерирует низкие усилия резания, работает на низких подачах и позволяет получить отличное качество обработанной поверхности Пластина шлифована по периферии, отличная повторяемость позиционирования, высокая точность 	2.0 7.14	2.0 7.14	2.0 7.14	-	-	3.0 6.0	3.0 6.0	2.0 7.14	2.0 7.14		
TS		14*	Многофункциональная геометрия. Применяется для обработки наружных, торцевых и внутренних канавок, отрезки и продольного точения Отпичные стружколомающие свойства Для работы на низких и средних подачах на оборот	2.0 3.0 4.0 5.0 6.0 8.0	2.0 3.0 4.0 5.0 6.0 8.0	2.0 3.0 4.0 5.0 6.0 8.0	-	-	3.0 4.0 5.0 6.0	3.0 4.0 5.0 6.0	2.0 3.0 4.0 5.0 6.0 8.0	2.0 3.0 4.0 5.0 6.0 8.0		
тм		0°	Многофункциональная геометрия. Применяется для обработки наружных, торцевых и внутренних канавок, отрезки и продольного точения Режущая кромка повышенной прочности Для работы на средних подачах на оборот	2.0 3.0 4.0 5.0 6.0 8.0	2.0 3.0 4.0 5.0 6.0 8.0	2.0 3.0 4.0 5.0 6.0 8.0	-	-	3.0 4.0 5.0 6.0	3.0 4.0 5.0 6.0	2.0 3.0 4.0 5.0 6.0 8.0	2.0 3.0 4.0 5.0 6.0 8.0		
RM		0° 0.1	Геометрия для профильного точения и обработки фасонных канавок Для работы на средних подачах на оборот	2.0 3.0 4.0 5.0 6.0 8.0	-	2.0 3.0 4.0 5.0 6.0 8.0	2.0 3.0 4.0 5.0 6.0 8.0	2.0 3.0 4.0 5.0 6.0 8.0	3.0 4.0 5.0 6.0	3.0 4.0 5.0 6.0	2.0 3.0 4.0 5.0 6.0 8.0	2.0 3.0 4.0 5.0 6.0 8.0		
RA		15°	 Геометрия для профильного точения и обработки фасонных канавок в алюминиевых сплавах Большой передний угол и острое исполнение режущей кромки Пластины шлифованы по периферии, повышенная точность 	3.0 4.0 5.0 6.0 8.0	-	3.0 4.0 5.0 6.0 8.0	3.0 4.0 5.0 6.0 8.0	3.0 4.0 5.0 6.0 8.0	3.0 4.0 5.0 6.0	3.0 4.0 5.0 6.0	3.0 4.0 5.0 6.0 8.0	3.0 4.0 5.0 6.0 8.0		
Шлиф. G	9		Пластины шлифованы по периферии, повышенная точность Большой диапазон ширин пластин Обеспечивает хорошее качество обработанной поверхности	1.0 8.0		2.22 8.0	3.0 4.0 4.8 5.0 6.0 8.0	3.0 4.0 4.8 5.0 6.0 8.0	3.0 4.0 4.8 5.0 6.0	3.0 4.0 4.8 5.0 6.0	2.22 8.0	2.22 8.0		

По запросу доступны пластины серии ATD с геометрией PL для обработки канавок и точения в алюминиевых сплавах.

Рекомендации по выбору сплавов для обработки канавок и отрезки

				Применение сплавов								
	Обрабатывае	мые материалы		C PVD no	окрытием	С CVD покрытием	Без покрытия					
ISO	Описание обрабатываемых материалов	Предел прочности (H/мм²)	Твёрдость (НВ)	AP301U	AP330M	AC230P	AW100K					
	Urana mana antana antana	<600	<180	•	•	•	-					
	Низкоуглеродистые стали	<950	<280	•	•	•	-					
P		700-950	200-280	•	•	•	-					
	Легированные стали	950-1200	280-355	•	•	•	-					
		1200-1400	355-415	•	•	•	-					
	Дуплексные нержавеющие стали	778	230	•	•	-	-					
M	Аустенитные нержавеющие стали	675	200	•	•	-	-					
	Закалённые аустенитные стали	1013	300	•	•	-	-					
	Серые чугуны	700	220	•	-	•						
K	Чугуны с шаровидным графитом	880	260	•	-	•	-					
	Ковкие чугуны	800	250	•	-	•	-					
N	Чистый алюминий	260	75	-	-	-	•					
N	Алюминиевые сплавы	447	130	-	-	-	•					
	Жаропрочные сплавы на основе Fe	943	280	-	-	-	-					
s	Жаропрочные сплавы на основе Со	1076	320	-	-	-	-					
	Жаропрочные сплавы на основе Ni	1177	350	-	-	-	-					
	Жаропрочные сплавы на основе Ті	1262	370	-	-	-	-					
Н	Закалённые стали	-	50-60HRC	-	-	-	-					
	Отбеленные чугуны	-	55HRC	-	-	-	-					

- Первый выборО Альтернативный вариантНе рекомендуется

бработка канаво

Система обозначение 3-кромочных пластин ATG и ASG для обработки канавок малого размера

050

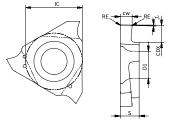
R005

2-Тип пластины									
Т	Треугольной формы								
S	Для токарных автоматов швейцарского типа								

3-Тип обработки								
G	Обработка канавок							

4-Размер пластины
32=9.525 мм
43=12.70 мм

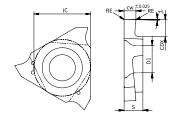
5-Исполнение пластины									
L	Левостороннее								
R	Правостороннее								


8-Радиус на уголках R005=0.05 мм

Пластины для обработки канавок малого размера

Серия ASG: для обработки мелкоразмерных канавок на станкахавтоматах швейцарского типа

Форморазмер	IC	S	D1
ASG 32-	9.525	3.18	4.6


На эскизе показано правое исполнение пластины

Видео Видео Видео Видео		Vegerug efinefierus					● Хоро	ошие	♠ Средние ♣ Плохие				
		Условия обработки				#	•	*	•	*	+	•	•
	Обозначение пластины	Режимы ре	зания	Разм	иеры		Р		ı	И	ı	<	N
Вид пластины		Обработка канавок	f CDX	CW RE	RE	ЭD	10	MC	10	MC	ЭP	10	0K
		f (мм/об)			110	AC230P	AP301U	AP330M	AP301U	AP330M	AC230P	AP301U	AW100K
	ASG 32R/L033T08-R005	0.01-0.05	8.0	0.33	0.05		•		•			•	
	ASG 32R/L050T12-R005	0.01-0.05	1.2	0.50	0.05		•		•			•	
	ASG 32R/L075T20-R010	0.02-0.07	2.0	0.75	0.10		•		•			•	
	ASG 32R/L095T20-R010	0.02-0.07	2.0	0.95	0.10		•		•			•	
	ASG 32R/L100T20-R010	0.03-0.08	2.0	1.00	0.10		•		•			•	
	ASG 32R/L120T20-R010	0.03-0.08	2.0	1.20	0.10		•		•			•	
	ASG 32R/L125T20-R010	0.03-0.08	2.0	1.25	0.10		•		•			•	
	ASG 32R/L140T20-R010	0.03-0.08	2.0	1.40	0.10		•		•			•	
	ASG 32R/L145T20-R010	0.03-0.08	2.0	1.45	0.10		•		•			•	
	ASG 32R/L150T20-R010	0.03-0.08	2.0	1.50	0.10		•		•			•	
	ASG 32R/L175T20-R010	0.03-0.08	2.0	1.75	0.10		•		•			•	
	ASG 32R/L200T25-R010	0.03-0.08	2.5	2.00	0.10		•		•			•	
	ASG 32R/L250T25-R010	0.03-0.08	2.5	2.50	0.10		•		•			•	

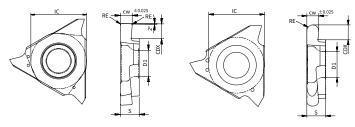
Пластины для обработки канавок малого размера

Серия ATG: для обработки наружных и внутренних канавок малого размера

Форморазмер	IC	S	D1
ATG 32-	9.525	3.18	4.4
ATG 43-	12.7	4.76	5.5
ATG 43R/L480	12.7	5.0	5.5

На эскизе показано правое исполнение пластины

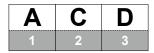
							• ∨		41.0		4	Д Плоуио		
		Усло	вия обр	работки			• Хоро	ошие	(†) Средние		# Плохие		e	
			2.17. 001	2.001101		#	•	*	•	#	#	•	•	
		Режимы ре	зания	Разм	перы		Р		M		K		N	
Вид пластины	Обозначение пластины	Обработка канавок	CDX	CW	RE	ЭC	n.	MO	⊇	M	ЭC	⊇	¥	
		f (мм/об)			KE	AC230P	AP301U	AP330M	AP301U	AP330M	AC230P	AP301U	AW100K	
	*ATG 32R/L033T08-R005	0.03-0.08	0.8	0.33	0.05		•		•			•		
	ATG 32R/L050T12-R005	0.03-0.08	1.2	0.50	0.05		•		•			•		
	ATG 32R/L075T20-R005	0.03-0.08	2.0	0.75	0.05		•		•			•		
	ATG 32R/L095T20-R005	0.03-0.08	2.0	0.95	0.05		•		•			•		
	ATG 32R/L100T20-R005	0.03-0.08	2.0	1.00	0.05		•		•			•		
	ATG 32R/L110T20-R005	0.03-0.08	2.0	1.10	0.05		•		•			•		
	ATG 32R/L120T20-R005	0.03-0.08	2.0	1.20	0.05		•		•			•		
	ATG 32R/L125T20-R020	0.04-0.09	2.0	1.25	0.20		•		•			•		
	ATG 32R/L130T20-R020	0.04-0.09	2.0	1.30	0.20		•		•			•		
	ATG 32R/L140T25-R020	0.04-0.09	2.5	1.40	0.20		•		•			•		
	ATG 32R/L145T25-R020	0.04-0.09	2.5	1.45	0.20		•		•			•		
	ATG 32R/L150T25-R020	0.04-0.09	2.5	1.50	0.20		•		•			•		
	ATG 32R/L160T25-R020	0.04-0.09	2.5	1.60	0.20		•		•			•		
An	ATG 32R/L170T25-R020	0.04-0.09	2.5	1.70	0.20		•		•			•		
0	ATG 32R/L175T25-R020	0.04-0.09	2.5	1.75	0.20		•		•			•		
	ATG 32R/L200T25-R020	0.04-0.09	2.5	2.00	0.20		•		•			•		
	ATG 32R/L225T25-R020	0.04-0.09	2.5	2.25	0.20		•		•			•		
	ATG 32R/L250T25-R020	0.05-0.10	2.5	2.50	0.20		•		•			•		
	ATG 32R/L300T25-R020	0.05-0.10	2.5	3.00	0.20		•		•			•		
	ATG 43R/L100T20-R010	0.03-0.08	2.0	1.00	0.10		•		•			•		
	ATG 43R/L125T20-R010	0.04-0.09	2.0	1.25	0.10		•		•			•		
	ATG 43R/L125T20-R020	0.04-0.09	2.0	1.25	0.20		•		•			•		
	ATG 43R/L130T30-R010	0.04-0.09	3.0	1.30	0.10		•		•			•		
	ATG 43R/L130T30-R020	0.04-0.09	3.0	1.30	0.20		•		•			•		
	ATG 43R/L140T35-R020	0.04-0.09	3.5	1.40	0.20		•		•			•		
	ATG 43R/L145T35-R020	0.04-0.09	3.5	1.45	0.20		•		•			•		
	ATG 43R/L150T35-R010	0.04-0.09	3.5	1.50	0.10		•		•			•		
	ATG 43R/L150T35-R020	0.04-0.09	3.5	1.50	0.20		•		•			•		
	ATG 43R/L170T35-R020	0.04-0.09	3.5	1.70	0.20		•		•			•		
	ATG 43R/L175T35-R020	0.04-0.09	3.5	1.75	0.20		•		•			•		
	ATG 43R/L185T35-R020	0.04-0.09	3.5	1.85	0.20		•		•			•		
	ATG 43R/L195T35-R020	0.04-0.09	3.5	1.95	0.20		•		•			•		


^{*} пластины ATG 32R/L033 - жёлтого цвета

Пластины для обработки канавок малого размера

Серия ATG: для обработки наружных и внутренних канавок малого размера

Форморазмер	рморазмер ІС		D1
ATG 32-	9.525	3.18	4.4
ATG 43-	12.7	4.76	5.5
ATG 43R/L480	12.7	5.0	5.5


На эскизе показано правое исполнение пластины На эскизе показано правое исполнение пластины

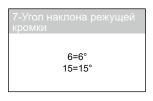
		Условия обработки				• Хор	ошие	♣ Средние				ie	
		усло	вия оор	раоотки		+	•	*	•	#	+	•	•
		Режимы ре	зания	Разм	иеры		Р		ı	И	К		N
Вид пластины	Обозначение пластины	Обработка канавок f (мм/об)	CDX	CW	RE	AC230P	AP301U	AP330M	AP301U	AP330M	AC230P	AP301U	AW100K
	ATG 43R/L200T35-R010	0.04-0.09	3.5	2.00	0.10		•		•			•	
	ATG 43R/L200T35-R020	0.04-0.09	3.5	2.00	0.20		•		•			•	
	ATG 43R/L225T35-R020	0.04-0.09	3.5	2.25	0.20		•		•			•	
	ATG 43R/L230T35-R020	0.05-0.10	3.5	2.30	0.20		•		•			•	
	ATG 43R/L250T50-R010	0.05-0.10	5.0	2.50	0.10		•		•			•	
	ATG 43R/L250T50-R030	0.05-0.10	5.0	2.50	0.30		•		•			•	
	ATG 43R/L265T50-R030	0.05-0.10	5.0	2.65	0.30		•		•			•	
, ala	ATG 43R/L280T50-R030	0.05-0.10	5.0	2.80	0.30		•		•			•	
	ATG 43R/L300T50-R010	0.05-0.10	5.0	3.00	0.10		•		•			•	
	ATG 43R/L300T50-R030	0.05-0.10	5.0	3.00	0.30		•		•			•	
	ATG 43R/L325T50-R030	0.05-0.10	5.0	3.50	0.30		•		•			•	
	ATG 43R/L330T50-R030	0.05-0.12	5.0	3.30	0.30		•		•			•	
	ATG 43R/L350T50-R010	0.05-0.12	5.0	3.50	0.10		•		•			•	
	ATG 43R/L350T50-R030	0.05-0.12	5.0	3.50	0.30		•		•			•	
	ATG 43R/L400T50-R010	0.05-0.12	5.0	4.00	0.10		•		•			•	
	ATG 43R/L400T50-R040	0.05-0.12	5.0	4.00	0.40		•		•			•	
	ATG 43R/L430T50-R040	0.05-0.12	5.0	4.30	0.40		•		•			•	
	ATG 43R/L450T50-R040	0.05-0.12	5.0	4.50	0.40		•		•			•	
	ATG 43R/L480T50-R040	0.05-0.12	5.0	4.80	0.40		•		•			•	
	ATG 32R/L050T20-R025	0.03-0.08	1.2	0.50	0.25		•		•			•	
	ATG 32R/L100T20-R050	0.03-0.08	2.0	1.00	0.50		•		•			•	
	ATG 32R/L150T25-R075	0.04-0.09	2.5	1.50	0.75		•		•			•	
	ATG 32R/L200T25-R100	0.04-0.09	2.5	2.00	1.00		•		•			•	
	ATG 32R/L300T25-R150	0.05-0.10	2.5	3.00	1.50		•		•			•	
	ATG 43R/L100T20-R050	0.03-0.08	2.0	1.00	0.50		•		•			•	
	ATG 43R/L150T35-R075	0.04-0.09	3.5	1.50	0.75		•		•			•	
	ATG 43R/L200T35-R100	0.04-0.09	3.5	2.00	1.00		•		•			•	
	ATG 43R/L250T40-R125	0.05-0.10	5.0	2.50	1.25		•		•			•	
	ATG 43R/L300T40-R150	0.05-0.10	5.0	3.00	1.50		•		•			•	
	ATG 43R/L400T50-R200	0.05-0.12	5.0	4.00	2.00		•		•			•	

Moderney eyrogen

Обозначение пластин серий ACD, ACS и ATD для обработки канавок и отрезки

4	0	3
4	4	5

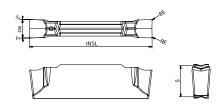
1-Бренд АСНТЕСК


2-Ти	п обработки
С	Обработка канавок / Отрезка
Т	Точение / Обработка канавок

S	Однокромочная
D	Двукромочная

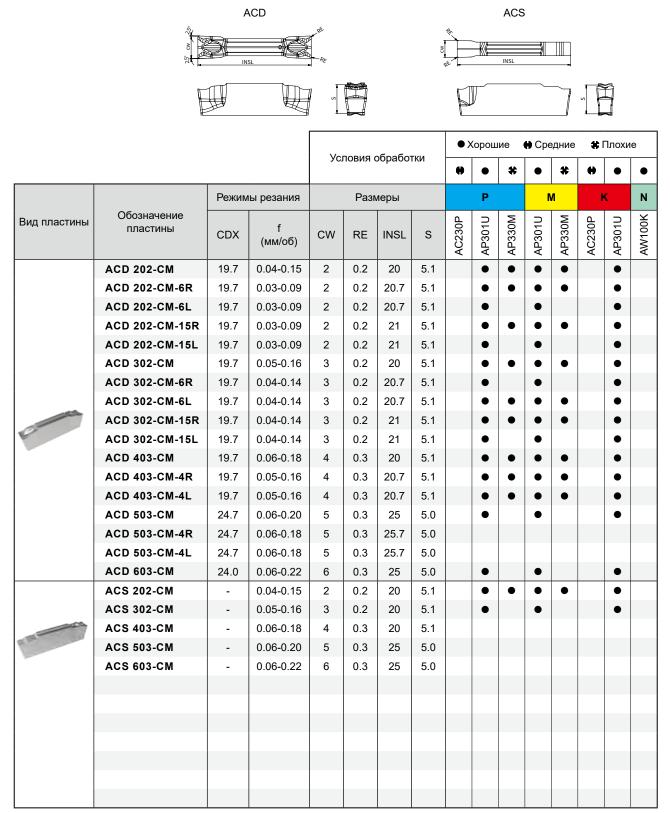
4-Ширина пластины	
2=2.0 мм 3=3.0 мм 4=4.0 мм	

5-Радиус на уголках 02=0.2 мм 03=0.3 мм 04=0.4 мм



Пластины для отрезки

CS: Острая стружколомающая геометрия пластин для отрезки

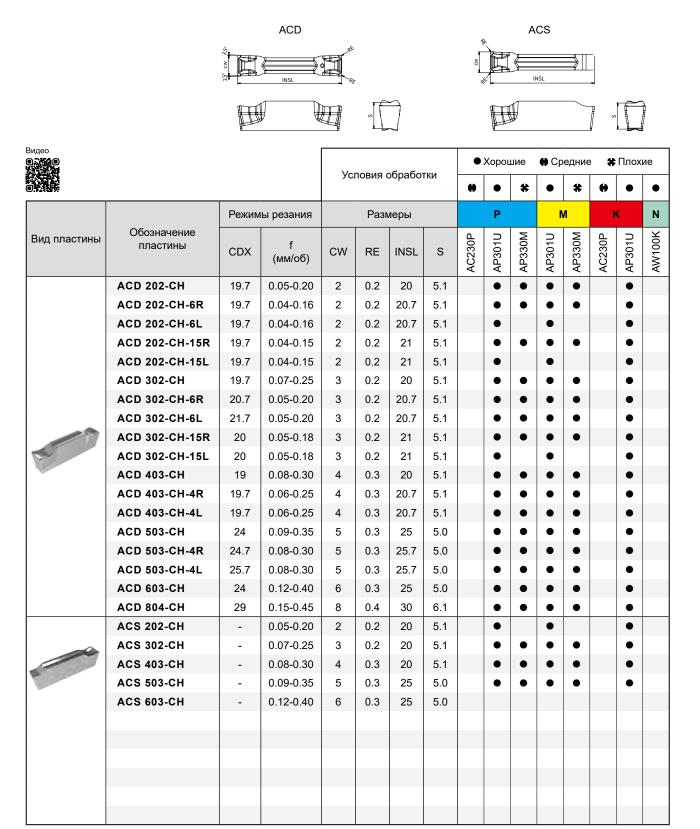


				Voi		обрабо	T1/14	•	Хороц	шие	(†) Ср	едние	*	Плохі	ие
				y C.	повия (ораоо	ΙΚVΙ	+	•	*	•	#	+	•	•
		Режимь	і резания		Разм	иеры			Р		N	И	ŀ	(N
Вид пластины	Обозначение пластины	CDX	f (мм/об)	CW	RE	INSL	S	AC230P	AP301U	AP330M	AP301U	AP330M	AC230P	AP301U	AW100K
	ACD 202-CS	19.7	0.04-0.13	2	0.2	20	5.1		•	•	•	•		•	
	ACD 302-CS	19.7	0.05-0.15	3	0.2	20	5.1		•	•	•	•		•	

Пластины для отрезки

СМ: Первый выбор для отрезки

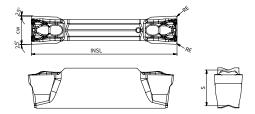
Замечание: 1. При выборе пластин с наклонной режущей кромкой подачу на оборот необходимо снизить на 20-40%


2. Размер Ттах для пластин ACS определяется соответствующим размером у державки

бработка канаво

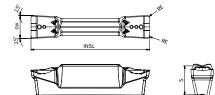
Пластины для отрезки

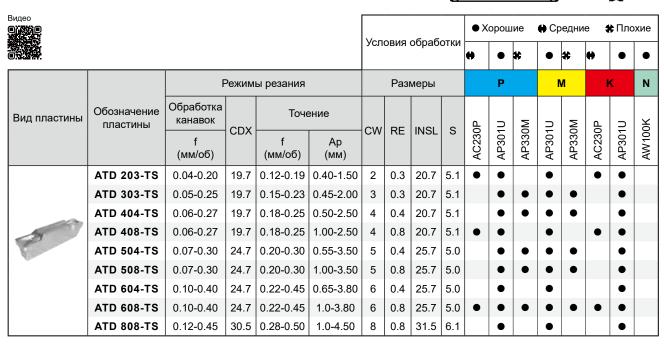
СН: Упрочнённая стружколомающая геометрия пластин для отрезки



Замечание: 1. При выборе пластин с наклонной режущей кромкой подачу на оборот необходимо снизить на 20-40%

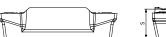
2. Размер Ттах для пластин ACS определяется соответствующим размером у державки


GS: Острая геометрия для обработки наружных, внутренних и торцевых канавок, а также для чистового продольного точения

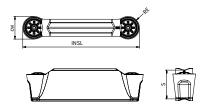


					.,				• x	орош	ие	(†) Ср	едни	= 1	Т Пло	хие
					Усл	овия	обрабо	тки	#	•	*	•	*	+	•	•
		Реж	кимы резан	ния		Разі	меры			Р		N	Л	ŀ	(N
Вид пластины	Обозначение пластины	f кан (мм/об)	f точ (мм/об)	Ар (мм)	cw	RE	INSL	S	AC230P	AP301U	AP330M	AP301U	AP330M	AC230P	AP301U	AW100K
	ATD 300E020-GS	0.04-0.20	0.05-0.20	0.30-2.0	3.00	0.20	20.70	5.1		•		•			•	
	ATD 300E040-GS	0.04-0.20	0.05-0.20	0.45-2.0	3.00	0.40	20.70	5.1		•		•			•	
	ATD 310E020-GS	0.04-0.20	0.05-0.20	0.25-2.0	3.15	0.20	20.70	5.1		•		•			•	
	ATD 318E020-GS	0.04-0.20	0.05-0.20	0.25-2.0	3.18	0.20	20.70	5.1		•		•			•	
	ATD 318E040-GS	0.04-0.20	0.05-0.20	0.45-2.0	3.18	0.40	20.70	5.1		•		•			•	
	ATD 318E080-GS	0.04-0.20	0.05-0.20	0.85-2.0	3.18	0.80	20.70	5.1		•		•			•	
	ATD 361E030-GS	0.04-0.20	0.06-0.23	0.35-2.0	3.61	0.30	20.70	5.1		•		•			•	
	ATD 396E020-GS	0.05-0.25	0.07-0.25	0.25-2.50	3.96	0.20	20.70	5.1		•		•			•	
	ATD 396E040-GS	0.05-0.25	0.07-0.25	0.45-2.50	3.96	0.40	20.70	5.1		•		•			•	
	ATD 396E080-GS	0.05-0.25	0.07-0.25	0.85-2.50	3.96	0.80	20.70	5.1		•		•			•	
	ATD 400E020-GS	0.05-0.25	0.07-0.25	0.25-2.50	4.00	0.20	20.70	5.1		•		•			•	
	ATD 400E040-GS	0.05-0.25	0.07-0.25	0.45-2.50	4.00	0.40	20.70	5.1		•		•			•	
150	ATD 452E020-GS	0.06-0.28	0.10-0.30	0.25-3.0	4.52	0.20	25.70	5.0								
E S	ATD 470E050-GS	0.06-0.28	0.10-0.30	0.55-3.0	4.70	0.50	25.70	5.0								
	ATD 475E040-GS	0.06-0.28	0.10-0.30	0.45-3.0	4.75	0.40	25.70	5.0								
	ATD 475E080-GS	0.06-0.28	0.10-0.30	0.85-3.0	4.75	0.80	25.70	5.0								
	ATD 480E050-GS	0.06-0.28	0.10-0.30	0.55-3.0	4.80	0.50	25.70	5.0								
	ATD 500E020-GS	0.06-0.28	0.10-0.30	0.25-3.0	5.00	0.20	25.70	5.0								
	ATD 500E040-GS	0.06-0.28	0.10-0.30	0.45-3.0	5.00	0.40	25.70	5.0								
	ATD 600E020-GS	0.09-0.35	0.15-0.35	0.25-3.50	6.00	0.20	25.70	5.0								
	ATD 600E040-GS	0.09-0.35	0.15-0.35	0.45-3.50	6.00	0.40	25.70	5.0								
	ATD 635E040-GS	0.09-0.35	0.15-0.35	0.45-3.50	6.35	0.40	25.70	5.0								
	ATD 635E050-GS	0.09-0.35	0.15-0.35	0.55-3.50	6.35	0.50	25.70	5.0								
	ATD 635E080-GS	0.09-0.35	0.15-0.35	0.85-3.50	6.35	0.80	25.70	5.0								
	ATD 714E080-GS	0.09-0.35	0.18-0.40	0.85-3.50	7.14	0.80	25.70	5.0								

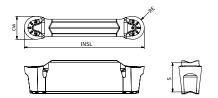
TS: Геометрия повышенной остроты для обработки наружных, внутренних и торцевых канавок, а также для чистового продольного точения



Пластины для обработки канавок и точения


ТМ: Упрочнённая геометрия для обработки наружных, внутренних и торцевых канавок, а также для чистового продольного точения

Видео Видео						\/				• Xc	роші	ие	— Ср	едни	е ;	Н Пло	эхие
0 1 1						усл	овия (обрабо	отки	+	•	*	•	*	+	•	•
		Р	ежим	ы резания			Разг	иеры			P		N	Л	ı	(N
Вид пластины	Обозначение пластины	Обработка канавок	CDX	Точе	ние	CW	RE	INSL	S	٦	U	Σ	n	M	Ъ	n	ЭK
		f (мм/об)	CDX	f (мм/об)	Ар (мм)	CVV	KE	IINOL	3	AC230P	AP301U	AP330M	AP301U	AP330M	AC230P	AP301U	AW100K
	ATD 304-TM	0.1-0.25	19.7	0.15-0.22	0.5-2.0	3	0.4	20.7	5.1		•		•				
	ATD 404-TM	0.15-0.30	19.7	0.18-0.27	0.5-2.50	4	0.4	20.7	5.1	•	•	•	•	•	•	•	
	ATD 408-TM	0.15-0.30	19.7	0.18-0.27	1.0-2.50	4	0.8	20.7	5.1	•	•	•	•	•	•	•	
	ATD 504-TM	0.18-0.35	24.7	0.20-0.35	0.55-3.50	5	0.4	25.7	5.0	•	•	•	•	•	•	•	
1	ATD 508-TM	0.18-0.35	24.7	0.20-0.35	1.0-3.50	5	0.8	25.7	5.0		•	•	•	•		•	
	ATD 604-TM	0.20-0.45	24.7	0.22-0.45	0.65-4.0	6	0.4	25.7	5.0	•	•	•	•	•	•	•	
	ATD 608-TM	0.20-0.45	24.7	0.22-0.45	1.0-4.0	6	0.8	25.7	5.0	•	•	•	•	•	•	•	
	ATD 808-TM	0.22-0.50	30.5	0.28-0.5	1.0-5.0	8	0.8	31.5	6.1								
	ATD 812-TM	0.22-0.50	30.5	0.28-0.5	1.5-5.0	8	1.2	31.5	6.1		•		•				


RM: Геометрия для профильного точения и обработки фасонных канавок

									•)	Хороц	шие	(†) Ср	едние	*	Плох	ие
					Усл	овия	обрабо	отки	#	•	*	•	#	+	•	•
		Реж	имы резани	1Я		Разг	иеры			Р		N	Л	ŀ	(N
Вид пластины	Обозначение пластины	f кан (мм/об)	f точ (мм/об)	Ар (мм)	CW	RE	INSL	s	AC230P	AP301U	AP330M	AP301U	AP330M	AC230P	AP301U	AW100K
	ATD 210-RM	0.06-0.15	0.12-0.25	0.4-1.0	2	1	20.7	5.1		•	•	•	•		•	
	ATD 315-RM	0.08-0.18	0.15-0.30	0.5-1.5	3	1.5	20.7	5.1	•	•	•	•	•	•	•	
The state of the s	ATD 420-RM	0.10-0.20	0.18-0.35	0.6-2.0	4	2	20.7	5.1	•	•	•	•	•	•	•	
1	ATD 525-RM	0.12-0.25	0.20-0.40	0.7-2.5	5	2.5	25.7	5.0	•	•	•	•	•	•	•	
	ATD 630-RM	0.15-0.30	0.25-0.50	0.9-3.0	6	3	25.7	5.0		•	•	•	•		•	
	ATD 840-RM	0.18-0.35	0.30-0.60	1.0-4.0	8	4	31.5	6.1		•		•			•	

Пластины для обработки канавок и точения

RA: Геометрия для профильного точения и обработки фасонных канавок в алюминиевых сплавах

						Усл	овия		•	Хороц	шие	(†) Ср	едние	*	Плохі	ие
							аботки		+	•	#	•	*	+	•	•
		Режимы резания				Раз	меры			Р		ľ	1	P	<	N
Вид пластины	Обозначение пластины	Обработка канавок	Точен	Точение			INSL	s	<u>ح</u>	Ω	∑	⊇	M	٦C	⊃	X
		f (мм/об)	f (мм/об)	Ар (мм)	CW	RE	INOL	3	AC230P	AP301U	AP330M	AP301U	AP330M	AC230P	AP301U	AW100K
	ATD 315-RA	0.08-0.18	0.15-0.30	0.5-1.5	3	1.5	20.7	5.1								•
	ATD 420-RA	0.10-0.25	0.2-0.45	0.6-2.0	4	2	20.7	5.1								•
	ATD 525-RA	0.11-0.28	0.2-0.50	0.7-2.5	5	2.5	25.7	5.0								•
3.00	ATD 630-RA	0.12-0.30	0.22-0.60	0.9-3.0	6	3	25.7	5.0								•
	ATD 840-RA	0.15-0.40	0.25-0.65	1.0-4.0	8	4	31.5	6.1								•

Система обозначения шлифованных пластин для обработки канавок

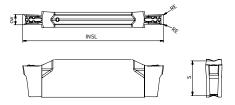
1-Бренд АСНТЕСК

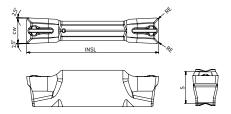
2-Ти	п обработки
С	Обработка канавок / Отрезка
Т	Точение / Обработка канавок

3-Ти	п пластины
S	Однокромочная
D	Двукромочная

4-Ширина пластины
215=2.15 мм
145=1.45 мм

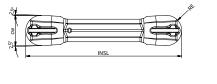
5-тип канавки


Е: наружная F: торцевая I: внутренняя 6-Радиус на уголках 010=0.10 мм 020=0.20 мм 200=2.00 мм


Шлифованные пластины для обработки канавок и точения

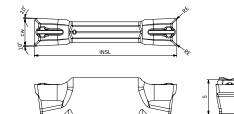
							● Хорошие									
					Услов	ия об	работ	ГКИ	+	•	#	•	#	+	•	•
		Ширина посадочного места	Режимы резания	Размеры						Р		ı	М		<	N
Вид пластины	Обозначение пластины		Обработка канавок f (мм/об)	CW	RE	CDX	S	INSL	AC230P	AP301U	AP330M	AP301U	AP330M	AC230P	AP301U	AW100K
	ATD 100E000G	2 мм	0.02-0.05	1.00	0.00	2.00	5.1	20.700		•		•			•	
	ATD 104E000G	2 мм	0.02-0.05	1.04	0.00	2.00	5.1	20.700		•		•			•	
	ATD 115E000G	2 мм	0.02-0.05	1.15	0.00	2.00	5.1	20.700		•		•			•	
	ATD 120E000G	2 мм	0.03-0.05	1.20	0.00	2.00	5.1	20.700		•		•			•	
	ATD 125E010G	2 мм	0.03-0.05	1.25	0.10	2.00	5.1	20.700		•		•			•	
	ATD 130E000G	2 мм	0.03-0.05	1.30	0.00	2.00	5.1	20.700		•		•			•	
	ATD 135E000G	2 мм	0.03-0.05	1.35	0.00	2.00	5.1	20.700		•		•			•	
	ATD 140E000G	2 мм	0.03-0.06	1.40	0.00	2.00	5.1	20.700		•		•			•	
	ATD 145E010G	2 мм	0.03-0.06	1.45	0.10	2.00	5.1	20.700		•		•			•	
	ATD 147E000G	2 мм	0.03-0.06	1.47	0.00	2.50	5.1	20.700		•		•			•	
	ATD 150E010G	2 мм	0.03-0.06	1.50	0.10	2.50	5.1	20.700		•		•			•	
	ATD 157E015G	2 мм	0.03-0.07	1.57	0.15	2.70	5.1	20.700		•		•			•	
	ATD 165E010G	2 мм	0.03-0.07	1.65	0.10	2.70	5.1	20.700		•		•			•	
	ATD 170E010G	2 мм	0.03-0.07	1.70	0.10	3.00	5.1	20.700		•		•			•	
(Marie	ATD 178E018G	2 мм	0.03-0.07	1.78	0.18	3.00	5.1	20.700		•		•			•	
	ATD 190E010G	2 мм	0.04-0.09	1.90	0.10	3.00	5.1	20.700		•		•			•	
	ATD 196E015G	2 мм	0.04-0.09	1.96	0.15	3.00	5.1	20.700		•		•			•	
	ATD 200E020G	2 мм	0.04-0.09	2.00	0.20	3.00	5.1	20.700		•		•			•	
	ATD 215E010G	2 мм	0.04-0.10	2.15	0.10	3.00	5.1	20.700		•		•			•	
	ATD 222E015G	2 мм	0.04-0.10	2.22	0.15	-	5.1	20.700		•		•			•	
	ATD 230E020G	2 мм	0.04-0.10	2.30	0.20	-	5.1	20.700		•		•			•	
	ATD 100E050G	2 мм	0.03-0.06	1.00	0.50	2.00	5.1	20.700		•		•			•	
	ATD 140E070G	2 мм	0.04-0.07	1.40	0.70	2.00	5.1	20.700		•		•			•	
	ATD 157E079G	2 мм	0.04-0.08	1.57	0.78	2.70	5.1	20.700		•		•			•	
	ATD 200E100G	2 мм	0.05-0.11	2.00	1.00	3.00	5.1	20.700		•		•			•	
	ATD 239E120G	2 мм	0.06-0.12	2.39	1.19	-	5.1	20.700		•		•			•	

^{1.} Для пластины шириной мене<mark>е 1.78 мм вы</mark>бирайте державку с размером А под пластину


Шлифованные пластины для обработки канавок и точения

								●Хорошие ♦Средние ♦Плохие										
					Условия обработки						opor	шие	- CF	едн	1e T	11110	хие	
													#	•	#	H	•	•
	Обозначение пластины	Ширина посадочного места	Режимы резания				Размеры					Р		М			(N
Вид пластины			Точение		Обработка канавок	CW	RE	CDX	s	INSL	ЭP	10	MC	⊇	M	J.	2	OK
			f (мм/об)	Ар (мм)	f (мм/об)	CVV	KE	CDX		INOL	AC230P	AP301U	AP330M	AP301U	AP330M	AC230P	AP301U	AW100K
	ATD 265E015	3 мм	0.10-0.18	0.20-1.80	0.04-0.12	2.65	0.15	-	5.1	20.70		•		•			•	
	ATD 300E020	3 мм	0.11-0.20	0.30-2.00	0.06-0.14	3.00	0.20	-	5.1	20.70		•		•			•	
	ATD 300E040	3 мм	0.15-0.23	0.50-2.20	0.06-0.15	3.00	0.40	-	5.1	20.70		•		•			•	
	ATD 400E040	4 мм	0.16-0.30	0.50-2.50	0.08-0.19	4.00	0.40	-	5.1	20.70		•		•			•	
	ATD 400E080	4 мм	0.16-0.30	1.00-2.50	0.08-0.19	4.00	0.80	-	5.1	20.70		•		•			•	
	ATD 415E015	4 мм	0.16-0.30	0.20-2.50	0.08-0.19	4.15	0.15	-	5.1	20.70		•		•			•	
0	ATD 478E055	5 мм	0.20-0.35	0.60-2.60	0.10-0.20	4.78	0.55	-	5.0	25.70		•		•			•	
	ATD 500E040	5 мм	0.20-0.35	0.50-2.60	0.10-0.20	5.00	0.40	-	5.0	25.70		•		•			•	
	ATD 500E080	5 мм	0.22-0.35	1.00-3.00	0.10-0.20	5.00	0.80	-	5.0	25.70		•		•			•	
	ATD 515E015	5 мм	0.22-0.35	0.20-3.00	0.10-0.22	5.15	0.15	-	5.0	25.70		•		•			•	
	ATD 555E055	6 мм	0.23-0.40	0.60-3.00	0.12-0.28	5.55	0.55	-	5.0	25.70		•		•			•	
	ATD 600E080	6 мм	0.25-0.45	1.00-3.50	0.12-0.30	6.00	0.80	-	5.0	25.70		•		•			•	
	ATD 600E120	6 мм	0.25-0.45	1.30-3.50	0.12-0.30	6.00	1.20	-	5.0	25.70		•		•			•	
	ATD 635E080	6 мм	0.25-0.45	1.00-3.50	0.13-0.30	6.35	0.80	-	5.0	25.70		•		•			•	
	ATD 800E080	8 мм	0.30-0.55	1.00-4.80	0.15-0.40	8.00	0.80	-	6.1	31.50		•		•			•	
	ATD 800E120	8 мм	0.30-0.55	1.20-4.80	0.15-0.40	8.00	1.20	-	6.1	31.50		•		•			•	

Шлифованные пластины для обработки канавок и точения



						V 5.5						●Хорошие ♦ Средние ♦ Плохие								
								Условия обработки						•	*	#	•	•		
	Обозначение пластины	Ширина посадочного места	Режимы резания				Р	азмер	ЭЫ			Р		М		K		N		
Вид пластины			Точение		Обработка канавок	0144	- DE	ODY	0	INIOI	Ъ	U	M	U	M	Ъ	⊃	X		
			f (мм/об)	Ар (мм)	f (мм/об)	CW	RE	CDX	S	INSL	AC230P	AP301U	AP330M	AP301U	AP330M	AC230P	AP301U	AW100K		
	ATD 300E150	3 мм	0.15-0.30	0-1.50	0.08-0.19	3.00	1.50	-	5.1	20.70		•		•			•			
	ATD 400E200	4 мм	0.18-0.35	0-2.00	0.10-0.20	4.00	2.00	-	5.1	20.70		•		•			•			
-5	ATD 478E239	5 мм	0.22-0.45	0-2.40	0.12-0.24	4.78	2.39	-	5.0	25.70		•		•			•			
1	ATD 500E250	5 мм	0.22-0.45	0-2.50	0.12-0.24	5.00	2.50	-	5.0	25.70		•		•			•			
	ATD 600E300	6 мм	0.25-0.50	0-3.00	0.15-0.30	6.00	3.00	-	5.0	25.70		•		•			•			
	ATD 800E400	8 мм	0.30-0.65	0-4.00	0.18-0.35	8.00	4.00	-	6.1	31.50		•		•			•			

Заготовки пластин ATBD

D	Обозначение	Ширина		Разм	иеры	Р	М	K	N	S	н	
Вид пластины	пластины	посадочного места	CW	RE	INSL	S	P	IVI	,	N	3	П
	ATBD 2.6 M200	2 мм	2.60	0.10	21.2	5.1	•	•	•	•	•	
	ATBD 3.5 M200	3 мм	3.50	0.10	21.2	5.1	•	•	•	•	•	
	ATBD 4.5 M200	4 мм	4.50	0.10	21.2	5.1	•	•	•	•	•	
	ATBD 5.5 M200	5 мм	5.50	0.10	26.2	5.0	•	•	•	•	•	
	ATBD 6.5 M200	6 мм	6.50	0.10	26.2	5.0	•	•	•	•	•	
	ATBD 8.5 M200	8 мм	8.74	0.12	32.0	6.1	•	•	•	•	•	

Готовые пластины устанавливаются только в державки Achteck

Режимы резания для обработки канавок и отрезки

CO OSpecia Tubel de Marce pira Juliu Control Con	материалы оораоатываемых деталеи) дл		рабо	отки		авок	и от	ъ резания отрезки AW100K		
CHILDRYNDEQUARTING CHILDRY		Обр	рабатываемые материа	іЛЫ	Твёрдость по Бринеллю	Предел прочности		.Р301 (мм/о					-			-	(мм/о		
Hassoymepoparicine Colored Principle Co					(HB)	(H/мм²)	0.1	0.3	0.5	0.1	0.3	0.5	0.1	0.3	0.5	0.1	0.2	0.4	
Heavey/regogalactee crans			C≤0.25%	Отожжённые	125	428	180	145	130	160	130	100	220	180	160	-	-	-	
Participation			0.25 <c≤0.55%< td=""><td>Отожжённые</td><td>190</td><td>639</td><td>145</td><td>130</td><td>115</td><td>120</td><td>100</td><td>90</td><td>160</td><td>130</td><td>115</td><td>-</td><td>-</td><td>-</td></c≤0.55%<>	Отожжённые	190	639	145	130	115	120	100	90	160	130	115	-	-	-	
Статим Сто. 65% Откоможение 190 0.39 145 130 115 100 80 100	Ни	зкоуглеродистые	0.25 <c≤0.55%< td=""><td>Термообработанные</td><td>210</td><td>708</td><td>130</td><td>115</td><td>100</td><td>120</td><td>100</td><td>90</td><td>130</td><td>115</td><td>100</td><td>-</td><td>-</td><td>-</td></c≤0.55%<>	Термообработанные	210	708	130	115	100	120	100	90	130	115	100	-	-	-	
Можение стали Можение			C>0.55%	Отожжённые	190	639	145	130	115	145	130	80	160	130	115	-	-	-	
трука с стали (корстиая струкам) Потоженные Торкообработанные Тор			C>0.55%	Термообработанные	300	1013	115	100	80	115	100	80	115	100	80	-	-	-	
P Неколептрованные 175 591 180 145 130				Отожжённые	220	745	130	115	100	130	115	100	130	115	100	-	-	-	
Неизолегрускаванные траносфработвеные 300 1013 115 100 80				I ные	175	591	180	145	130	-	-	-	-	-	-	-	-	-	
Терьиобрабопаненые Терьиобрабопаненые Терьиобрабопаненые 430 1477 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Ши	изкологировании ю					_	_	_	-	-	-	-	-	-	-	-	-	
Высоколегированные инструментальные Закаленные и отлущенные зоо 1013	ועו		Термообраб	отанные	380	1282	170	90	105	-	-	-	-	-	-	-	-	-	
Выскологирование и ститущенные замаленные и ститущенные сили замаленные и ститущенные и ститущенные сили замаленные и ститущенные замаленные замаленные и ститущенные замаленные замаленные и ститущенные замаленные замаленные замаленные и ститущенные замаленные замален			Термообраб	430	1477	-	-	-	-	-	-	-	-	-	_	-	-		
### инструментальные стали	_		Отожжён	ные	200	675	-	-	-	-	-	-	-	-	-	-	-	-	
Нержавоющие стали Нержавоющие стали Мартенистивые, тормообработавные Аустенитные Аустенитные Аустенитные Остариятые Остариятые Аустенитные Остариятые Аустенитные Остариятые Аустенитные Остариятые Остариятые Аустенитные Остариятые Остарият			Закалённые и о	300	1013	-	-	-	-	-	-	-	-	-	-	-	-		
Нержавеющие стапи Мартичестичные, термообработанные Мортичестичные, закаленные и мартичестичные доло в 675 в 165 в 135 в 105 г.		стали			400	1361	-	-	-	-	-	-	-	-	-	-	-	-	
Нержавеющие стали Мартонситные, термообработанные 200 675 166 135 105 0 0 0 0 0 0 0 0 0				200	675	165	135	105	-	-	-	-	-	-	-	-	-		
М Нержавеющие стали Аустенитные 200 675 165 133 105	Hep	ржавеющие стали		330	1114				-	-	-	-	-	-	_	-	-		
M Нержавеющие стали Аустенитые», аккалённые (РН неркавеющие стали) 300 1013 155 120 80 .								_	-	-	-	-	-	-	-	-	-		
Аустенитно-ферритные (дуплексные) 230 778 135 110 85	He	ржавеющие стали	Аустенитные, закалённые (Р	300	1013	155	120	80	-	-	-	-	-	-	-	-	-		
Ковжие чутуны Серые чутуны					230	778	135	110	85	-	-	-	-	-	-	-	-	-	
Пертитные 260 700 115 90 65 - - 115 90 65 - - 115 90 65 10 100			Феррит	ные	200	400	115	90	65	-	-	-	115	90	65	-	-	-	
К Серые чутуны с нарожими пределом прочности, аустенитный 245 350 185 140 95 . . 200 160 120 Чутуны с вермикулярным графитом (СGI) Деформируемые алюминиевые сплавы, на поминиевые сплавы, на поминиевые сплавы, на поминиевые сплавы, на поминиевые сплавы, подвергнутые старению 230 400 . <	Ковкие чугуны		Перлит	ные	260	700	115	90	65	-	-	-	115	90	65	-	-	-	
К Свысовим пределок проевости, аустентный 245 350 165 140 95 - - 200 160 120 - - - 200 160 130 100 Чутуны с вермикулярным графитом (СGI) 230 400 145 110 80 - - 60 -			С низким предело	ом прочности	180	200	185	140	95	-	-	-	200	160	120	-	-	-	
трафитом Перлитные 265 700 145 110 80 160 130 100 100 145 110 80	Серые чугуны		С высоким пределом про	чности, аустенитный	245	350	185	140	95	-	-	-	200	160	120	-	-	-	
Перпитные 265 700 145 110 80 - - 160 130 100		Чугуны с	Феррит	ные	155	400	145	110	80	-	-	-	160	130	100	-	-	-	
Поминиевые сплавы Апоминиевые сплавы, не подвергнутые старению 30			Перлитн	ные	265	700	145	110	80	-	-	-	160	130	100	-	-	-	
алюминиевые сплавы Апіоминиевые сплавы, подвергнутые старению № 12% Si, не подвергнутые старению № 130 450			ы с вермикулярным графитом (CGI)		230	400	-	-	-	-	-	-	-	-	-	-	-	-	
алюминиевые сплавы Литые алюминиевые сплавы, подвергнутые старению № 12% SI, не подвергнутые старению \$ 130	Д	lеформируемые	Алюминиевые сплавы, не подвергнутые старению		30	-	-	-	-	-	-	-	-	-	-	-	-	-	
Питые алюминиевые сплавы			Алюминиевые сплавы, по	100	340	-	-	-	-	-	-	-	-	-	-	-	-		
N ≤ 12% Si, подвергнутые старению 90 310			≤ 12% Si, не подверг	75	260	-	-	-	-	-	-	-	-	-	850	500	200		
Магниевые сплавы Медь и сплавы на её основе (бронза, латунь) Медные сплавы, короткая стружка Медные сплавы Арсонове (бронза, латунь) Высокопрочные сплавы Атрсонове (бронза, расная датунь (бронза, красная датунь) Высокопрочные сплавы, короткая стружка На основе железа (Fe) Титановые сплавы Марине сплавы Титановые сплавы Отожженные 200 680	Лит		≤ 12% Si, подвергн	90	310	-	-	-	-	-	-	-	-	-	-	-	-		
Медь и сплавы на её основе (бронза, латунь) Нелегированная электролитическая бронза 100 340 - <t< td=""><td></td><td></td><td>> 12% Si, не подвер</td><td>130</td><td>450</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>450</td><td>250</td><td>40</td></t<>			> 12% Si, не подвер	130	450	-	-	-	-	-	-	-	-	-	450	250	40		
Медь и сплавы на её основе (бронза, латунь) Медные сплавы, короткая стружка Высокопрочные сплавы, короткая стружка На основе железа (Fe) На основе железа (Fe) На основе никеля (Ni) и кобальта (Co) Титановые сплавы Ф сплавы Отожженные	Ма	агниевые сплавы			70	250	-	-	-	-	-	-	-	-	-	-	-	-	
её основе (бронза, латунь) Медные сплавы, короткая стружка Высокопрочные сплавы Амрсо Медные сплавы Амрсо Зоо 1010			Нелегированная электро	олитическая бронза	100	340	-	-	-	-	-	-	-	-	-	-	-	-	
Медные сплавы, короткая стружка 110 380			Латунь, бронза, кр	расная латунь	90	310	-	-	-	-	-	-	-	-	-	-	-	-	
На основе железа (Fe) Отожжённые 200 680	ee		Медные сплавы, ко	роткая стружка	110	380	-	-	-	-	-	-	-	-	-	-	-	-	
На основе железа (Fe) Состаренные 280 940			Высокопрочные с	плавы Атрсо	300	1010	-	-	-	-	-	-	-	-	-	-	-	-	
Жаропрочные сплавы На основе никеля (Ni) и кобальта (Co) Титановые сплавы Отожжённые ззо 1180			На основа жалова (Ба)	Отожжённые	200	680	-	-	-	-	-	-	-	-	-	-	-	-	
На основе никеля (Ni) и кобальта (Co) Литые 350 1180 - <td></td> <td></td> <td>на основе железа (ге)</td> <td>Состаренные</td> <td>280</td> <td>940</td> <td>-</td>			на основе железа (ге)	Состаренные	280	940	-	-	-	-	-	-	-	-	-	-	-	-	
Кобальта (Со) Литые 320 1080	S	ропрочные сплавы		Отожжённые	250	840	-	-	-	-	-	-	-	-	-	-	-	-	
Вольфрамовые сплавы Закалённые и отпущенные 320 1080			Состаренные	350	1180	-	-	-	-	-	-	-	-	-	-	-	-		
Титановые сплавы			`	Литые	320	1080	-	-	-	-	-	-	-	-	-	-	-	-	
Вольфрамовые сплавы 300 1010			Чистый т	итан	200	680	-	-	-	-	-	-	-	-	-	-	-	-	
Вольфрамовые сплавы Молибденовые сплавы Закалённые и отпущенные Закалённые и отпушенные Закалённые и отпушенные		итановые сплавы	α , β сплавы, со	375	1260	-	-	-	-	-	-	-	-	-			-		
сплавы 300 1010 - <t< td=""><td></td><td></td><td colspan="2">β сплавы</td><td>410</td><td>1400</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></t<>			β сплавы		410	1400	-	-	-	-	-	-	-	-	-	-	-	-	
Сплавы 300 1010	E			300	1010	-	-	-	-	-	-	-	-	-	-	-	-		
Закалённые и отпущенные 50HRC				300	1010	-	-	-	-	-	-	-	-	-	-	-	-		
Закалённые стали Закалённые и отпущенные 55HRC			Закалённые и о	тпущенные	50HRC	-	-	-	-	-	-	-	-	-	-	-	-	-	
	38	акалённые стали		•		-	-	-	-	-	-	-	-	-	-	-	-	-	
Закалённые и отпущенные 60HRC	H				60HRC	-	-	-	-	-	-	-	-	-	-	-	-	-	
Отбеленные чугуны Закалённые и отпущенные 50HRC	От	беленные чугуны	Закалённые и о	тпущенные	50HRC	-	-	-	-	-	-	-	-	-	-	-	-	-	

Рекомендованные режимы реза<mark>ния</mark> являются нача<mark>льн</mark>ыми для средних условий обработки. Требуется вводить корректировку при плохой жёсткости системы СПИД и нестандартной конфигурации заго<mark>товк</mark>и.